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Abstract  

Receiver Operating Characteristic (ROC) Curve is a widely used classification technique in Medical 

Diagnosis which classifies the healthy and diseased individuals on the basis of optimal cut off value of the 

biomarker.  In this article, we have proposed Constant Shape Weibull Mixture ROC (CSWMROC) model.  

The properties of CSWMROC Curve are discussed and expressions for AUC, its variance and confidence 

interval are derived. The estimates of AUC of CSWMROC curve are obtained using Method of Moments 

(MOM). Numerical example is considered to support the proposed theory.    

Keywords:  CSWMROC Curve, AUC, Optimal cut-off value, Method of Moments, 

Monte Carlo simulation.   

1.   Introduction 

Weibull Mixture distribution is very useful in medical diagnosis because it attains many 

shapes for different values of shape and scale parameters which helps in modeling 

different types of data. Here, we keep constant shape parameter to obtain the proper 

CSWMROC Curve so that it never crosses the chance diagonal otherwise it will become 

worthless.  

 

Only a limited literature is available on the mixture of distributions. Some books on finite 

mixture distributions are written by Everitt and Hand [1981], Titterington et al. [1985] 

and McLachlan and Peel [2000]. Some authors like Newcomb [1886] studied the finite 

mixture distributions for outlier and Pearson [1894] estimated the parameters of the two 

component normal-mixture distribution by using the method of moments.  

 

Other than the above mentioned monographs, some other works are attempted on 

Weibull mixture distribution. Kao [1959] derived the estimates of parameters of weibull 

mixture distribution using method of moments. Bucar et al. [2003] studied the finite 

weibull mixture distribution in Reliability theory. Arfa [2008] compared the sestimate of 

parameters of two component weibull mixture distribution by MOM and graphical 

method of estimation. Dwidayati et al. [2013] discussed the cure rate model in breast 

cancer patients through weibull mixture distribution. Dewan and Nandi [2009] estimated 

the parameters of the bivariate weibull distribution under random censoring using EM 

algorithm. Erisoglu and Erisoglu [2014] studied and compared the estimates of the 

weibull mixture distribution in case of heterogeneous data using EM algorithm, L-

moment method and MLE method. They compared the bias, mean absolute error, total 
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mean error and time completion of the algorithm using different method of estimation by 

simulation studies. Pundir and Amala [2014] proposed and discussed the characteristics 

of the constant shape weibull ROC Curve.  

 

ROC Curve is a graph between False positive rate (x(t)) and True positive rate (y(t)) for 

cut off value t. Till date, there are many authors  like Green and Swets in [1966], Egan 

[1975],  Zhou et al. [2002] and  Krzanowski and Hand [2002] who discussed the ROC 

Curve for univariate distributions in case of continuous data. They gave the idea on 

theory of estimation on ROC Curve, AUC of ROC Curve and also used Statistical 

Inference on ROC Curve.  

 

In practice, medical data is heterogeneous or it may consist of sub populations. Generally, 

we ignore this fact and apply the existing ROC models without checking for the 

heterogeneity which gives us the misleading results. Hence, there is a need to introduce 

mixture ROC models which will give exact accuracy of the diagnostic test with less 

standard error.  

 

Only few authors discussed the mixture ROC Curve. The first article on the mixture ROC 

Curve is given by Dass and Kim [2011] where they discussed the Multivariate Bi-normal 

Mixture ROC Curve. Gonen [2013] also studied the ROC Curve and AUC using Bi-

normal mixture distribution. It was found that if the heterogeneity is found in the data 

then Bi-normal mixture ROC Curve gives better smoothness as compare to bi-normal 

ROC Curve. Pundir and Azharuddin [2014] studied the Exponential Mixture ROC Curve 

and compared the estimates of AUC of Exponential Mixture ROC Curve using Method 

of Moments and MLE. Pundir and Azharuddin [2016] studied the Normal Mixture ROC 

Curve along with its properties and found the maximum likelihood estimates of 

parameters of AUC and confidence interval of AUC of Normal Mixture ROC Curve.  

 

A mixture distribution can be applied if a population contains two or more sub-

populations or in the presence of heterogeneity. A random variable X is said to follow a 

mixture distribution if it has the probability density function as 

    1...,,2,1,0,/
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where ip  is the weight of the i
th

 component of mixture distribution. 

 

Idenifiability is a necessary assumption for the estimation of mixture distributions. 

Without checking of identifiability in mixture distributions, one can not estimate the 

parameters. There are many authors who gave the idea on identifiability on mixture 

distribution. Teicher (1961, 1963) studied the identifiability of finite mixture distribution. 

Yakowitz and Spragins (1968) discussed the exponential families of mixture distribution 

are identifiable. Atienza N et al. (2006) discussed the new condition for identifiability on 

finite mixture distributions. They discussed the identifiability on Log Normal, Gamma 

and Weibull mixture distribution. In this paper, we are taking Constant Shape Weibull 

Mixture distribution where Weibull Mixture distribution is a member of exponential 

family, hence it is also identifiable.  
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A class N of mixture is said to be identifiable if and only if for all   Nxf   and the 

equality of two representations 
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holds where, n=n’ and for all i there exit some j such that ji pp ˆ and 
ji  ˆ . A random 

variable X is said to follow the two component weibull mixture distribution with 

probability density function 
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(1.3) 

 

The cumulative distribution function of the two component weibull mixture distribution 

is given as 
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(1.4) 

where i and i  are the shape and scale parameters of the weibull mixture distribution. 

In this paper, the shape parameter   21
 is constant  

 

The paper is organized as follows. In section 2, we have studied the CSWMROC model 

and its properties. The AUC and optimal cut-off value of biomarker using CSWMROC 

model are also derived. The moment estimates of AUC of CSWMROC Curve are also 

obtained in section 3. In section 4, the variance of AUC of CSWMROC model and 

confidence Interval (CI) are derived using delta method.  In section 5, AUC, variance of 

AUC, Standard Error (SE) of AUC, Mean Square Error (MSE) of AUC, confidence 

interval and testing of AUC are done by using simulation studies. In the last section, 

conclusion is given. 

2.   Constant Shape Weibull Mixture ROC model 

Let X be a random variable from healthy controls which follows Constant Shape Weibull 

Mixture Distribution with parameters 
10,  and 

20  and Y be another  random variable 

from disease cases which follows Constant shape Weibull Mixture Distribution with 

parameters 
11,  and 

21 . The CSWMROC model is defined as 

 

(2.1) 

 

where,   

 

 

Assumptions: 

(1) The mean of disease cases should be greater than the mean of healthy cases for 

CSWMROC curve. 
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(2) The Shape parameter ( ) should be fixed to obtain the proper CSWMROC 

curve.  

(3) 
1011   , 

2021   ,  
1020    and .1121    

Properties: 

(a) The CSWMROC curve remains unaltered if the test scores undergo a strictly 

increasing transformation. 

 

(b) CSWMROC curve is monotonically increasing. 

Proof: A function is said to be monotonically increasing function if the first derivative of 

the function is greater than zero. From (2.1), we have 
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(c) CSWMROC Curve is a Concave. 

Proof: A function is said to be concave if its second derivative is less than zero. From 

(2.2), we have 
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(d) CSWMROC Curve is TPR asymmetric. 

Proof: Let f(x) be comparison distribution and g(x) be reference distribution, then KL(f, 

g) and KL(g, f) are given as 
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(2.5) 

 

From (2.4) and (2.5), we can see that KL(g, f) > KL(f, g) i.e. the CSWMROC Curve is 

TPR asymmetric. 

 

(e) The slope of the CSWMROC Curve at the cut off value t is given as 

 

 

(2.6) 
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The AUC of CSWMROC Curve is defined as 

 

           (2.7) 

Optimal cut-off value 

In medical diagnosis, the optimal cut-off value (t) tells us about the patient’s situation 

whether his status of disease. The optimal cut-off value is defined by the Fluss et al. 

(2005) in the Youden index which is obtained by taking the maximum difference 

between the CDF of healthy and disease cases. The optimal threshold value or cut-off 

value of biomarker using CSWMROC curve is obtained as 

 

                   (2.8) 

3. Estimates of parameters of AUC of CSWMROC Curve using Method of Moments  

It is very old and easy method for estimating the parameters. The r
th

 sample moment of a 

mixture distribution is defined as 

 

(3.1) 
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are the densities of two sub-populations of  mixture distribution.  

The r
th

 sample moment of Constant Shape Weibull Mixture distribution is obtained as 
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The shape parameter   is constant for both sub populations and 
1  and 

2 are the scale 

parameters of Weibull Mixture distribution. On putting r=1, 2, 3, 4 in (3.2), we get  
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On solving (3.3)-(3.6), one can obtain ,ˆ,ˆ,ˆ
1p and 2̂  by using the Newton Raphson 

method in MATHEMATICA software. 
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4.   Variance of AUC of CSWMROC Curve using delta method 

The approximate variance of AUC of CSWMROC Curve by Delta method gives the 

approximate variance as  
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On substituting (4.3) in (4.1), we get 
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Differentiating (4.2) with respect to 
211011 ,,    and ,20
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To determine the variance of 211011
ˆ,ˆ,ˆ   and 20̂ , we use the Fisher information matrix. 

The likelihood function is given as  
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The Fisher information matrix is given as 
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where, 
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and 
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            : Euler-Mascheroni constant approximately equal to 0.5772 

2010 , mm :  sample sizes of healthy controls   

2111, nn     :  sample sizes of disease cases. 

 

On substituting(4.6) in (4.5), the inverse Fisher Information matrix is given as 
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On putting (4.8) in (4.3),  1
ˆCUAV  is given as 
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On substituting (4.9) and (4.10) in (4.1), we get 
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Using V(AUC), one can easily find confidence interval, MSE and test of significance for 

AUC. 

 

(i) The 100(1-α)% confidence interval of AUC is given as  
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where α is the level of significance and 
2

Z  is the critical value of the confidence interval 

and SE is the standard error. 

 

(ii) The Mean Square Error (MSE) is used to identify the quality of an estimator. It is 

defined as   
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where 

 

 

(iii) Consider the problem of testing of AUC of CSWMROC Curve as 

00 : AUCAUCH 
   vs.   
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The test statistic is given as 
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where N = m + n,  m is the sample size of healthy controls and n is the sample size of 

disease cases. 

5.   Simulation Studies 

The random numbers are generated from Weibull mixture distribution with fixed values 

of shape parameter and scale parameters of healthy controls and disease cases for the 

sample sizes N=10, 20, 30, 100, 200 and 300. The sample sizes are equal for healthy 

controls and disease cases. The value of weight of healthy controls and disease case are 

also taken as equal i.e., p=0.7. The values of shape parameter is same for healthy controls 

and disease cases 221112010   . The values of scale parameters of 

healthy controls and disease cases are 2,1 2010    and 9,10 2111   .  

Table 5.1: Estimates of parameters of AUC of CSWMROC Curve by MOM for 

different sample sizes 

N 
10̂  20̂  

11̂  21̂  

10 1.245 1.418 72.875 58.75 

20 1.933 6.744 76.552 17.449 

30 0.331 3.654 89.311 23.110 

100 0.543 3.517 43.096 37.776 

200 0.835 3.186 13.191 10.871 

300 0.615 3.655 14.767 9.780 

 

From above table, it is observed that with the increase in sample size, the estimates of 

CSWMROC model become closer to the parameters. Using the estimators in Table 5.1, 

one can see    CUASECUAVCUA ˆ,ˆ,ˆ , confidence interval and Z-values to test A

88.00 UC  in Table 5.2.  

    .ˆˆ AUCCUAECUABias 
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Table 5.2:       CUAMSECUASECUAVCUA ˆ,ˆ,ˆ,ˆ , 95% Confidence Interval (CI) of 

CUA ˆ and Z-values 

N CUA ˆ   CUAV ˆ   CUASE ˆ   CUAMSE ˆ     CUACI ˆ  Z-values 

10 0.981 0.0002 0.0152 0.0101 [0.951, 1.01] 31.939 

20 0.899 0.0015 0.0387 0.0018 [0.823, 0.975] 3.102 

30 0.956 0.0004 0.0206 0.0059 [0.916, 0.996] 29.434 

100 0.965 0.0000 0.0087 0.0071 [0.948, 0.982] 120.208 

200 0.890 0.0001 0.0126 0.0002 [0.865, 0.915] 20.00 

300 0.890 0.0001 0.0103 0.0001 [0.870, 0.910] 24.494 

 

It is observed from Table 5.2 that CUA ˆ  become closer to the true value of AUC as the 

sample size increases but  ˆV AUC ,  CUASE ˆ and MSE(AUC) decreases with increase in 

the sample size because the variance of AUC and standard error of AUC depends on 

sample sizes. From Z values, one can see that all CUA ˆ values are greater than 0.88, so we 

reject the null hypothesis and concludes that AUC is not equal to 0.88. 

 

Fig. 5.1 shows the CSWMROC curves for different sample sizes and fixed values of 

parameters mentioned above.  

 

 

Fig. 5.1 CSWMROC Curve with fixed parameters and different sample sizes.  
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6.   Conclusion 

In this paper, we have proposed CSWMROC model and found that CSWMROC curve is 

monotonically increasing, concave in nature and TPR asymmetric. The Area under the 

CSWMROC Curve, its variance and the optimal cut-off value of biomarker using 

CSWMROC Curve are also derived. The estimates of parameters of AUC are obtained by 

MOM. The variance of AUC of ROC Curve is also derived. The MSE of AUC, 

confidence interval of AUC and test for AUC are also discussed.  From simulation 

studies, it is concluded that the estimates of parameters of AUC of CSWMROC Curve 

using MOM become approximately closer to the population parameters for large sample 

size. It is concluded that when heterogeneity is found in the data and Weibull mixture 

distribution fits well to the data then one should use Weibull mixture ROC model instead 

of Bi-Weibull ROC model. 
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Programs 

(a)   R-Command 

The random numbers are generated by using the following command   

y<-p*runif(n)+(1-p)*runif(n) 

x<-p*((log((1-y)^(-b1)))^(1/a))+(1-p)*((log((1-y)^(-b2)))^(1/a)) 

n: sample size, a: shape parameter, b1: scale parameter of 1st sub-population, b2: scale 

parameter of 2
nd

 sub-population. 

(b)   MATHEMATICA Command 

The moment estimators of AUC of CSWMROC Curve are obtained by using the 

following command 

 

FindRoot[{p*b1^(1/\[Alpha])*Gamma[1 + 1/\[Alpha]] + (1 - p)*b2^( 

     1/\[Alpha])*Gamma[1 + 1/\[Alpha]] == m1,  

  p*b1^(2/\[Alpha])*Gamma[1 + 2/\[Alpha]] + (1 - p)*b2^( 

     2/\[Alpha])*Gamma[1 + 2/\[Alpha]] == m2,  

  p*b1^(3/\[Alpha])*Gamma[1 + 3/\[Alpha]] + (1 - p)*b2^( 

     3/\[Alpha])*Gamma[1 + 3/\[Alpha]] == m3,  

  p*b10^(4/\[Alpha])*Gamma[1 + 4/\[Alpha]] + (1 - p)*b2^( 

     4/\[Alpha])*Gamma[1 + 4/\[Alpha]] == m4}, {p,p0  

  }, {\[Alpha], [Alpha0]}, {b1, b10}, {b2, b20}] 

(c)   Euler-Mascheroni Constant 

The first order differentiation of is given as  nn  where  n called the digamma 

function. The value of 
'

n  at n is equal to 1- ' , where   is Euler-Mascheroni constant 

and its approximate value is 0.5772. The second order differentiation at n is define as 
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 derivative of 
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