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Abstract 

This article concerns entropy estimation using judgment post stratification sampling scheme. Some 

nonparametric estimators are developed and shown to be consistent. Monte Carlo simulations are used to 

compare these estimators with their competitors in simple random sampling. The results indicate the 

preference of the new estimators. 
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1.   Introduction 

Judgement post stratification (JPS) sampling scheme, introduced by MacEachern et al. 

(2004), has wide applications in situations where auxiliary information is available to 

induce an additional ranking structure in simple random sampling (SRS) scheme. This 

structure is obtained via a ranking process to determine the position of the measured units 

in the simple random sample among additional independent 1H   sample units from the 

target population. These positions are then used to put homogeneous units in the SRS in 

the same strata, and therefore an increased efficiency of a judgement post stratified data 

is expected from theory of stratified sampling in survey sampling designs. 

 

To draw a judgement post stratified sample of size N , using set size H , one first draws a 

simple random sample of size N , say 1,..., NY Y , from the interest population and 

measures them. Next, for each iY  in the simple random sample, he draws 1H   

additional independent sample units from the population of interest to create the set of 

1{ ,..., }i i HY Y , (for 1,...,i N ). This set is then ranked from smallest to largest and the rank 

of iY  is recorded. This ranking process in JPS sampling scheme is done by any 

inexpensive method which does not require actual quantifications of the units in the set 

(e.g. eye inspection, personal judgement or using a covariate). If the ranking process is 

done based on eye inspection, the researcher should be blinded to the actual value of iY  

to avoid possible biases in the ranking process. Here the term judgement rank indicates 

that the ranking process in the JPS sampling scheme is done without actual measurement 

of the additional units, and thereby is prone to errors. Let F  be the cumulative 
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distribution function (CDF) of the population, then the ranking process is called 

consistent if 

[ ]

1

1
( ) ( ),

H

h

h

F y F y
H 

   

where 
[ ]hF  is the CDF of the h th judgement order statistics of a sample of size H . 

 

A judgement post stratified sample of size N  consists of a simple random sample of size 

N , with their corresponding judgement ranks, can be represented as 1 1( , ),..., ( , )N NY R Y R , 

where iR  is the judgement rank of iY  among the 1H   additional units. Let hn  be the 

number of observations with judgement rank h  (for 1,...,h H ), one then can simply 

show that the vector 1( ,..., )Hn nn follows a multinomial distribution with mass 

parameter N  and probability vector 1 1( ,..., )H H  .  

 

Conditionally on the vector of judgement ranks 1( ,..., )NR RR  JPS sampling scheme can 

be regarded as ranked set sampling (RSS) scheme which was firstly introduced by 

McIntyre (1952). To construct an unbalanced ranked set sample of size N  using set size 

H , one first determines the vector 1( ,..., )Hn nn , where 
1

H

h

h

N n


  is the total sample 

size. For 1,...,h H , he draws hn  simple random samples of size H  from the target 

population, and ranks them in increasing magnitude. The ranking process is 

accomplished similar to that in the JPS scheme, i.e. without obtaining the precise values 

of the units. He then actually measures the precise value of the h th judgement ordered 

unit in the r th sample (for 1,..., hr n ). A ranked set sample is called balanced if 

1 ... Hn n  . 

 

The main difference between the JPS sampling scheme and the RSS is about the ranking 

process. In the JPS setting, the ranking process is performed after measurements of the 

sample units, so the judgement ranks are loosely related to the measured units, and can be 

ignored. Therefore, a judgement post stratified sample can still be analyzed with standard 

SRS procedures. This is very useful in situations in which the researcher believes that the 

ranking process is too poor or the required statistical method has not been developed yet 

for the JPS setting. However, in the RSS setting, the ranking process is preformed prior to 

measurements of the sample units, so the judgement ranks of the units are strongly 

attached to them and cannot be disregarded. So, a ranked set sample must be analyzed 

with an appropriate procedure specially developed for the involved situation. Up-to-date 

references for the RSS scheme can be found in Wolfe (2012). 

 

Both RSS and JPS sampling schemes are useful in situations in which exact measurement 

of sample units is expensive or time-consuming but ranking them (without obtaining their 

precise values) is easy and cheap. These situations frequently happen in forestry (Halls 

and Dell, 1966), medicine (Chen et al., 2005), environmental monitoring (Kvam, 2003; 
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Nussbaum and Sinha, 1997; and Ozturk et al., 2005), reliability (Mahdizadeh and 

Zamanzade, 2016) and entomology (Howard et al., 1982). 

 

A lot of research has been done in the JPS sampling scheme in recent years. Wang et al. 

(2006) developed a class of estimators for population mean by using concomitant of 

multivariate order statistics. Wang et al. (2008) and Zamanzade (2016) used stochastic 

order constraint to develop estimators for population mean and variance, respectively. By 

conditioning on the observed vector of ordered in-stratum sample sizes, Frey and Feeman 

(2012) and Frey and Feeman (2013) developed conditionally unbiased estimators of 

population mean and variance, showed that their proposed estimators have better 

performance than their competitors in the literature. The problem of the estimation of the 

CDF has been considered by Wang et al. (2012). Frey and Feeman (2012) developed 

some mean estimators when the actual quantifications of the concomitant variable are 

available, which is followed by Zamanzade and Vock (2015) and Zamanzade and 

Mohammadi (2016). Dastbaravarde et al. (2013) provided a theoretical framework for 

JPS sampling scheme, and proved that the JPS moment estimators are less efficient than 

their counterpart in RSS. Ozturk (2014) developed an estimator for p th quantile of a 

distribution F . Two sample distribution free procedures in the JPS setting have been 

developed by Ozturk (2015). Zamanzade and Vock (2016) proposed some nonparametric 

tests for assessing assumption of perfect ranking in JPS. 

 

In Section 2, we discuss the problem of CDF estimation in the JPS setting. In Section 3, 

we propose some nonparametric entropy estimators for judgment post stratified data. We 

then prove that the proposed estimators are consistent. In Section 4, we compare the 

proposed entropy estimators with their counterparts in the SRS setting. We end with a 

conclusion in Section 5. 

2.   Nonparametric estimation of CDF in JPS sampling scheme 

Let 1 1( , ),..., ( , )N NY R Y R  be a judgement post stratified sample of size N  from a 

population with CDF F . Let 
1

( )
N

h i

i

n I R h


   be the number of the observations with 

judgement rank  h , where (.)I  is an indicator function. 

 

The standard CDF estimator of JPS sampling scheme is 

1

1ˆ ˆ( ) ( ) ( 0) (1)
H

st h h

hH

F y F y I n
d 

   

where 
1

( 0)
H

H h

h

d I n


  , and ˆ ( )hF y  is the empirical distribution function (EDF) based 

on the observations with judgement rank h . 
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Dastbaravarde et al. (2013) showed that this estimator is unbiased for the population 

CDF, and has less variance than its SRS rival, 
1

1
( ) ( )

N

n i

i

F t I Y t
N 

  , provided that the 

sample size N  is not too small. They also proved that this estimator is strongly consistent 

and established its asymptotic normality as 

  2ˆ ( ) ( ) (0, )
d

st stN F y F y N    

where 
d

  denotes convergence in distribution,  2

[ ] [ ]

1

1
( ) 1 ( )

H

st h h

h

F y F y
H




  , and 
[ ]hF  is 

the CDF of the h th judgement order statistics of a sample of size H . One can simply 

show that if the ranking process is consistent, then  2 ( ) 1 ( )st F y F y   , meaning that 

ˆ
stF  is asymptotically more efficient than nF . 

 

Wang et al. (2012) proposed some nonparametric CDF estimators which improve the 

performance of ˆ
stF  when sample size is not too large. Their suggested estimators were 

constructed based on the idea that the CDF of judgement order statistics are often 

stochastically ordered, i.e. 

[1] [ ]( ) ... ( ) (2)HF y F y   

 

However, the constraint (2) may be violated by their sample estimates due to sampling 

noise. Therefore, one natural way to improve ˆ
stF  is to impose the constraint (2) onto 

estimation process. Wang et al. (2012) proposed to estimate  
1

H

h h
F


 such that the 

weighted mean square  
2

1

ˆ
H

h h

h

F F


  is minimized under the constraint (2). There are two 

analytical forms for solving this optimization problem as 

[ ]

[ ]

ˆ ( )
( ) max min (3)

s
g g

h
r hs h

g r r s

n F y
F y

n






   

and 

[ ]

[ ]

ˆ ( )
( ) min max , (4)

s
g g

h
r h s h

g r r s

n F y
F y

n



 

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where 
s

r s g

g r

n n


 . 
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If there is no empty stratum, then it turns out from properties of isotonic regression that 

the two above formulas are equivalent (Robertson and Waltman, 1968). However, if there 

exists at least one empty stratum, then  [ ] 1
( )

H

h h
F y


 and  [ ] 1

( )
H

h h
F y


 are not equivalent any 

more. Thus, two CDF estimators can be constructed as 

[ ]

1

1ˆ ( ) ( ) (5)
H

hiso
h

F y F y
H







   

and 

[ ]

1

1ˆ ( ) ( ). (6)
H

hiso
h

F y F y
H







   

Wang et al. (2012)’s simulation results indicate that ˆ
iso

F   works well on the left tail of 

( )F y  and ˆ ( )
iso

F y  works well on the right tail of ( )F y . To have an estimator with 

overall good performance, Wang et al. (2012) suggested to estimate the CDF with 

1ˆ ˆ ˆ( ) ( ) ( ) . (7)
2

iso iso iso
F y F y F y 

  
 

 
 

It is worth mentioning that the asymptotic behavior of the CDF estimators proposed by 

Wang et al. (2012) is the same as ˆ
stF . 

3.   Nonparametric estimation of entropy 

Let Y  be the continuous random variable with the density function ( )f y  and the CDF 

( )F y . The entropy ( )H f  of this random variable, as a measure of uncertainty, is 

defined by Shannon (1948) as 

 ( ) log ( ) ( ) . (8)H f f y f y dy





  
 

 

The problem of estimation of H(f) has been considered by many researchers in the 

literature. Vasicek (1976) was the first who proposed to estimate H (f) based on spacings. 

His estimate was obtained by using the fact that Equation (8) can be rewritten as 

1

1

0

( ) log ( ) . (9)
d

H f F p dp
dp

 
   

 
  

 

The estimate was constructed by replacing distribution function F by the EDF, and the 

derivative 1( )
d

F p
dp

  is estimated by a function of order statistics. 

 



Ehsan Zamanzade, Mahdi Mahdizadeh 

Pak.j.stat.oper.res.  Vol.XII  No.4 2016  pp625-637 630 

Let 
(1) ( )... NY Y   be an ordered random sample of size N  from the population of the 

interest. Vasicek (1976)’s entropy estimator is given by 

( ) ( )

1

1
log , (10)

2 /

N
i m i m

V

i

Y Y
H

N m N

 



 
  

 


 

where 
( ) (1)iY Y  for 1i  , 

( ) ( )i NY Y  for i N , and / 2m N  is an integer which is called 

window size. 

 

Vasicek (1976) showed that ( )
p

VH H f , as ,m N   and / 0m N  , where 
p

  

indicates convergence in probability. 

 

Ebrahimi et al. (1994) modified Vasicek (1976)’s entropy estimator at the boundaries 

which are replaced by 
(1)Y  and 

( )NY . Their estimator is given by 

   
( ) ( )

1 ( ) ( )

1
log , (11)

N
i m i m

E

i N i m N i m

Y Y
H

N F Y F Y

 

  

 
 
 
 

  

where (.)NF  is the EDF. Ebrahimi et al. (1994)’s simulation results indicate that this 

modification of the entropy estimator has less mean square error than the Vasicek 

(1976)’s entropy estimator. 

 

The problem of estimation of H (f) in the RSS setting has been considered by 

Mahdizadeh and Arghami (2009), Al-Omari and Haq (2016). 

 

Let 1 1( , ),..., ( , )N NY R Y R  be a judgement post stratified sample of size N  from the 

population of interest. Motivated by Ebrahimi et al. (1994)’s entropy estimator, we 

propose to estimate the entropy from JPS samples by 

   
( ) ( )

1 ( ) ( )

1
log , (12)

ˆ ˆ

N
i m i m

Z

i Z i m Z i m

Y Y
H

N F Y F Y

 

  

 
 
 
 


 

 

where (1) ( )... NY Y   are the ordered values of iY ’s, and , , ,Z st iso iso iso  . 

The next proposition establishes the consistency of the proposed estimators. 

 

Proposition 1. Let 1 1( , ),..., ( , )N NY R Y R  be a judgement post stratified sample from a 

continuous population with the CDF F  and the entropy ( )H f . If the ranking process is 

consistent, then ( )
p

ZH H f
 
as ,m N   and / 0m N  , where , , ,Z st iso iso iso  . 
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Proof.  Note that 

( ) ( )

( ) 0,          , 0

Z Z E E

p

Z E E

H H f H H H H f

m
H H H H f as N

N

    

      
 

where the last limit holds because under a consistent ranking process FZ       is a consistent 

estimator of F. 

4.   Monte Carlo comparison 

We compare the performance of the proposed entropy estimators in the JPS sampling 

scheme with their competitors in SRS scheme via Monte Carlo simulation in terms of 

root of mean square error (RMSE). We have generated 10,000 judgement post stratified 

samples of size 10,20,30,50N  , with set sizes 3,4,10H   from standard normal, 

standard exponential and standard uniform distributions. So, we consider both effects of 

increasing sample size ( N ) and the set size ( H ) on the performance of the estimators. 

We control the quality of the ranking by using a concomitant variable in adaptive 

perceptual model proposed by Dell and Clutter (1972). Let ( , )Y X  be the interest variable 

and the concomitant variable, respectively, the judgement rank iY  in the set 

2{ , ,..., }i i i HY Y Y  is determined by using the concomitant vector 
1( ,..., )i i i HX XX , where 

2 2

1 1( ,..., ) , ,..., 1 ( ,..., ),
i y i H yi y

i i i H i i H

y y y

Y YY
X X Z Z

 
 

  

  
     

 

X  

and 
1( ,..., )i i HZ Z  is an H -dimensional independent random vector from standard normal 

distribution. 

 

In the Dell and Clutter (1972)’s model, the quality of ranking is controlled by the 

parameter  . 

 

In this simulation study, we take 1   for perfect ranking, 0.8   for the ranking which 

is good enough that one expect improvement in the JPS sampling scheme, and 0   for 

random ranking. The value of window size ( m ) is selected according to the 

Grzegorzewski and Wieczorkowski (1999)’s heuristic formula as 

0.5 ,m N  
 

 

where x    is the largest integer part of x . 

 

Simulation results for three distributions of standard normal, standard exponential and 

standard uniform are presented in Tables 1-3, respectively. 
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Table 1: RMSE and bias of different entropy estimators in SRS and JPS settings 

when parent distribution is standard normal 

         

SRS  

                     

 1JPS    

                  

 0.8JPS    

                   

 0JPS    

N
 

H
 

 
V

H

 

E
H

 

st
H

 
iso

H 

 

iso
H 

 

iso
H

 

L
H

 

st
H

 
iso

H 

 

iso
H 

 

iso
H

 

L
H

 

st
H

 
iso

H 

 

iso
H 

 

iso
H

 

L
H

 

  

3 
RMSE

 

0.6

18 

0.4

03 

0.3

80 

0.37

9 

0.37

9 

0.3

79 

0.3

50 

0.3

88 

0.38

8 

0.38

8 

0.3

88 

0.3

70 

0.3

96 

0.40

1 

0.40

0 

0.4

00 

0.3

76 

 Bias
 

-

0.5

56 

-

0.3

00 

-

0.2

59 

-

0.25

8 

-

0.25

7 

-

0.2

58 

-

0.2

69 

-

0.2

68 

-

0.26

9 

-

0.26

8 

-

0.2

69 

-

0.2

59 

-

0.2

82 

-

0.29

3 

-

0.29

3 

-

0.2

93 

-

0.2

12 

10  

4 
RMSE

 

0.6

18 

0.4

03 

0.3

77 

0.37

3 

0.37

3 

0.3

73 

0.3

60 

0.3

88 

0.38

6 

0.38

5 

0.3

86 

0.3

62 

0.3

95 

0.40

1 

0.39

9 

0.4

00 

0.3

67 

 Bias
 

-

0.5

59 

-

0.3

03 

-

0.2

57 

-

0.25

5 

-

0.25

0 

-

0.2

54 

-

0.2

63 

-

0.2

69 

-

0.27

0 

-

0.26

5 

-

0.2

69 

-

0.2

51 

-

0.2

83 

-

0.29

6 

-

0.29

4 

-

0.2

96 

-

0.1

89 

  

10 
RMSE

 

0.6

18 

0.4

03 

0.3

82 

0.35

8 

0.35

3 

0.3

55 

0.3

40 

0.3

92 

0.38

2 

0.37

8 

0.3

80 

0.3

43 

0.3

98 

0.40

3 

0.39

6 

0.4

00 

0.3

50 

 Bias
 

-

0.5

59 

-

0.3

03 

-

0.2

70 

-

0.25

1 

-

0.21

4 

-

0.2

40 

-

0.2

39 

-

0.2

79 

-

0.27

3 

-

0.24

1 

-

0.2

62 

-

0.2

21 

-

0.2

90 

-

0.29

7 

-

0.28

5 

-

0.2

92 

-

0.1

18 

  

3 
RMSE

 

0.3

74 

0.2

46 

0.2

33 

0.23

3 

0.23

3 

0.2

33 

0.2

20 

0.2

38 

0.23

8 

0.23

8 

0.2

37 

0.2

28 

0.2

42 

0.24

5 

0.24

5 

0.2

44 

0.2

30 

 Bias
 

-

0.3

30 

-

0.1

72 

-

0.1

51 

-

0.15

2 

-

0.15

1 

-

0.1

52 

-

0.1

54 

-

0.1

56 

-

0.15

7 

-

0.15

7 

-

0.1

57 

-

0.1

48 

-

0.1

64 

-

0.16

9 

-

0.16

9 

-

0.1

69 

-

0.1

10 

20  

4 
RMSE

 

0.3

74 

0.2

46 

0.2

31 

0.23

0 

0.23

0 

0.2

30 

0.2

20 

0.2

36 

0.23

7 

0.23

7 

0.2

37 

0.2

24 

0.2

41 

0.24

6 

0.24

6 

0.2

46 

0.2

29 

 Bias
 

-

0.3

30 

-

0.1

72 

-

0.1

44 

-

0.14

5 

-

0.14

5 

-

0.1

45 

-

0.1

50 

-

0.1

51 

-

0.15

3 

-

0.15

3 

-

0.1

53 

-

0.1

41 

-

0.1

60 

-

0.16

9 

-

0.16

9 

-

0.1

69 

-

0.0

88 

  

10 
RMSE

 

0.3

74 

0.2

46 

0.2

26 

0.21

9 

0.21

7 

0.2

18 

0.2

14 

0.2

35 

0.23

3 

0.23

1 

0.2

32 

0.2

17 

0.2

40 

0.24

6 

0.24

5 

0.2

46 

0.2

40 

 Bias
 

-

0.3

32 

-

0.1

74 

-

0.1

39 

-

0.13

2 

-

0.12

6 

-

0.1

31 

-

0.1

36 

-

0.1

49 

-

0.14

9 

-

0.14

4 

-

0.1

48 

-

0.1

21 

-

0.1

57 

-

0.16

9 

-

0.16

8 

-

0.1

69 

-

0.0

22 

  

3 

 

RMSE
 

0.2

81 

0.1

84 

0.1

77 

0.17

7 

0.17

7 

0.1

77 

0.1

65 

0.1

80 

0.18

0 

0.18

0 

0.1

80 

0.1

73 

0.1

83 

0.18

4 

0.18

4 

0.1

84 

0.1

76 

 Bias
 

-
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Table 2: RMSE and bias of different entropy estimators in SRS and JPS settings 

when parent distribution is standard exponential 
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Table 3: RMSE and bias of different entropy estimators in SRS and JPS settings 

when parent distribution is standard uniform 
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Table 1 gives the results when the parent distribution is standard normal. It is seen that 

the entropy estimators in the JPS setting beats their competitors in SRS setting regardless 

of the quality of the ranking. The performance of the entropy estimators based on isotonic 

regression in the JPS setting ( , , isoiso iso
H H H  ) are almost the same and slightly better 

than stH  for 0.8  . It is also interesting to note that even in the case of random ranking 

( 0  ), the proposed entropy estimators have competitive performances with EH . It is 

also evident from this table that 
EH  has always less RMSE and absolute Bias than 

VH .  

However, the RMSE and Bias of all estimators improve as the value of sample size ( N ) 

decreases, and all entropy estimators have acceptable performances for 30N  . The 

performance of entropy estimators in the JPS setting improve as the value of set size ( H ) 

increases provided that the quality of ranking is fairly good ( 0.8  ). It is worth 

mentioning that all entropy estimators underestimate the true value of the population 

entropy. 

 

The analogous results for standard exponential distribution are presented in Table 2. We 

observe that for exponential distribution, although the JPS entropy estimators do not 

provide any improvement, their performances are slightly worse than EH . Furthermore, 

EH  still has less RMSE and absolute Bias than 
VH  in the SRS setting. It is also evident 

that in the case of perfect ranking ( 1  ), has less RMSE than 
iso

H   and 
isoH . The value 

of Bias of entropy estimators is negative, so they underestimate the true value of the 

population entropy. The RMSE and Bias of all estimators improve as the value of sample 

size ( N ) decreases, and all entropy estimators have acceptable performances for 30N  , 

however, their performances do not necessary improve with the value of the set size ( H ). 

Table 3 presents the simulation results when the parent distribution is standard uniform. 

The performance of the entropy estimators in this case is very similar to that of Table 1. 

The only clear difference is that the values of RMSE and Bias of entropy estimators in 

the standard uniform distribution are less than those in the standard normal distribution.  

5.   Conclusion 

In this paper, we developed some nonparametric entropy estimators for judgement post 

stratification sampling scheme. The estimators were obtained by using different 

cumulative distribution function estimators in the JPS setting. We proved that the 

proposed entropy estimators are consistent. Our simulation results show that the entropy 

estimators in the JPS setting typically have better performance than their competitors in 

SRS setting, especially when the quality of ranking is fairly good.  

 

In this paper, we confined our attention to estimation of entropy. However, it would be 

interesting to evaluate the performance of different entropy estimators for goodness of fit 

tests in the JPS setting, as well. This will be studied in the subsequent work. 
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