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Abstract

This article is concerned with the estimation problem of multicollinearity in two seemingly unrelated
regression (SUR) equations with linear restrictions. We propose a restricted feasible SUR estimates of the
regression coefficients of this model and compare with feasible generalized least squares (FGLS) estimator
and the estimator proposed by Revankar (1974) in the matrix mean square error sense. The ideas in the
article are evaluated using Monte Carlo simulation.

Keywords: Restricted feasible estimator, Seemingly unrelated regressions, Two-stage
estimator.

1. Introduction

The seemingly unrelated regression model, introduced by Zellner (1962) improves the
estimation efficiency by combining several equations into a single equation. The SUR
model has simulated a countless theoretical and empirical results in many fields, such as
econometrics, industry, biological sciences and etc. Zellner (1963), Revankar (1974),
Kariya (1981), Srivastava and Giles (1987), Liu (2002), Wang and Veraverbeke (2008),
Ma and Ye (2010) and Wang et all (2011) discussed an efficient estimation procedure for
a system of two SUR equations.

Consider a system of two SUR equations
y,=XB+¢g,i=12

where y. isa T x1 vector of observations on the dependent variable in the ith equation,
X, isa T xn, matrix of explanatory variables in the ith equation with rank n,, g is a

n x1 vector of unknown parameters in the ith equation, & 1is an T x1 vector of
unobservable disturbances with

E(s)=0 and Cov(s.&)=0yl (i,j=12)

where % =(o;

unit matrix. The SUR model can be expressed in the compact form as

) is 2x2 an unknown positive definite matrix with o; =0, | denotes a
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y=Xp+e (1.1)

A . X, 0 _ B &
y_(yz)x_(o X2j1ﬂ_(ﬁzjand8_(52].

The disturbances ¢ has mean vector 0 and dispersion matrix ® |, where ® represents
the kronecker product.

where

Generalized least squares (GLS) estimator of g
~ A\ -1
fas =(X'(E@1) X)X (z@1) "y,

SuLs is the best linear unbiased estimator (BLUE) of g in the SUR model. This estimate
is not a feasible estimator of g because in general ¥ is not known. Replacing the
unknown X by its unrestricted estimate S, yields the two-stage Aitken estimator of g

Prots ={ﬁAZGLs]:(X’(S®I)_lX) X'(s®1)"y. (1.2)

The elements s; of S are based on the residuals ¢ obtained by regressing y; on all the

regressors in the system and are given by
1.,. 1 = .
S =T &€, :?yiPZyj (i,i=12)

where P, =1-2(22)"2', Z=(X,, X,).

Zellner (1963) assumed that the regressors in the two equations are orthogonal (as
X;X, =0) and then proved that the two-stage Aitken estimator is superior to the ordinary

least squares estimator (OLS). The two-stage Aitken estimate ,BéGLS of f, is given as
P ' -1y S ' -1y
ﬁéGLS :(xlxl) lel_si(xlxl) X1y, (1.3)

22

by Zellner (1963).

Revankar (1974) assumed that the regressors in the second equation are a proper subset
of the regressors in the first equation i.e.,

Xlz(x27|‘1) (1.4)

where L, isa (T x(n, —nz)) matrix of T observations on (n,—n,) explanatory variables
deleted from the second equation and examined in the context of a two equations system
some finite sample properties of S estimator. ,B,lGLS is given as
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po. ' 1y S ' 1y ’ 1y
ﬂéGLS =(X1x1) lel_si(xlxl) Xl(l _sz)yzv sz = Xz(xzxz) xz (1-5)

22
by Revankar (1974). This estimator is also the special case of the two-stage covariance
improved estimator proposed by Wang (1989) when there are only two linear equations
in the system of seemingly unrelated regression (Ma and Ye, 2010).

In practical regression analysis, researchers often encounter the problem of
multicollinearity. In case of multicollinearity we know that when the correlation matrix
has one or more small eigenvalues, the estimates of the regression coefficients can be
large in absolute value. The least squares estimator performs poorly in the presence of
multicollinearity. One of the methods to overcome the multicollinearity problem is to
consider parameter estimation in addition to the sample information such as under some
exact or stochastic restrictions on the unknown parameters (Rao et al., 2008). Alkhamisi
(2010) proposed two SUR type estimators based on combining the SUR ridge regression
and the restricted least squares methods.

The object of the present paper is to consider the problem of multicollinearity and its
statistical consequences for two seemingly unrelated regression (SUR) model when
additional linear restrictions are assumed to hold. In Section 2, the restricted feasible GLS
estimator is introduced under condition (1.4), and covariance matrix of an estimator is
obtained in this section. In Section 3, we give a Monte Carlo experiment to compare the
estimators. The conclusions of the paper are presented in Section 4.

2. Proposing Estimator

The availability of prior information in the form of exact linear restrictions is utilized in
the estimation of the parameters of a linear regression model. If we have prior
information for each equation, we predict to be useful in SUR model estimation problem.
Let us assume that the prior information is such that it can be written in the form of linear
equalities

C, = Clﬂl
C, = Czﬁz

with ¢, an s, vector and C, a s, xn, matrix. Denote c=(cl' cz’), C=diag(C, C,)

(2.1)

_ é‘1 . C - Clﬂl
and 0 = = . Then (2.1) can be represented as
52 C, _Czﬁz

c=Cp (2.2)
where C is a known sxn matrix with s=>"s;, n=>"n, for i=1,2 and c is a known s-

dimensional vector. In this article we suggest minimizing the sum of squared residuals of
model (1.1) subject to (2.2). Therefore, the restricted regression is transformed into an
optimization problem:
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arg;nin(y—Xﬂ)'(Z(@I)_1(y—Xﬁ)

c=Cp.
For this optimization problem, we can apply the Lagrange multiplier method. Firstly, a
Lagrangian function is introduced as follows

L(B,2)=(y-XB) (E®1)" (y-XB)-24(Ch~c)

where A4 is an s-dimensional vector of Lagrange multipliers. Differentiating function
L(ﬂ,/i) with respect to £ and A, respectively, gives the normal equations

18L(,81/1)__ ] -1 ! -1 "7 —
g X'(Z®1) y+X'(2®1) XB-C'1=0 (2.3)
10L(BA) _ n

From Equations (2.3) and (2.4) we can easily obtain
A s 4o\t 2ot Y\ .
ﬂRzﬁGLSJr(X'(Z@I)lX) C’(C(X’(Z@I)lx) C’j (c-Chus)  (25)
where S, is the restricted estimator. When ¥ is unknown, we use the consistent
estimator of =, S to obtain the feasible estimator of 4, :

D A 14 -1 -1 14 ! -1 -1 ! - A
B :p’FGLS+(x (s®1) x) C (c(x (s®1) x) cj (6-Chress ) 26)
Thus, the restricted feasible SUR estimator of g is given by

5 | OROK) X X)X
(X5%,) " X3,
+( CKCP+CLCT  CKC!S+C,LCU j
C,MC/P+C,NC/T C,MC/S +C,NC.U
¢, —C, (XX, )" X}y, +§£cl(xl'x1)1 X/, Y,

X 22
C, _Cz(xzrxz)il X2,y2
’ - ' S ' - D
(Xlxl) ' X1y1 _si(xlx1) ' lexzyz +a
= 22

(X3X,) " X5y, +b
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=[ﬂ FR“)J (2.7)
IBFR(Z)
where
K =2 (XX )‘1[|+X'P X, (X;X )‘1] r’ YLy VRS
_522 1A 1hx, A AR ! L:—Z(Xlxl) XlXZ(XZXZ)
s, (1-17)
M=) (XX)(XX) S N = (KaX)
_512(1—r2) 272 27N 1771) 511(1_r2) 272 )
=[C1KC1'P +C,LC;T { X X 1’yl+iCl(Xl'Xl)_1 X{F_’Xzyz}
S22 and

H[CKES +CLCU] (6 ~C, (XiX, ) ;yz}

b=[C,MC/P +C,NC;T] (XX, ) Xy, +z£cl(xl'xl)‘l x;ﬁxzyz}

22

C
+[C2MC1'S+C2NCU]{CZ C, (X)X, ) ;yz}

ﬁFR(l) is simplified as
/;':R(l) :[I _(ClKC{PC1 +C1LC2'TC1):|(X1'X1)71 X£y1

~ 22 [ (C,KCIPC, +CLCITC, ) |(X(X,) " X{B, ¥,

S22
~[C,KC/SC, +C,LCIUC, |(X3X,) " X3y,
+[C,KC/S+C,LCU]c, +[C,KC/P+C,LC;T]c,
or

’ - ’ S ’ = 1)
ﬂFR :( Dl)(xlxl) lxlyl_si(l _Dl)(xlxl) 1)(1|:>x2y2
22
—D, (X}X,) " X}y, +[C,KCS +C,LCU Jc, +[C,KC,P+C,LC;T]c,
' S [ - D
=(1-D,) B, +(1-D)(XX,)" X{g, =22 (1-D,)(X;X,) llengz—Dzﬂz
Sy (2.8)

-D, (X}3X,) " Xje, +[C,KC/S +C,LCU ¢, +[C,KC/P+C,LCIT]c,
where D, =C,KC,PC, +C,LC.TC, , D, =C,KC/SC, +C,LCUC,
P=(CKC,)" +(C,KC])"C,LC; [CZ NC; —C,MC/(C,KC;)" cch;T C,MC;(C,KC])"

s =—(CKC))*cLC [CZNCZ' ~C,MC/(CKC))*CLC; T
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-1
T :—[cch; ~C,MC/(CKC))* cll_cz'} c,MC;(CKe))*

-1 R .
U :[cch:;—Czl\/lcl'(cchl')‘1 cch;} . Clearly under the 5=0, /3, estimator is 4,

estimator.
We investigate the efficiency of the restricted feasible SUR estimator of f,, as compared

to the unrestricted estimator in Revankar (1974). The expected value of (2.8) is equal to
E(Brey)=(1-D.) B~ D,8, +[CKCS +CLCU e, +[CKCP+CLCT]e.  (29)

This means that ﬁFR(l) is biased estimator of 4. Thus, the covariance matrix for (2.8) is

given by
~ ~ n n n ' 9
COV(ﬁFR(l)) =E (,BFR(l) -E (ﬂFR(l)))(ﬁFR(l) -E (ﬂFR(l))) = ZlQ, (2.10)
where
( 81‘91 Dl)')1
(:12 D,) &P X, (XX,) (1 _Dl)’j,
)&, X, (X5X, ) DZ'),
(3_2 X X ) Xllﬁngzgl,(l _Dl),ja
2
Q= [S_Z -D )(X X ) xgpngzggpxle(xl'xl)*l(| _Dl) ]
22
Q6 - E(SLZ(I - Dl)(xlrxl)_l xlllsngzgéxz (XZ’XZ)_l Dzlj,
22

S
Q, =—E(D2(x;x2)l X361 —Dl)’),
S ' - i 25 ' - !
Q= E[si Dz(xzxz) ' X28282PX2X1(X1X1) l(l _Dl) J
22
and
Q9=E(D2(x X,) " Xie,e,X, (X)X, ) DZ').

Following Zellner (1963), Revankar (1974) and Liu (2002), Sz obeys a Pearson Type

22
VII or Student “t” distribution with

E (izl _ %
Sy Oy
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2
. (%_J oz, On 1op
S2 02 Ty T =Ny =2

where n, =rank(X,). Using these results we can find that

and

leall(I_Dl)(I_Dl), (a)
2

Q =—22(1-D,)P X, (X{X,) " (1-D,) (b)
Oy

Q;=-0y, (I - Dl) X, (Xéxz)il Dz! (c)
2

Q4=_%(I _Dl)(xllxl)_l Xl!sz(I _Dl) (d)
O3

2 1—/02 ' -1 i~ , 1 '
Q=0u|p +m (I _Dl)(xlxl) xlpxle(xlxl) (I _Dl) (e)
1

Qs :GIZ(I _Dl)(xl,xl)_l Xl/ﬁxzxz(xéxz)_l D2, ()

Q, =—O'21D2(X2’X2)71 X2’(| _Dl), (g)

Qs :O'uDz(Xéxz)_1 Xélsxle(xllxl)_l(l _Dl)' (h)

and
Q, =622D2(X£X2)_1 D2,' (I)

From (2.10) and (a)-(i), we get
CoV( Bry) = (1- D)

, = ’ - : ’ - B 1- 2 ' - ) ’ -
{anl —% P, X, (X/X,) " —%(xlxl) "X/P,, +011[p2 e np_zj(xlxl) XP X (XX, 1}
22 22 1

x(1-Dy) =(1-D;)[ 0%, (X3, |B, =B, [ 0 (X3, ) X; (1= Dy) + 0D, (X3X,) " D,

D ' - 1- ? ’ - D ' B !
=O'11(| —Dl)|:| —2,02PX2X1(X1X1) 1+[,02 +—T —np—2](X1Xl) ! lexle(xlxl) l:|(| _Dl)
1

20, (1-D,) X, (X}X,) " D, +6,,D,(X};X,) " D,
or

=0, (1-D,)(1-p?A) (1 - p*A)(1-D,)

L 2j(l ~D,)AA(I-D,) (2.11)

+o—ll (l_pZ)(pZ +W

~26,,(1-D,) X, (X;X,) " D, +0,,D,(X};X,) " D,
where A=PB, X, (X/X,)"
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We now compare the ,éFR(l) estimator with f, . estimator and /3, estimator by the

matrix mean square (MSE) criterion. The nonnegativeness of mse among these estimators
cannot be easily seen. In order to observe the performance of these estimators, we will
prepare a simulation study next section.

3. The Simulation Study

In this section the performance of the proposed restricted feasible SUR estimator of g is

examined via Monte Carlo simulations. This simulation study is partly based on
Alkhamisi (2010). In all simulations, the explanatory variable X, is generated from

MVN,(0,Z,) with diag(Z,)=1 and off —diag(Z,)=p,. Three different sets of
correlations namely p, =0.8, 0.9 and 0.99 are considered. We consider that X, is
subset of X,. The random errors are generated from MVN,(0,Z,) with parameters
diag(Z,)=1 and off —diag(Z,)=p, and correlation coefficients p, =0.35 and 0.8. S

parameter vectors are chosen arbitrarily such as suitable dimensional 1 vector.
Observations on the dependent variable are determined with the following equation,

Vo= X By +e . t=1...,T;i=12
=1

where x;,,. To study the effect of small and large sample on the properties of estimators

of S we considered samples of sizes 15 and 100 for small and large samples respectively.
The restriction matrices are given in Table 1.

Table 1: Linear restrictions for each equations

G C,
7 0 3 0 0 4 0
0 4 0 0 2
3 0 0 1 1 0 3

For each choice of p,, p, and T the experiment is replicated 1000 times and then the
MSEs for the estimators are calculated as follows
1000 ’

MSE(a*): ﬁ;(ai* —a) (ai* —a)

where «; denotes the estimated parameter in the i-th simulation.

MATLAB R2009 is used for the simulation. From the simulation results shown in Table
2, we can see that FGLS estimator performs the worst among all estimators in terms of
scalar MSE. The performance of RF estimator outperforms other estimators in terms of
scalar MSE except for high correlation among the explanatory variables and among the
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equations. The increase in the correlation among the explanatory variables leads to an
increase in the scalar MSEs for all the estimators. We observed that as the correlation
among equations increases, the scalar MSEs of the estimators increases.

Table 2: Estimated scalar MSE of the FGLS, Revankar and RF estimators

T Px Pe FGLS Revankar RF

15 0.8 0.35 0,060677 0,015991 0,009497
0.8 0,216745 0,016083 0,012344

0.9 0.35 0,229289 0,015995 0,009849

0.8 1,472677 0,016131 0,014788

0.99 0.35 7,949551 0,016026 0,011265

0.8 2,962609 0,016424 0,027583

100 0.8 0.35 0,028764 0,016004 0,009313
0.8 0,180810 0,016264 0,015973

0.9 0.35 0,064938 0,016006 0,009215

0.8 4,398776 0,016321 0,014290

0.99 0.35 1,204430 0,016113 0,009671

0.8 5,389418 0,018659 0,024309

4. Conclusion remarks

In this article, we proposed a restricted feasible SUR estimator for the vector of
parameters in two seemingly unrelated regression models when additional linear
restrictions on the parameter vector are assumed to hold. The restricted feasible estimator
of the B parameter vector is then compared with the FGLS estimator and the estimator
proposed by Revankar (1974) in terms of MSE criterion. The investigation has been done
by means of Monte Carlo simulations. The results have shown that our proposed
estimator produce smaller MSEs.
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