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Abstract
This paper deals with some linear trend free sampling – estimating strategies. Two different
systematic sampling schemes which are multiple random starts analogues of Balanced
Systematic Sampling (BSS) due to Sethi (1965) and Modified Systematic Sampling (MSS) of
Singh, Jindal, and Garg (1968) have been considered. Further, Yates corrected estimator has
been developed for Linear Systematic Sampling (LSS) with multiple random starts. A detailed
numerical comparative study has been carried out using appropriate super population models
with the help of R package for statistical computing.
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1. Introduction
Consider a finite population of N units. The values of the population   units  with
respect  to  the  characteristic  under  study  will  be  denoted  by 1Y , 2Y ,…, NY .

Let n be the sample size and k a positive integer such that
n

N
k  . A Linear

systematic sample (LSS) is drawn by choosing at random an integer from 1 to k ,
say r . Starting from the thr unit in the population, every thk unit is selected until
a sample of size n is obtained. This procedure is equivalent to dividing the
population of N units into k mutually exclusive and exhaustive groups
 kSSS ,...,, 21 of n units each and choosing one of them at random where the
units in the thr group are given by

 knrkrrSr )1(,...,,  , kr ,...,2,1

Even though the LSS described above is operationally more convenient, it has
two limitations, namely, (i) when the population size is not divisible by sample
size, the sample mean becomes biased and (ii) the second order inclusion
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probabilities are zero for several pairs of units which makes variance estimation
difficult. To overcome this problem, several alternatives are discussed in the
literature by many including Leu and Tsui (1996), Suresh Chandra, Sampath and
Balasubramani (1992), Sampath and Uthayakumaran (1998), Chang and Huang
(2000) and Kuo (2004). Although these new sampling methods solve some
limitations of LSS, they loose the operational simplicity of LSS. Preserving the
inherent characteristics of LSS, like operational simplicity, Tukey (1950) and later
on Gautschi (1957) suggested LSS with multiple random starts as an alternative
to LSS with single random start which is explained below.

In LSS with multiple random starts, instead of choosing only one number at
random from 1 to k , a simple random sample of size s is drawn from the first k
elements and then every thk element is chosen. If srrr ,...,, 21 are the labels of the
s units sampled from the first k units, then the sample contains units with labels

  ,1,...,, 111 knrkrr   knrkrr 1,...,, 222  ,…,  knrkrr sss 1,...,,  .

It may be noted that ultimately the sample contains a total of ns units.

As competitors of LSS many systematic sampling schemes have been proposed
in literature each one having an edge over LSS in some sense. Among them, two
linear trend free sampling methods (methods in which the estimated value
coincides with the population value) are the Balanced Systematic Sampling due
to Sethi (1965) and Modified Systematic Sampling due to Singh, Jindal and Garg
(1968). Even though the properties of these two schemes have been widely
studied by several researchers, their performances have not been studied so far
when multiple random starts are employed. In the following section, we consider
two new systematic sampling schemes with multiple random starts, which inherit
the characteristics of BSS and MSS. Their behaviour for populations with linear
trend is also studied.

2. New Sampling Schemes

(i) Balanced Systematic Sampling with multiple random starts

Under the BSS, the population units are divided into
2

n groups (assuming the

sample size n is even) of k2 units each and a pair of units equidistant from the
end points are selected from each group. This method is explained in detail as
follows:

A random number r is selected from1 to k and units with labels r and 12  rk

will be selected from first group and thereafter from the remaining 1
2


n groups,

the corresponding pairs of elements will be selected in a balanced manner. Thus,
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the BSS of size n corresponding to the random start r is given by the units with
labels







  1

2
,...,1,0,1)1(2,2

n
jrkjjkrsr

Now let us consider an analogue of BSS involving multiple random starts. When

a BSS with t random starts is desired, the population is divided into
t

n

2
groups of

tk2 units where the labels of the elements of the thi group,
t

n
i

2
,...,2,1 , namely

iG are as given in the following description.

Sampled units

1G 1 2 ... tk2

2G )12( tk  22 tk ... tk4

iG   112  tki   212  tki ... itk2

t

nG
2

11
2

2 





  tk

t

n
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2
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
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

  tk

t

n
... tk

t

n








2
2

We choose randomly t numbers from 1 to tk . Corresponding to every random
number drawn we take pairs of units equidistant from the group ends. Note that

there are
t

n

2
groups and hence a random number contributes

t

n units to the

sample. Thus, the above method of selection leads to a sample of size n .

Under balanced systematic sampling with multiple random starts the sample

mean BSSMŶ is defined by BSSMŶ =   
 

 









t

n

j

t

i
rtjktkjr ii

YY
n

2

1 1
12)1(2

1
(1)

Theorem 1 The sample mean BSSMŶ of the Balanced Systematic Sampling with
multiple random starts is unbiased for the population mean.

Proof: The sample mean corresponding to random starts trrr ...,,, 21 can be

written as BSSMŶ )...,,,( 21 trrr =   
 

 









t

n
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i
rtjktkjr ii
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1 1
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1

Taking expectations on both sides we get,

 BSSMŶ =  



nk

i
ii UT

n 1

1

tk

t where  



t

n

j
kjtri i

YT
2

1
12 and 




t
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j
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1
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G
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= 


tk

i
iY

nk 1

1

= Y
Therefore, the sample mean is unbiased for the population mean under BSSM.

Remark It can be easily shown that,

 BSSMYV ˆ = 2

)(
S

ttk

ttk  , (2)

where,  
2

1

2

1

1 






tk

i
i ZZ

tk
S ,   tkiTTZ itkii 2,...,2,1,12   and





tk

i
iZ

tk
Z

1

1

The following theorem proves that the sample mean BSSMŶ under balanced
systematic sampling with multiple random starts coincides with the population
mean when the population values satisfy the model

NuuYu ...,,2,1,   (3)

Theorem 2 Under the model NuuYu ...,,2,1,   , the sample mean BSSMŶ

coincides with the population mean.

Proof In the presence of linear trend, the sample mean under balanced
systematic sampling with multiple random starts, may be written as

 tBSSM rrrY ,...,,ˆ
21 =            
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=  
2

1


N

Hence the proof.

(ii) Modified Systematic Sampling with multiple random starts
This method of sampling developed by Singh, Jindal, Garg (1968) is another
scheme meant for populations exhibiting linear trend. Under this method, a
sample of size n is drawn by selecting a pair of units equidistant from both the
ends of the population in a systematic manner. The details are furnished below.

As in the case of linear and balanced systematic sampling here also a random
number r is selected from 1 to k . When the sample size n is even, the sample
corresponding to the random start ),...,2,1( krr  is given by the set of units with
labels







  1

2
,...,1,0,1,

n
jjkrNjkrsr

We shall describe MSS with multiple random starts as follows. If a MSS with t
random starts is desired, we choose at random t numbers from1 to tk . Each

random number will contribute
t

n units to the sample, thus leading to an ultimate

sample of size n . The sample corresponding to the random start ),...,2,1( tiri  is

given by the set of units with labels






 

t

n
jkjtrNkjtr ii 2

,...,2,1,1)1(,)1( .

The sample mean MSSMŶ of modified systematic sampling under multiple random
starts, corresponding to the random starts trrr ...,,, 21 , can be written as

 
 

 
t
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j

t

i
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Theorem 3 The sample mean MSSMŶ under modified systematic sampling with
multiple random starts, for a choice of t random starts trrr ...,,, 21 , is unbiased for
the population mean.

Proof Corresponding to a choice of t random starts trrr ...,,, 21 the sample mean

MSSMŶ under modified systematic sampling with multiple random starts can be

written as    
 

 
t

n

j

t

i
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1 1
1)1()1(21

1
,...,,ˆ

Taking expectations on both sides we get,
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 MSSMYE ˆ =  
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Hence the proof.

Theorem 4 When the population units are modelled according to
NuuYu ...,,2,1,   , the sample mean MSSMŶ under modified systematic

sampling with multiple random starts coincides with the population mean.

Proof Choose t random numbers trrr ...,,, 21 from 1 to tk . The sample mean

MSSMŶ in the presence of linear trend can be expressed as
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Hence it can be concluded that the sample mean coincides with the population
mean under MSSM in the presence of linear trend.

3. Yates Corrected Estimator
In the previous two sections of this paper, we have seen that the sample mean
coincides with the population mean in the presence of linear trend, under
balanced and modified systematic sampling with multiple random starts, which
are developed in this work. This property is comparable with that of the BSS and
MSS with single random start. In this section, it is intended to develop an
estimator corresponding to LSS with multiple random starts which is an analogue
of Yates Corrected estimator (Yates (1948)) with single random start. The Yates
corrected estimator coincides with the population mean in the presence of linear
trend.  To maintain the readability of the paper, it is briefly given below.
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When the thr group rS is drawn as sample, the first and last units in the sample
are corrected by the weights 1 and 2 respectively and the corresponding
sample mean is taken as an estimator for the population mean where the weights

1 and 2 are selected so that the sample mean coincides with the population
mean in the presence of linear trend. That is, the corrected mean
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is equated to the population mean Y after substituting uYu   , Nu ,...,2,1
and on comparing corresponding coefficients 1 and 2 are obtained. We shall
now proceed to extend this for LSS with multiple random starts.

For LSS with t random numbers trrr ,...,, 21 , we take
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as an estimator, where the weights 1 and 2 are given respectively to the first
and last elements of the groups corresponding to the random starts selected.
The remaining units are given unit weights. The weights 1 and 2 are chosen in
such a manner that the estimator coincides with the population mean when the
population units are modelled by (3). The following theorem gives the
expressions for the weights 1 and 2 occurring in expression (6).

Theorem 5 In the presence of linear trend, the weights 1 and 2 in the Yates

corrected estimator  sc rrrY ,...,,ˆ
21 defined by (6) are given by
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Proof Under the model NuuYu ...,,2,1,   , the expression for the
corrected estimator with random starts trrr ,...,, 21 can be expressed as
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Comparing the coefficients of  and  we get,
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Solving for 1 and 2 , we get
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It may be noted that the weights do not require any prior knowledge of  &  .

4. Average Variance

In conventional finite sampling, values assumed by survey variables over various
population units are treated as constants, and the main aim of a survey
statistician is to develop a sampling strategy that minimizes the variance or
mean-squared error of an estimator that is proposed to estimate the unknown
parametric values. The super population model adopts a different approach to
study this problem. The values assumed by the population units with respect to
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the survey variables are assumed to be the realized values of random variables
having a known probability distribution which involves both known and unknown
parametric values. In this approach called the ‘super population model approach’
one tries to identify a sampling-estimating strategy that minimizes the average
mean square error or the variance where averaging is done with respect to the
probability distribution of the underlying variables, namely, NYYY ...,,, 21 . In order to
compare the efficiency of the sampling strategies proposed and discussed in
detail in the previous sections we need to find the average variance of the
estimators under the super population model suitable for populations with linear
trend. The model is described as follows:

nYYY ,...,, 21 are random variables modeled by

uu euY   ,

where     g
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(i) Average Variance under LSS with multiple random starts

Denoting the Yates estimator described in Section 3 by LSSMŶ for the case of
linear systematic sampling with multiple random starts, we express its average
variance  under the super population model given in (9) as
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(ii) Average Variance under BSS with multiple random starts

The average variance of the estimator BSSMŶ under balanced systematic sampling
with multiple random under the super population model given in (9) is
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In the particular case of 2t , we obtain from (9),
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(iii) Average Variance under MSS with multiple random starts
Under modified systematic sampling with multiple random starts the average
variance of the estimator MSSMŶ under the super population model given by (9) is
given by
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As in the case of BSSM, we observe from (12) that when 2,0  tg ,

In the particular case of 2t , we obtain from (11),
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Hence we may conclude that for the case of two random starts, average
variances of the sample mean under BSSM and MSSM are both equal when

0g and 1g .

5. Comparative Study

In the previous section of this paper, the average variances of Yates corrected
estimator under LSS with multiple random starts and sample means of the two
sampling schemes namely, BSS with multiple random starts and MSS with
multiple random starts have been derived. Even though the proposed methods
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perform with the same efficiency when 0g for all choices of the number of
random starts, their performance cannot be mathematically studied in view of
their complex nature for other cases of g . Hence a numerical study has been
carried out to compare their performances for different choices of ,N n , ,g and t .
The results of the study are given in Table 1. The entries in the table give the
values of ratios of average of variance of Yates corrected estimator under LSS
with multiple random starts to the average variance of sample mean under BSSM
as well as MSSM. The contents of the table clearly support the use of BSSM and
MSSM instead of Yates corrected estimator under LSSM for all choices of g and
sample sizes.

Table 1: Ratios of the average variance of Yates Corrected Estimator
( LSSMŶ to the average variances of the estimators BSSMŶ and MSSMŶ

g t

 
 BSSMM

LSSMM

YVE

YVE
ˆ

ˆ  
 MSSMM

LSSMM

YVE

YVE
ˆ

ˆ

N=120
n=24

N=180
n=36

N=240
n=60

N=120
n=24

N=180
n=36

N=240
n=60

0
2 4.01 4.01 3.00 4.01 4.01 3.00
3 4.00 4.01 3.00 4.00 4.01 3.00
4 4.00 4.00 3.00 4.00 4.01 3.00

1
2 4.01 4.01 3.00 4.01 4.01 3.00
3 3.99 4.00 3.00 4.00 4.01 3.00
4 3.96 3.99 3.00 4.00 4.00 3.00

2
2 4.01 4.01 3.01 4.01 4.01 3.01
3 3.96 3.99 3.00 4.00 4.01 3.01
4 3.87 3.95 3.00 4.00 4.00 3.00

3
2 4.01 4.02 3.01 4.01 4.02 3.01
3 3.92 3.98 3.00 4.01 4.01 3.01
4 3.71 3.88 3.00 4.00 4.00 3.01

6. Conclusion
Thus in this paper the following three sampling-estimating strategies involving
multiple random starts have been compared for populations possessing linear
trend.

Strategy – 1 Balanced systematic sampling with multiple random starts –
Mean estimator
Strategy – 2 Modified systematic sampling with multiple random starts –
Mean estimator
Strategy – 3 Linear Systematic Sampling with multiple random starts –
Yates corrected estimator
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The following are the findings of the study.

(i) The multiple random start systematic sampling schemes, namely BSSM
and MSSM estimate the population mean without any error in the
presence of linear trend.

(ii) In the case of BSSM and MSSM, the average variance of the estimator
coincides for all choices of random starts and sample sizes for 0g .

(iii) The average variances of the estimators under BSSM and MSSM are
equal when we use two random starts for all choices of g and sample
sizes.

(iv) It was also observed that BSSM and MSSM were more efficient when
compared to LSSM for all choices of g and sample sizes.

(v) Regarding the number of random starts to be used, it is recommended to
use two random starts instead of more number of random starts since the
numerical study indicates that average variances tend to increase as the
number of random starts is increased. This pattern was observed for both
BSSM and MSSM. While this is observed in the case of BSSM and
MSSM, the average variance under LSSM (with Yates corrected
estimator) tends to decrease as the number of random starts increase, for
the cases 2g and 3g .
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