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Abstract 

This paper deals with non-Bayesian estimation problem of constant-stress Accelerated Life Tests (ALTs) 

when the lifetime of the items follow truncated Generalized Logistic Distribution (GLD). Some 

considerations on inference based on the use of asymptotically normality of the ML estimators are 

presented considering the stress effects on the two scale parameters of the truncated GLD with a k-level 

constant-stress ALT under progressive type-I censored grouped data. The EM algorithm method is used to 

obtain the estimators of the unknown parameters. In addition, estimator of the two scale parameters, 
reliability function under usual conditions and Fisher information matrix of the estimators are given. 

Finally, we present a Simulation Study to illustrate the proposed procedure. 

Keywords and phrases:  Truncated Generalized Logistic Distribution; Constant-stress 

Accelerated Life Test; EM algorithm method; Fisher Information Matrix; Progressive 

Type-I Censored Grouped Data. 

1.   Introduction 

With today’s highly reliable components, we are often unable to obtain a reasonable 

amount of test data under normal use condition. For this reason, ALT is the reasonable 

procedure to be applied. ALT is used to determine the reliability of a product in a short 

period of time by accelerating the use environment. Nelson (1990) has indicated that the 

stress can be applied in various ways, commonly used methods are step stress and 

constant stress ALT. In real life, many products such as, insulations, bearing, electronic 

components, semiconductors, and microelectronics run at a constant stress (i.e., run under 

constant temperature, voltage, load, and etc). CSALT is the most comely adopted ALT so 

that it is the easiest way to run and estimate reliability information for high reliability and 

long lifetime products under usual conditions. In CSALT, the stress is kept at a constant 

level of stress throughout the life test, i.e., each unit is run at a constant high stress level 

until the occurrence of failure or the observation is censored. Since, CSALT is a widely 

used in assessing the reliability of products. There is abundant literature on how to design 

CSALT. They differ in the assumed lifetime distribution, censoring scheme, and test 

condition. For example, Meeker and Nelson (1975) proposed statistically optimal plans 

for CSALT which involved only two stress levels. Meeker and Hahn (1977) considered 

optimal allocation of test units to accelerated stress conditions with the objective of 

minimizing the estimate of the product reliability under usual condition. Nelson (1990) 

reviewed statistically optimal and compromise plans for the single stress ALT planning 
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problem. Another approach adopted by Yang (1994) and Yang and Jin (1994) to 

overcome the problem of Meeker and Nelson (1975) was to add test constraints involving 

expected minimum number of failures to be observed at the middle stress levels.  Tang, et 

al. (2002) presented two alternative ways of CSALT planning with three stress levels that 

optimize the sample and the sample locations. Tang and Xu (2005) considered a 

framework with two conflicting objectives in the planning of ALT, meeting a desired 

level of statistical precision for an estimate of interest, and meeting a cost target for 

conducting the test. Ding et al. (2010) considered the design of ALT sampling plans 

under type-I progressive interval censoring with random removals and assumed the 

lifetime of products follows a Weibull distribution. Attia, et al. (2011a,b) obtained MLE 

and discussed optimum test plans of the Generalized Logistic (GL) parameters under both 

type-I and type-II censoring data. It is assumed that the stress affects only the scale GL 

parameter. The term Generalized Logistic (GL) distribution is used as the name for 

several different families of probability distributions [see Johnson, et al. (1995)]. The 

main feature of the GL distribution is that new parameters were introduced to control 

both location and scale. It allows for a greater degree of flexibility and it is expected to be 

useful in many more practical situations Nadarajah and Kotz (2005).  

 

Truncated distributions arise when sample selection is not possible in some sub-region of 

the sample space. The GLD is considered inappropriate for modeling lifetime data 

because left hand side of its distribution extends to negative infinity, and this could 

conceivably result in modeling negative times-to-failure. This has necessitated the use of 

truncated GLD truncated at point zero for modeling lifetime data. 

 

 This paper, considers CSALT under truncated GLD using progressive type-I censored 

grouped data. In addition to this introductory section this paper includes other Sections 

too. In Section 2, the model and assumptions are described. Section 3 presents the 

estimation method. EM algorithm method for obtaining the estimators of the unknown 

parameters are described in Section 4. In Section 5 the method developed has been 

illustrated using the data simulated from the proposed models. 

2.   Model and Assumptions 

The generalized logistic distribution has been addressed by Molenberghs and Verbeke 

(2011), which had the following cumulative distribution function  

𝐹(𝑥) = 1 − (1 +
𝛼2 

𝜃
 𝑒𝛼1 𝑥 )

−𝜃

,       − ∞ < 𝑥 < ∞,  

where 𝜃  is a positive shape parameter, and 𝛼1 , 𝛼2  are positive scale parameters. In this 

paper, we use the truncated GLD (truncated at point zero for modeling lifetime data), 

Thus the cumulative distribution function is given by the following form 

𝐹(𝑥, 𝛼1 , 𝛼2  ) = 1 − (1 +
𝛼2 

𝜃
 )

𝜃

(1 +
𝛼2 

𝜃
 𝑒𝛼1 𝑥  )

−(𝜃+1)

,   𝑥 , 𝜃, 𝛼𝑞 > 0, 𝑞 = 1,2  

 

We assume the test is done at high stresses 𝑣𝑗 , 𝑗 =  1, . . . , 𝑘 where  𝑣1  <  𝑣2  < . . . <   𝑣𝑘   

and  𝑣𝑢 be the design stress; that is the stress level under usual conditions, where 𝑣𝑢  <
 𝑣𝑗  ,   𝑗 = 1, 2, . . . , 𝑘.   For the testing procedure, a total of 𝑁  units are divided into 𝑛1,

𝑛2 , . ..  , 𝑛𝑘 units where  ∑ 𝑛𝑗
𝑘
𝑗=1 =  𝑁. Each 𝑛𝑗  , 𝑗 = 1, 2, . . . , 𝑘 units in the experiment 

are run at a pre-specified constant stress 𝑣𝑗  , 𝑗 = 1, 2, . . . , 𝑘. The life of a test unit at each 
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stress is described by the truncated three-parameter GLD. Thus, the cumulative 

distribution function of the lifetime of a test unit under k-level step-stress test is 

𝐹(𝑥𝑖𝑗 , 𝛼1𝑗 , 𝛼2𝑗  ) = 1 − (1 +
𝛼2𝑗 

𝜃
 )

𝜃

(1 +
𝛼2𝑗 

𝜃
 𝑒

𝛼1𝑗  𝑥𝑖𝑗  )
−(𝜃+1)

,   𝑥𝑖𝑗 , 𝜃, 𝛼𝑞𝑗 > 0, 𝑞 = 1,2  

 

The scale parameters  𝛼𝑞𝑗 , 𝑗 = 1, 2, . . . , 𝑘, 𝑞 = 1, 2   at the stress level 𝑣𝑗  , 𝑗 = 1, 2, . . . , 𝑘   

of a test unit is a power law function of stress [see, Mann, Schafer and 

Singurwalla(1974)], given by 

𝛼𝑞𝑗 = 𝑐𝑞 𝑣𝑗
𝑝
,  

where 𝑐𝑞, 𝑝 constants to be estimated. Progressively censored sampling is an important 

method for lifetime studies. This method allows the experimenter to save time and cost 

and it is useful when the items being tested are very expensive. Let us consider there are 

𝑘-stage constant stress ALT scheme with progressive Type-I  interval censoring. In this 

case, the test will be carrying out as follows: n units are simultaneously placed on a life 

test at stress level  𝑣1, and run until the time 𝑥1.  At this time, the number of failed units  

𝑟1 are counted and 𝑅1surviving units are removed from the test; starting from the time 𝑥1, 

the  (𝑛 − 𝑟1 − 𝑅1)  non-removed surviving units are put to a stress level 𝑣2, 𝑣1,< 𝑣2, and 

run until the time 𝑥2. At this time, the number of failed units 𝑟2 are counted and 

𝑅2 surviving units are removed from the test. Starting from the time 𝑥2, the (𝑛 − 𝑟1 −
𝑅1 − 𝑟2 − 𝑅2) non-removed surviving units are put to a stress level 𝑣3, 𝑣2,< 𝑣3   and run 

until the time 𝑥3. At this time, the number of failed units 𝑟3 are counted and 𝑅3 surviving 

units are removed from the test, and so on. At the time 𝑥𝑘, the number of failed units 

𝑟𝑘are counted and the remaining surviving units 𝑅𝑘 = 𝑛 − ∑ 𝑟𝑗
𝑘
𝑗=1 − ∑ 𝑅𝑗

𝑘−1
𝑗=1  are all 

removed, thereby terminating the test, [Balakrishnan and Aggarwala(2000)]. 

3.   Estimation Method 

Suppose a type-I progressively censored grouped sample is collected as described in 

Section 2 and by assuming that the experiment is done under 𝑘-stage constant stress 

level, the number of failed units 𝑟𝑗,   𝑗 = 1, 2, . . . , 𝑘  which are observed while the testing 

in the interval (𝑥𝑗−1, 𝑥𝑗) at stress  𝑣𝑗 , 𝑗 = 1, 2, . . . , 𝑘 are random variables with the fact 

that  𝑟𝑗 |𝑟𝑗−1, ... , 𝑟1 ~ Binomial  [𝑚𝑗, 𝐹𝑗(𝑥)],  where 𝑚𝑗 = 𝑁 − ∑ 𝑟𝑖
𝑗−1
𝑖=1 − ∑ 𝑅𝑖

𝑗−1
𝑖=1   is the 

number of non-removal surviving units at the beginning of the 𝑗𝑡ℎ stage, and 𝐹𝑗(𝑥) =
𝐹(𝑥𝑗)−𝐹(𝑥𝑗−1)

1−𝐹(𝑥𝑗−1)
. Therefore, the cdf of the lifetime distribution at the stress level 𝑣𝑗 , 𝑗 =

1, 2, . . . , 𝑘  and in the inspection interval (𝑥𝑗−1, 𝑥𝑗) will take the following form 

𝐹(𝑥𝑖𝑗 , 𝛼1𝑗 , 𝛼2𝑗  ) = 1 − (1 +
𝛼2𝑗 

𝜃
 )

𝜃

(1 +
𝛼2𝑗 

𝜃
 𝑒

𝛼1𝑗  𝑥𝑖𝑗  )
−(𝜃+1)

,   𝑥𝑖𝑗 , 𝜃, 𝛼𝑞𝑗 > 0, 𝑞 = 1,2  

where 𝛼𝑞𝑗  is defined by Eq.(1). Therefore, the likelihood function is then 

𝐿 = ∏ [𝐹(𝑥𝑗) − 𝐹(𝑥𝑗−1)]
𝑟𝑗

. [1 − 𝐹(𝑥𝑗)]
𝑅𝑗

.                                                    (2)𝑘
𝑗=1   

 

In the special case where the intervals are of equal length, so monitoring and censoring 

occurs periodically, say 𝑥𝑗= 𝑗 . 𝑥 [Aggarwala (2001)]. Therefore, the likelihood function 

(2) can be re-written as the following form  
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𝐿 = ∏ [𝐹(𝑗 𝑥) − 𝐹((𝑗 − 1)𝑥)]
𝑟𝑗

. [1 − 𝐹(𝑗 𝑥)]𝑅𝑗 .                                         (3)𝑘
𝑗=1   

 

Substituting for 𝛼𝑞𝑗  the expression from (1) involving 𝑐1 , 𝑐2 , 𝑝  the likelihood function 

can be written as 

𝐿 = ∏ (1 +
𝑐2 𝑣𝑗

𝑝

𝜃
 )

𝜃𝑅𝑗

(1 +
𝑐2 𝑣𝑗

𝑝

𝜃
 𝑒

𝑗 𝑐1 𝑣𝑗
𝑝

𝑥
)

−𝜃𝑅𝑗

[(1 +
𝑐2 𝑣𝑗

𝑝

𝜃
 )

𝜃

(1 +
𝑐2 𝑣𝑗

𝑝

𝜃
 𝑒

(𝑗−1) 𝑐1 𝑣𝑗
𝑝

𝑥
)

−𝜃

−𝑘
𝑗=1

(1 +
𝑐2 𝑣𝑗

𝑝

𝜃
 )

𝜃

(1 +
𝑐2 𝑣𝑗

𝑝

𝜃
 𝑒

𝑗 𝑐1 𝑣𝑗
𝑝

𝑥
)

−𝜃

]

𝑟𝑗

.                                                                                          (4)  

 

Therefore, the log-likelihood function is  

𝑙𝑛 𝐿 = ∑ {𝑅𝑗𝑙𝑛𝐴𝑗(∅) + (𝑟𝑗 + 𝑅𝑗)𝑙𝑛𝐴𝑗(𝜀) + 𝑟𝑗ln [𝐴𝑗−1(∅) − 𝐴𝑗(∅)]}𝑘
𝑗=1 ,                   (5)  

where  

∅ = (𝑐1 , 𝑐2 , 𝑝, 𝜃), 𝜀 = ( 𝑐2 , 𝑝, 𝜃), 𝜔 = (𝑐1 , 𝑝), 

𝐴𝑗(𝜀) = (1 +
𝑐2 𝑣𝑗

𝑝

𝜃
 )

𝜃

 𝐴𝑗(∅) = (1 + 𝐵𝑗(∅) )
−𝜃

,  𝐵𝑗(∅) =
𝑐2 𝑣𝑗

𝑝

𝜃
 𝑒

𝑗 𝑐1 𝑣𝑗
𝑝

𝑥
 , 

𝐴𝑗−1(∅) = (1 + 𝐵𝑗−1(∅) )
−𝜃

,  𝐵𝑗−1(∅) =
𝑐2 𝑣𝑗

𝑝

𝜃
 𝑒

(𝑗−1) 𝑐1 𝑣𝑗
𝑝

𝑥
. 

 

From 
𝜕 ln 𝐿

𝜕𝑐1
= 0,

𝜕 ln 𝐿

𝜕𝑐2
= 0,

𝜕 ln 𝐿

𝜕𝑝
= 0,   and 

𝜕 ln 𝐿

𝜕𝜃
= 0 we find the maximum likelihood 

estimators (�̂�1 , �̂�2 , �̂�, 𝜃) by solving the following four likelihood equations, 

∑ 𝑗 𝑅𝑗  𝐵𝑗(∅̂)𝐴
𝑗

1

�̂�(∅̂) = 𝑟𝑗
𝑘
𝑗=1 ( 𝐴𝑗−1(∅̂) −  𝐴𝑗(∅̂))

−1

[𝑗 𝐵𝑗(∅̂)𝐴
𝑗

1

�̂�
+1

(∅̂) − (𝑗 −

1) 𝐵𝑗−1(∅̂)𝐴
𝑗−1

1

�̂�
+1

(∅̂)]                                                                                                                (6)  

 

∑ {( 𝑟𝑗 +  𝑅𝑗)𝑣𝑗
𝑝𝐴

𝑗

−1

�̂� (𝜀̂) −𝑘
𝑗=1

 �̂�𝑅𝑗

𝑐2̂ 
 𝐵𝑗(∅̂)𝐴

𝑗

1

�̂�(∅̂)} =
𝑟𝑗[ 𝐵𝑗(∅̂)𝐴

𝑗

1

�̂�
+1

(∅̂)−(𝑗−1) 𝐵𝑗−1(∅̂)𝐴
𝑗−1

1
𝜃

+1
(∅̂)]

( 𝐴𝑗−1(∅̂)− 𝐴𝑗(∅̂))
                                               (7)  

 

∑ {
 𝑅𝑗 𝐵𝑗(∅̂) 𝐴𝑗(�̂�)

𝐴
𝑗

−1

�̂� (∅̂)

−𝑘
𝑗=1

𝑐2̂ 𝑣𝑗
�̂�

( 𝑟𝑗+ 𝑅𝑗)

�̂�𝐴
𝑗

−1

�̂� (�̂�)

} =
𝑟𝑗[ 𝐵𝑗(∅̂) 𝐴𝑗(�̂�)𝐴

𝑗

1

�̂�
+1

(∅̂)−(𝑗−1) 𝐵𝑗−1(∅̂) 𝐴𝑗−1(�̂�)𝐴
𝑗−1

1
𝜃

+1
(∅̂)]

( 𝐴𝑗−1(∅̂)− 𝐴𝑗(∅̂))
                                (8)  
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∑ {( 𝑟𝑗 +  𝑅𝑗) [𝑙𝑛 (1 +
𝑐2̂ 𝑣𝑗

�̂�

�̂�
) −

𝑐2̂ 𝑣𝑗
�̂�

�̂�𝐴
𝑗

1

�̂�(�̂�)

] −  𝑅𝑗 [𝑙𝑛 (1 +  𝐵𝑗(∅̂)) −𝑘
𝑗=1

 𝐵𝑗(∅̂)𝐴
𝑗

1

�̂�(∅̂)]} =

𝑟𝑗[[ 𝐴𝑗(∅̂)[𝑙𝑛(1+ 𝐵𝑗(∅̂))− 𝐵𝑗(∅̂)𝐴
𝑗

1

�̂�(∅̂)]− 𝑄𝑗−1(∅̂)]]

( 𝐴𝑗−1(∅̂)− 𝐴𝑗(∅̂))
                                        (9)  

where,   𝑄𝑗−1(∅̂) = 𝐴𝑗−1(∅̂) [𝑙𝑛 (1 +  𝐵𝑗−1(∅̂)) −  𝐵𝑗−1(∅̂)𝐴
𝑗−1

1

�̂� (∅̂)]. 

 

To predict the value of the two scale parameters  𝛼1𝑢  and 𝛼2𝑢 under the usual condition 

stress 𝑣𝑢, the invariance property of MLE is used. Thus, the MLE of �̂�1𝑢, �̂�2𝑢  and  

�̂�𝑢(𝑥0) at the lifetime 𝑥0 under the usual condition stress 𝑣𝑢 respectively, are given by 

the following equations 

�̂�1𝑢  = �̂�1 𝑣𝑢
𝑝,    �̂�2𝑢  = �̂�2 𝑣𝑢

𝑝 , �̂�𝑢(𝑥0) = (1 +
  �̂�2𝑢

𝜃
 ) (1 +

  �̂�1𝑢

𝜃
 𝑒   �̂�1𝑢𝑥0)

−�̂�

 

 

For inference on  �̂� = (�̂�1 , �̂�2 , �̂�, 𝜃)  we usually use the asymptotical normality of the 

maximum likelihood estimators given by 

�̂� = (�̂�1 , �̂�2 , �̂�, 𝜃)~𝑁(𝛷, 𝐼0
−1 ), 

 

Where 

𝐼0 = (

𝐼11 𝐼12 𝐼13 𝐼14

𝐼21 𝐼22 𝐼23 𝐼24

𝐼31 𝐼32 𝐼33 𝐼34

𝐼41 𝐼42 𝐼43 𝐼44

)  

and 

𝐼11 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑐1
2 = 𝜃𝑥2 ∑ 𝑣𝑗

2𝑝 {𝑗2 𝑅𝑗 𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅) [1 − 𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅)] + 𝑟𝑗[𝐴𝑗−1(∅) −𝑘

𝑗=1

𝐴𝑗(∅)]
−1

{[𝑗2𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) [(𝜃 + 1)𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − 1] − (𝑗 − 1)2𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅) [(𝜃 +

1)𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅) − 1]] + 𝜃[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]

−1
[𝑗𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅) − (𝑗 −

1)𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅)]

2

}},   

 

𝐼12 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑐1𝜕𝑐2
=

𝜃𝑥

𝑐2
∑ 𝑣𝑗

2𝑝 {𝑗 𝑅𝑗  𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅) [1 − 𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅)] + 𝑟𝑗[𝐴𝑗−1(∅) −𝑘

𝑗=1

𝐴𝑗(∅)]
−1

{[𝑗𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) [(𝜃 + 1)𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − 1] − (𝑗 − 1)𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅) [(𝜃 +
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1)𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅) − 1]] + 𝜃[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]

−1
[𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅) −

𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅)] [𝑗𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅) − (𝑗 − 1)𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅)]}},  

 

𝐼13 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑐1𝜕𝑝
= 𝜃𝑥 ∑ 𝑣𝑗

𝑝𝑙𝑛𝑣𝑗 {𝑗 𝑅𝑗  𝐵𝑗(∅)𝐴𝑗(𝜔)𝐴
𝑗

1
𝜃(∅) [1 − 𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅)] +𝑘

𝑗=1

𝑟𝑗[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

{[𝑗𝐵𝑗(∅)𝐴𝑗(𝜔)𝐴
𝑗

1+
1
𝜃(∅) [(𝜃 + 1)𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − 1] − (𝑗 −

1)𝐵𝑗−1(∅)𝐴𝑗−1(𝜔)𝐴
𝑗−1

1+
1
𝜃(∅) [(𝜃 + 1)𝐵𝑗−1(∅)𝐴

𝑗−1

1
𝜃 (∅) − 1]] + 𝜃[𝐴𝑗−1(∅) −

𝐴𝑗(∅)]
−1

[𝐵𝑗(∅)𝐴𝑗(𝜔)𝐴
𝑗

1+
1
𝜃(∅) − 𝐵𝑗−1(∅)𝐴𝑗−1(𝜔)𝐴

𝑗−1

1+
1
𝜃 (∅)] [𝑗𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅) − (𝑗 −

1)𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅)]}},  

 

𝐼14 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑐1𝜕𝜃
= 𝑥 ∑ 𝑣𝑗

𝑝 {𝑗 𝑅𝑗  𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅) [𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − 1

𝜃
𝑙𝑛𝐴𝑗(∅) − ln (1 +𝑘

𝑗=1

𝐵𝑗(∅))] + 𝑟𝑗[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

{𝑗𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) [1 + (𝜃 + 1) [ln (1 +

𝐵𝑗(∅))−𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅)] + 1

𝜃
 𝑙𝑛 𝐴𝑗(∅)] + [𝑗 𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅) − (𝑗 −

1)𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅)] [𝜃 (𝐴𝑗(∅) (ln (1 + 𝐵𝑗(∅)) + 𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅)) −  𝐴𝑗−1(∅) (ln (1 +

𝐵𝑗(∅)) + 𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅)))  − 1]}},  

 

𝐼22 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑐2
2 =

𝜃

𝑐2
2 ∑ {(

𝑐2

𝜃
)

2

( 𝑟𝑗 + 𝑅𝑗)𝑣𝑗
2𝑝𝐴

𝑗

−2
𝜃 (𝜀) − 𝑅𝑗𝐵𝑗

2(∅)𝐴
𝑗

2
𝜃(∅) −𝑘

𝑗=1

𝑟𝑗[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

{[𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) [1 − (𝜃 + 1)𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅)] −

𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅) [1 − (𝜃 + 1)𝐵𝑗−1(∅)𝐴

𝑗−1

1
𝜃 (∅)]] + [𝜃[𝐴𝑗−1(∅) −

𝐴𝑗(∅)]
−1

(𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) − 𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅)) − 1] [𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅) −

𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅)]}},  
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𝐼23 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑐2𝜕𝑝
= ∑ 𝑙𝑛𝑣𝑗 {( 𝑟𝑗 + 𝑅𝑗)𝑣𝑗

𝑝𝐴
𝑗

−1
𝜃 (𝜀) [

𝑐2𝑣
𝑗
𝑝

𝜃
 𝐴

𝑗

−1
𝜃 (𝜀) − 1] +𝑘

𝑗=1

𝜃

𝑐2 
[ 𝑅𝑗𝐵𝑗(∅)𝐴𝑗(𝜔)𝐴

𝑗

1
𝜃(∅) (1−𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅))− 𝑟𝑗[𝐴𝑗−1(∅)−𝐴𝑗(∅)]

−1  {[𝐵𝑗(∅)𝐴𝑗(𝜔)𝐴
𝑗

1+
1
𝜃(∅) [1 −

(𝜃 + 1)𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅)] − 𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅)𝐴𝑗−1(𝜔) [1 − (𝜃 + 1)𝐵𝑗−1(∅)𝐴

𝑗−1

1
𝜃 (∅)]] −

𝜃[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

(𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) − 𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅)) (𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅)𝐴𝑗(𝜔) −

𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅)𝐴𝑗−1(𝜔))}]} ,  

 

𝐼24 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑐2𝜕𝜃
= ∑ {

1

𝜃2
( 𝑟𝑗 + 𝑅𝑗)𝑣𝑗

𝑝𝐴
𝑗

−1
𝜃 (𝜀) [𝑙𝑛𝐴𝑗(𝜀) + 𝜃𝑙𝑛 (1 +

𝑐2𝑣𝑗
𝑝

𝜃
) −

𝑐2𝑣𝑗
𝑝

𝐴𝑗(𝜀)
] +𝑘

𝑗=1

𝑅𝑗𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅)

𝑐2
[𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − 1

𝜃
 𝑙𝑛 𝐴𝑗(∅) − 𝑙𝑛 (1 + 𝐵𝑗(∅))] −

𝜃𝑟𝑗

𝑐2(𝐴𝑗−1(∅)−𝐴𝑗(∅))
{

1

𝜃2 [𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) [𝜃(𝜃 + 1) (𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − 𝑙𝑛 (1 + 𝐵𝑗(∅))) −

𝑙𝑛 𝐴𝑗(∅) − 𝜃] − 𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅) [𝜃(𝜃 + 1) (𝐵𝑗−1(∅)𝐴

𝑗−1

1
𝜃 (∅) − 𝑙𝑛 (1 + 𝐵𝑗−1(∅))) −

𝑙𝑛 𝐴𝑗−1(∅) − 𝜃]] − ( 𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) − 𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅)) [(𝐴𝑗−1(∅) −

𝐴𝑗(∅))
−1

(𝐴𝑗(∅) (ln (1 + 𝐵𝑗(∅)) − 𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅)) − 𝐴𝑗−1(∅) (ln (1 + 𝐵𝑗(∅)) −

𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅))) − 1

𝜃
]}},  

 

𝐼33 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑝2 = 𝜃 ∑ 𝑙𝑛𝑣𝑗
2 {𝑅𝑗  𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) [𝐴𝑗

2(𝜔) (1 − 𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅)) + 𝑗𝑐1𝑣𝑗

𝑝] −𝑘
𝑗=1

( 𝑟𝑗+𝑅𝑗)𝑐2𝑣𝑗
𝑝

𝜃𝐴
𝑗

1
𝜃(𝜀)

(1 −
𝑐2𝑣𝑗

𝑝

𝜃𝐴
𝑗

1
𝜃(𝜀)

) − 𝑟𝑗[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

{[𝐵𝑗(∅)𝐴
𝑗

1+
1
𝜃(∅) [𝐴𝑗

2(𝜔) [1 −

(𝜃 + 1)𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅)] + 𝑗𝑐1𝑣𝑗

𝑝] − 𝐵𝑗−1(∅)𝐴
𝑗−1

1+
1
𝜃(∅) [𝐴𝑗−1

2 (𝜔) [1 − (𝜃 +
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1)𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅)] + (𝑗 − 1)𝑐1𝑣𝑗

𝑝]] − 𝜃[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

[𝐵𝑗(∅)𝐴𝑗(𝜔)𝐴
𝑗

1+
1
𝜃(∅) −

𝐵𝑗−1(∅)𝐴𝑗−1(𝜔)𝐴
𝑗−1

1+
1
𝜃 (∅)]

2

}},  

 

𝐼34 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝑝𝜕𝜃
= ∑ 𝑙𝑛𝑣𝑗 {𝑅𝑗 𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅)𝐴𝑗(𝜔) [𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − 1

𝜃
𝑙𝑛𝐴𝑗(∅) − ln (1 +𝑘

𝑗=1

𝐵𝑗(∅))] −
( 𝑟𝑗+𝑅𝑗)𝑐2𝑣𝑗

𝑝

𝜃2𝐴
𝑗

1
𝜃(𝜀)

 [𝑙𝑛𝐴𝑗(𝜀) − 𝜃𝑙𝑛 (1 +
𝑐2𝑣

𝑗
𝑝

𝜃
) +

𝑐2𝑣
𝑗
𝑝

𝐴
𝑗

1
𝜃(𝜀)

] − 𝑟𝑗[𝐴𝑗−1(∅) −

𝐴𝑗(∅)]
−1

{𝐵𝑗(∅)𝐴𝑗(𝜔)𝐴
𝑗

1+
1
𝜃(∅) [(𝜃 + 1) (𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) − ln (1 + 𝐵𝑗(∅))) − 1

𝜃
 𝑙𝑛 𝐴𝑗(∅) −

1] − 𝐵𝑗−1(∅)𝐴𝑗−1(𝜔)𝐴
𝑗−1

1+
1
𝜃(∅) [(𝜃 + 1) (𝐵𝑗−1(∅)𝐴

𝑗−1

1
𝜃 (∅) − ln (1 + 𝐵𝑗−1(∅))) −

1

𝜃
 𝑙𝑛 𝐴𝑗−1(∅) − 1] + [ 𝐵𝑗(∅)𝐴

𝑗

1+
1
𝜃(∅)𝐴𝑗(𝜔) − 𝐵𝑗−1(∅)𝐴

𝑗−1

1+
1
𝜃(∅)𝐴𝑗−1(𝜔)] [ 1 −

𝜃[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

(𝐴𝑗(∅) (ln (1 + 𝐵𝑗(∅)) − 𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅)) − 𝐴𝑗−1(∅) (ln (1 +

𝐵𝑗−1(∅)) − 𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅)))]}},  

 



Stress Affection of Two Scale Truncated Generalized Logistic Parameters with Progressive Censoring 

Pak.j.stat.oper.res.  Vol.XIII  No.3 2017  pp633-646 641 

𝐼44 = −
𝜕2 ln 𝐿(𝛷)

𝜕𝜃2

=
1

𝜃
∑ {𝑅𝑗  𝐵𝑗(∅) [𝐴

𝑗

1
𝜃(∅) (1 − 𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) +

1

𝜃
𝑙𝑛𝐴𝑗(∅) + ln (1

𝑘

𝑗=1

+ 𝐵𝑗(∅))) − (1 + 𝐵𝑗(∅))−1]

+
( 𝑟𝑗 + 𝑅𝑗)𝑐2𝑣𝑗

𝑝

𝜃2
 [𝐴

𝑗

−1
𝜃 (𝜀) (

1

𝜃
𝑙𝑛𝐴𝑗(𝜔) − 𝑙𝑛 (1 +

𝑐2𝑣𝑗
𝑝

𝜃
) +

𝑐2𝑣𝑗
𝑝

𝜃𝐴
𝑗

1
𝜃(𝜀)

− 1)

+ (1 +
𝑐2𝑣𝑗

𝑝

𝜃
)

−1

]

+ 𝑟𝑗[𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

{[𝐴𝑗(∅) (ln (1 + 𝐵𝑗(∅)) − 𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅))

2

+
1

𝜃
𝐵𝑗(∅)𝐴𝑗(∅) [(1 + 𝐵𝑗(∅))

−1

− 𝐴
𝑗

1
𝜃(∅) [1 − 𝐵𝑗(∅)𝐴

𝑗

1
𝜃(∅) +

1

𝜃
𝑙𝑛𝐴𝑗(∅) + ln (1 + 𝐵𝑗(∅))]]]

− 𝐴𝑗−1(∅) (ln (1 + 𝐵𝑗−1(∅)) − 𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅))

2

+
1

𝜃
𝐵𝑗−1(∅)𝐴𝑗−1(∅) [(1 + 𝐵𝑗−1(∅))

−1

− 𝐴
𝑗−1

1
𝜃 (∅) [1 − 𝐵𝑗−1(∅)𝐴

𝑗

1
𝜃(∅) +

1

𝜃
𝑙𝑛𝐴𝑗−1(∅) + ln (1 + 𝐵𝑗−1(∅))]]

+ [𝐴𝑗−1(∅) − 𝐴𝑗(∅)]
−1

(𝐴𝑗(∅) (ln (1 + 𝐵𝑗(∅)) − 𝐵𝑗(∅)𝐴
𝑗

1
𝜃(∅))

− 𝐴𝑗−1(∅) (ln (1 + 𝐵𝑗−1(∅)) − 𝐵𝑗−1(∅)𝐴
𝑗−1

1
𝜃 (∅)))

2

}}, 

4.   EM- Algorithm 

EM-algorithm is broadly applicable approach to the iterative computation of maximum 

Likelihood estimates (MLE), it was described and analyzed by Dempster, Laird, and 

Rubin (1977). The EM methods can be explained most easily in terms of a random 

sample that consists of two components, one observed and one unobserved or missing. 

Missing data occurs in life-testing, when, for example, a number of electrical units are 

switched on and the time when each fails is recorded. In such an experiment, it is usually 

necessary to curtail the recordings prior to the failure of all units. The failure times of the 
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units still working are unobserved, but the number of censored observations and the time 

of the censoring obviously provide information about the distribution of the failure times. 

Many common applications of EM methods do involve missing-data problems, but this is 

not necessary. Often, an EM method can be constructed based on two steps- called the 

Expectation step or the E-step and the maximization step or the M-step. Therefore, the 

algorithm is called the EM algorithm. The basic idea of the EM-algorithm is associate 

with the given incomplete-data, a complete-data problem. For which Maximum 

Likelihood (ML) estimation is computationally more tractable. For instance, the 

complete-data problem for chosen may yield a closed form solution to the (MLE) or may 

be amenable to MLE computation with a standard computer package. The methodology 

of the EM algorithm consists of reformulating the problem in terms of this more easily 

solved complete-data problem, establishing a relationship between the likelihoods of 

these two problems and exploiting the simpler MLE computation of the complete-data 

problem in the M-step of the iteration computing algorithm. Under k-level constant 

stress, the pdf of the truncated GL distribution will be applied in Q-function of EM-

algorithm. Hence, For the E-step, we calculate 𝛷(∅, ∅̂𝑚), where ∅ = (𝑐1 , 𝑐2 , 𝑝, 𝜃),  and 

∅̂𝑚 = (�̂�1𝑚 , �̂�2𝑚 , �̂�𝑚, 𝜃𝑚) in 𝑚𝑡ℎ  iteration. Thus, the Q-function of the truncated GL 

distribution can be obtained as follows, 

𝛷(∅, ∅̂𝑚) = 𝐸(𝑙𝑛𝐿, ∅̂𝑚) = ∫ 𝑙𝑛𝐿 𝑓(𝑡)𝑑𝑡, 

therefore, the Q-function is  

𝛷(∅, ∅̂𝑚) = ∑{𝑅𝑗𝐸(𝑙𝑛𝐴𝑗(∅), ∅̂𝑚) + (𝑟𝑗 + 𝑅𝑗)𝑙𝑛𝐴𝑗(𝜀)

𝑘

𝑗=1

+ 𝑟𝑗𝐸(𝑙𝑛[𝐴𝑗−1(∅) − 𝐴𝑗(∅)], ∅̂𝑚)}.                                                           (10) 

 

For the M-Step, we note that the maximization can be done by finding the solution of  

𝐸 (
𝜕𝑙𝑛𝐿

𝜕∅
, ∅̂𝑚) =

𝜕𝛷(∅, ∅̂𝑚)

𝜕∅
= 0                                                                           (11) 

 

Then, we obtain the estimators of (𝑐1 , 𝑐2 , 𝑝, 𝜃) by differentiating Eq.(10) with respect to 

(𝑐1 , 𝑐2 , 𝑝, 𝜃) respectively and equating to zero. The E and M steps are repeatedly until 

the estimates of parameters converges. Therefore, we use the MAThCad program to solve 

the nonlinear equations simultaneously to obtain (�̂�1 , �̂�2 , �̂�, 𝜃) as will be seen in Section 

5. 

5.   Numerical Results 

A numerical study is conducted to assess the performance of the proposed algorithm in 

Section (3) and Section (4). The a progressively Type-I censored grouped sample under 

constant stress test is considered to obtain the unknown parameters (�̂�1 , �̂�2 , �̂�, 𝜃) by 

solving the system of nonlinear equations get from Eqs. (6-9). Then the values which 

getten of estimators are used to get the absolute relative bias (ARBias), and mean square 

error (MSE). Furthermore, Fisher information matrix, the scale parameters and the 

reliability function. Tables (1) to (3) summarize the results of the simulation study based 

on different values of  𝑁, 𝑅  and 𝑣1 = 1, 𝑣2 = 2  .  
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From the results, the following observations can be made on the performance of CSALT 

parameter estimation of the two scales truncated GL lifetime distribution by EM-

algorithm. We observe the maximum likelihood estimators of the parameters 𝑐10 =
0.4,  𝑐20 = 0.001, 𝑝0 = 1.990, 𝜃0 = 7.70,   have good statistical properties than the 

second set of parameters 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.993, 𝜃0 = 7.51 for the same 

sample size (see Table 1). Also, as the sample size increases the RABiases and MSEs of 

the estimated parameters decrease. This indicates that the maximum likelihood estimates 

provide asymptotically normally distributed and consistent estimators for the parameters. 

In addition, the asymptotic variances of the estimators are decreasing when the sample 

size increasing (see Table2). Moreover, the reliability function decreases when the 

mission time 𝑥0 increases, and there is an inverse proportional relationship between �̂�1𝑢, 

�̂�2𝑢and  �̂�𝑢(𝑥0)  at the same mission time (see Table3). 

Table 1:   The MLE, ARBias, and MSE of the Parameters 

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 2.0, 𝜃0 = 7.51 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.990, 𝜃0 = 7.70  

𝑀𝑆𝐸 𝐴𝑅𝐵𝑖𝑎s 𝑀𝐿𝐸 𝑅 N 𝑀𝑆𝐸 𝐴𝑅𝐵𝑖𝑎s 𝑀𝐿𝐸 𝑅 N 𝑝𝑎𝑟𝑎. 

1.3E-7 0.0009 0.4000 42 66 2.9E-7 0.0013 0.4005 20 30 𝑐1 

9.4E-9 0.0970 0.0009   2.4E-8 0.1559 0.0008   𝑐2 

3.0E-5 0.0027 1.9880   1.2E-4 0.0054 1.9793   p 

4.7E-4 0.0029 7.5320   6.4E-3 0.0064 7.6509   θ 

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.993, 𝜃0 = 7.51 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.993, 𝜃0 = 7.51  

𝑀𝑆𝐸 𝐴𝑅𝐵𝑖𝑎s 𝑀𝐿𝐸 𝑅 N 𝑀𝑆𝐸 𝐴𝑅𝐵𝑖𝑎s 𝑀𝐿𝐸 𝑅 N 𝑀𝑆𝐸 

2.1E-10 3.7E-5 0.40000 68 97 8.0E-7 0.0022 0.40090 20 30 c1 

1.8E-12 1.3 0.00099   2.9E-8 0.1700 0.00083   c2 

1.6E-8 0.000063 2.00000   1.2E-4 0.0056 1.98190   p 

6.2E-7 0.000100 7.51100   7.0E-3 0.0112 7.59390    

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.992, 𝜃0 = 7.52 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 2.0, 𝜃0 = 6.54  

𝑀𝑆𝐸 𝐴𝑅𝐵𝑖𝑎s 𝑀𝐿𝐸 𝑅 N 𝑀𝑆𝐸 𝐴𝑅𝐵𝑖𝑎s 𝑀𝐿𝐸 𝑅 N 𝑀𝑆𝐸 

6.9E-7 0.0021 0.40080 118 186 2.7E-5 0.0130000 0.40520 30 47 c1 

1.7E-8 0.1313 0.00087   6.1E-9 0.0780000 0.00099   c2 

5.1E-5 0.0036 1.99200   1.5E-7 0.0001929 2.00000   p 

2.7E-3 0.0069 7.46850   5.0E-4 0.0034090 6.51800    
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Table 2:   Estimated Variance-Covariance Matrix 

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 2.0, 𝜃0 = 7.51 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.990, 𝜃0 = 7.70 

𝜃 �̂� �̂�2 �̂�1 𝑅 𝑁 𝜃 �̂� �̂�2 �̂�1 𝑅 𝑁 

0.0061 0.4070 -0.7374 0.1971 42 66 0.00034 0.0184 -0.9892 0.1441 20 30 

-0.2770 -0.1517 0.0739    -0.0237 -0.1261 0.0791    

0.0013 0.0840     4.4E-5 2.3E-3     

1.9E-5      8.2E-7      

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.993, 𝜃0 = 7.51 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.993, 𝜃0 = 7.51 

𝜃 �̂� �̂�2 �̂�1 𝑅 𝑁 𝜃 �̂� �̂�2 �̂�1 𝑅 𝑁 

0.0093 0.526 -0.1286 0.1192 68 97 0.4E-4 0.0170 -0.9881 0.138 20 30 

-0.0029 -0.161 0.0940    -0.0248 -0.1218 0.0776    

0.0011 0.066     -4.3E-5 0.0021     

2.1E-5      8.7E-7      

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.992, 𝜃0 = 7.52 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 2.0, 𝜃0 = 6.54 

𝜃 �̂� �̂�2 �̂�1 𝑅 𝑁 𝜃 �̂� �̂�2 �̂�1 𝑅 𝑁 

0.0175 0.8824 -0.3192 0.1292 118 186 0.0034 0.147 -0.2969 0.1224 30 47 

-0.7677 -0.3862 0.0397    0.0083 -0.357 0.0200    

0.0021 0.1068     0.0004 0.0180     

4.2E-5      0.1E-6      

Table 3:   Estimated   �̂�𝟏𝒖,    �̂�𝟐𝒖 and  �̂�𝒖(𝒙𝟎) 

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 2.0, 𝜃0 = 7.51 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.990, 𝜃0 = 7.70 

�̂�𝑢(𝑥0) 𝑥0 �̂�2𝑢 �̂�1𝑢 𝑅 𝑁 �̂�𝑢(𝑥0) 𝑥0 �̂�2𝑢 �̂�1𝑢 𝑅 𝑁 

0.9946 10 0.00051 0.226 42 66 0.9949 10 0.00048 0.2267 20 30 

0.8501 25     0.8572 25     

0.6108 30     0.6249 30     

0.0213 40     0.0240 40     

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.993, 𝜃0 = 7.51 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.993, 𝜃0 = 7.51 

�̂�𝑢(𝑥0) 𝑥0 �̂�2𝑢 �̂�1𝑢 𝑅 𝑁 �̂�𝑢(𝑥0) 𝑥0 �̂�2𝑢 �̂�1𝑢 𝑅 𝑁 

0.9940 10 0.00056 0.225 68 97 0.9950 10 0.00047 0.2267 20 30 

0.8400 25     0.8593 25     

0.5900 30     0.6295 30     

0.0180 40     0.0253 40     

𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 1.992, 𝜃0 = 7.52 𝑐10 = 0.4,  𝑐20 = 0.001, 𝑝0 = 2.0, 𝜃0 = 6.54 

�̂�𝑢(𝑥0) 𝑥0 �̂�2𝑢 �̂�1𝑢 𝑅 𝑁 �̂�𝑢(𝑥0) 𝑥0 �̂�2𝑢 �̂�1𝑢 𝑅 𝑁 

0.9948 10 0.00049 0.226 118 186 0.9943 10 0.00052 0.2280 30 47 

0.8556 25     0.8384 25     

0.6225 30     0.5839 30     

0.0242 40     0.0166 40     
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6.   Conclusion 

Truncated distributions arise when sample selection is not possible in some sub-region of 

the sample space. For example, the GLD is considered inappropriate for modeling 

lifetime data because left hand side of its distribution extends to negative infinity, and 

this could conceivably result in modeling negative times-to-failure. This has necessitated 

the use of truncated GLD truncated at point zero for modeling lifetime data. So, this 

paper is assumed that the stress is effected of two scale parameters of the truncated 

generalized logistic distribution, and dealt with constant-stress accelerated life testing in 

the case of progressive Type-I censored grouped data. Maximum likelihood estimators of 

the model parameters and the associated Fisher Information matrix are derived by used 

the EM algorithm method. Also, the estimator of the two scale parameters, and the 

reliability function under usual conditions are derived. 
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