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Abstract  

The performance of heteroscedasticity consistent covariance matrix estimators (HCCMEs), namely, HC0, 

HC1, HC2, HC3 and HC4 have been evaluated by numerous researchers for the heteroscedastic linear 

regression models. This study focuses on examining the performance of these covariance estimators in case 

of groupwise heteroscedasticity. With the help of the Monte Carlo simulations, we evaluate the 

performance of these covariance estimators and the associated quasi-t tests. We consider the cases when 

data are divided into 10, 20 and 30 groups of different sizes and the regression is run on the mean values of 

the dependent variable and the regressor of these groups. The numerical results show that HCCMEs 

perform appealingly well in case of groupwise heteroscedasticity. 

Keywords:   Groupwise heteroscedasticity; HCCME; Size distortion; White’s estimator. 

1.   Introduction 

The linear regression models for cross-sectional data often exhibit the problem of 

heteroscedasticity i.e. the error variances are not constant for all observations. In this 

situation, the ordinary least square (OLS) estimators of the parameters remain unbiased 

and consistent but become inefficient. Since the form of heteroscedasticity is usually 

unknown, the practitioners usually use the OLS estimators even when the error variances 

are not constant. However, the usual OLS covariance matrix estimator becomes biased 

and does not remain consistent when the homoscedasticity assumption is violated. Since 

the OLS standard errors are based directly on these variances, so the inferences drawn on 

the basis of these estimators become misleading and erroneous. It thus, becomes 

necessary to build and use alternative covariance matrix estimators that are consistent 

under both homoscedasticity and heteroscedasticity of unknown form. Several consistent 

covariance matrix estimators are available in the literature.  

 

In his econometrics text book, Wooldridge (2008, pp. 249) writes, “In the last two 

decades, econometricians have learned to adjust standard errors, t, F and LM statistics so 
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that they are valid in the presence of heteroscedasticity of unknown form. This is very 

convenient because it means we can report new statistics that work, regardless of the kind 

of heteroscedasticity present in the population”.  

 

The most commonly used heteroscedasticity consistent covariance matrix estimator 

(HCCME) was presented by White (1980). White’s estimator is known as HC0 in the 

literature. MacKinnon and White (1985) and Davidson and MacKinnon (1993) presented 

three alternative improved versions of HCCMEs, commonly known as HC1, HC2 and 

HC3. Numerous researchers have evaluated the performance of HCCMEs for the 

heteroscedastic linear regression models (e.g., see Ahmed et al. 2011, Aslam et al. 2013, 

Cribari-Neto 2004, Cribari-Neto and Zarkos 1999, 2001, 2004, Flachaire 2005, Long and 

Ervin 2000, MacKinnon 2011 etc.). 

 

In real life, there are many situations when the dependent and explanatory variables have 

to be aggregated as average values i.e. the means of dependent and explanatory variables 

are available and we have to run regression on these average values. As a result of such 

aggregation, the error tem in the resulting model becomes heteroscedastic, in spite of the 

fact that it is homoscedastic in the model of individual values. It is because the number of 

observations (say) gn  varies across the different groups. Such type of heteroscedasticity 

is called as groupwise heteroscedasticity (see Greene 2000, for more details). For 

groupwise heteroscedastic regression model, obviously, the usual OLS covariance matrix 

of estimates will be inconsistent. Thus, it becomes needful to use the HCCMEs. Now the 

question arises that what would be the performance of the HCCME in case of groupwise 

heteroscedasticity but the available literature is found to be silent in this situation. This 

thing motivated us to evaluate the performance of HCCMEs in case of groupwise 

heteroscedasticity. Using the Monte Carlo simulations, we evaluated the performance of 

HCCMEs for groupwise heteroscedasticity. 

2.   Heteroscedasticity-Consistent Covariance Matrix Estimator (HCCME) 

Consider the regression model 

 y X   ,         (1) 

where y is an 1n  vector of observations on the dependent variable, X  is an n p  known 

design matrix of rank p,   is an 1p vector of unknown parameters, and  is an 1n

vector of random errors with zero mean and variance 2 ,
n

I   where 
n

I  is an identity 

matrix of order n.  

 

The ordinary least squares (OLS) estimator is  

 
1ˆ

OLS X X X y


  , 

and its covariance matrix is 

      
1 1ˆ

OLSCov X X X X X X
 

    ,      (2) 

where 

   .E      
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If the errors are homoscedastic, then   2 .E I    

So Eq. (2) becomes 

    
12ˆ .OLSCov X X 


  

Defining the residuals ˆ
i OLS

e y X  , we can estimate the OLS covariance matrix 

(OLSCM) as  

    
2

1ˆ i

OLS

e
OLSCM X X

n p








,      (3) 

where n is the number of observations and p is the number of unknown parameters. 

 

But if the errors are heteroscedastic and the form of heteroscedasticity is unknown then 

the HCCME, presented by White (1980), commonly known as HC0, can be used. 

White’s estimator is defined as  

      
1 1

20 .
i

HC X X X diag e X X X
 

    

 

The disadvantage of White’s estimator is that it can be biased, usually downward, in 

small samples (see MacKinnon and White, 1985) and takes no account of the fact that 

OLS residuals tends to be too small. MacKinnon and White (1985) provided an improved 

estimator i.e., HC1, that was tailored after making the adjustment for the degree of 

freedom (d.f) as suggested by Hinkley (1977). 

    
1 121 i

n
HC X X X diag e X X X

n p

 
     

  

        = 0.
n

HC
n p

 

 

Another version of HCCME considered by MacKinnon and White (1985) is: 

    
2

1 1

2 .
1

i

i

e
HC X X X diag X X X

h

  
    

 
 

 

The ith squared OLS residual is weighted by the reciprocal of (1- 
i

h ), where 
i

h  is the ith 

diagonal element of the hat matrix,  
1

.H X X X X


    

 

The third HCCME is the jackknife estimator of Efron (1979, as modified by Davidson 

and MacKinnon, 1993) and is defined as: 

 
 

 
2

1 1

2
3 .

1

i

i

e
HC X X X diag X X X

h

 
 

    
  

 

All the three alternative estimators HC1, HC2 and HC3, are asymptotically equal to the 

HC0 but have superior small sample properties relative to HC0 (Long and Ervin, 2000). 

Long and Ervin examined the small sample properties of tests using the above stated four 
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versions of the HCCMEs in the linear regression model. Based on their simulation 

results, Long and Ervin showed that HC0 results in incorrect inferences when n ≤ 250 

while other three versions of HCCMEs work well for small sample size, especially HC3. 

They strongly recommended that HC3 should be used for samples less than 250 

regardless of the presence or absence of heteroscedasticity. 

 

Cribari-Neto and Zarkos (2001) showed that HCCMEs do not perform well if there are 

high leverage points in the design matrix. They showed that the quasi-t tests based on 

HCCMEs mentioned above are not reliable in the presence of high leverage points in the 

design matrix.  Cribari-Neto (2004) presented the HCCME that performs quite well in the 

presence of high leverage points in the design matrix. This estimator was named as HC4. 

 
 

 
2

1 1
4 ,

1 i

i

i

e
HC X X X diag X X X

h


 
 

    
  

 

where 

 

1

min 4, min 4, 4, .i i i
i n

i

i

h nh nh
min

h p
h





 
     

       
    

  


 

 

The numerical results in Cribari-Neto (2004) showed that the asymptotic inferences in 

linear regression models were much affected by the presence of high leverage points in 

the design matrix. By the Monte Carlo simulations, Cribari-Neto (2004) showed that the 

quasi-t tests, based on the HC4 estimator, were reliable even in the presence of influential 

observations in the design matrix. 

3.   Groupwise Heteroscedasticity 

The linear regression models are usually used in real life in which both the dependent and 

explanatory variables have individual values. There are many situations in real life, when 

the dependent and explanatory variable have aggregated or average values i.e. the means 

of dependent and explanatory variables are available and the regression is run for these 

average values. In spite of the fact that the error tem in the model of individual values is 

homoscedastic, when the observations are grouped and the regression is run on the means 

of dependent and explanatory variables, the error tem in the resulting model becomes 

heteroscedastic. 

 

If the n observations are grouped into G groups each with gn  observations and the means 

gy and gx for g = 1, 2, …, G groups are observed then the regression model, given in Eq. 

(1), becomes 

g g gY X             (4) 

or 

.g g gY X v   
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The error term gv in the above model is now heteroscedastic, irrespective of the fact that 

the error term in regression model (1) of individual values iy  and ix , is homoscedastic 

because  

 2 2( )g g g gVar v Var n     , 

where gn  is the number of observations in group G. 

4.   HCCME under Groupwise Heteroscedasticity 

In case of groupwise heteroscedasticity, instead of the individual values, the mean of 

dependent variable is regressed on the means of explanatory variables. Consider 

regression model (4) where both, the dependent and independent, represent the respective 

mean values. For this model, White’s estimator can be written as  

1 1

20 ,iHC X X X diag v X X X

 
     

      
   

       (5) 

where ,i OLSv y X   are the OLS residuals for 
1( ) .OLS X X X y  

 
 

After applying the degree of freedom adjustment, we get the HC1 estimator as 

1 1

21 ,i

G
HC X X X diag v X X X

G p

 
     

          
 

 = 0
G

HC
G p

,          (6) 

where G is the number of groups which behaves like the sample size and p is the number 

of unknown parameters in groupwise heteroscedastic model.  

 

The HC2 estimator can be written as 

 

1 12

2
1

i

i

v
HC X X X diag X X X

r

 
       

     
    

,       (7) 

where 
i

r  is the ith diagonal element of the hat matrix, 

1

R X X X X


  

  
 

. 

The HC3 estimators becomes 

 

1 12

2
3 .

1

i

i

v
HC X X X diag X X X

r

       
     
     

       (8) 

Finally, the HC4 estimator becomes 

 

1 12

4 ,
1

i

i

i

v
HC X X X diag X X X

r


       
     
     

     (9) 
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where 

 

1

min 4, min 4, 4, ,i i i
i n

i

i

r Gr Gr
min

r p
r





 
     

       
    

  


 

where r is the average of .ir  

 

These estimators are used to get the consistent covariance matrix estimator of coefficient 

estimates for the model with groupwise heteroscedasticity. 

5.   Numerical Evaluation 

The numerical results, presented in this study, were obtained using the simple regression 

model  

 iii xy   10   ;      i = 1, 2, …,n.      (10) 

 

We generated 275, 550 and 825 observations. For the case of 275 observations, the 

values of covariate x were obtained as random draws from the U (0, 1) distribution and 

then kept fixed. The errors i ’s were taken from the normal distribution with mean 0 and 

variance 1 i.e. i ~ N (0, 1). Clearly, the error term is homoscedastic with 
2

i = 1. The 

dependent variable y was constructed using 
0 1 1    under data generating process 

(DGP-I) and 
0 10  , 1 0.5   (DGP-II). These 275 observations were grouped into G = 

10 groups each of size gn  where gn  = 5, 10, 15, …, 50 and the means gy and gx  for all 

the 10 groups were obtained. It is obvious that 
10

1

275
G

g
j

n




  and that is why we, initially 

generated 275 observations. Then the simple regression was run on these average values 

as: 

0 1g g gy x      ; g = 1, 2, …, 10.     (11) 

 

The error term in the above model is now heteroscedastic irrespective of the fact that the 

error term in the regression model of individual values iy  and ix  is homoscedastic 

because  2 2

g g gVar n    where gn  is the number of observations in group G. 

Then these 275 observations were replicated twice and three times to get 550 and 825 

observations, respectively. For such replication, the degree of heteroscedasticity remained 

unchanged to make comparisons for different data sets.  

 

Thus obtained 550 observations were divided into G = 20 groups of sizes gn  where gn  = 

5, 10, 15, …, 50, 5, 10, 15, …, 50 and the means gy and gx  for g = 1, 2, …, 20 were 

obtained. Thus, there were two groups of size 5, two of size 10 and so on. The data on 

825 observations were divided into G = 30 groups of sizes gn  where gn  = 5, 10, 15, …, 

50, 5, 10, 15, …, 50, 5, 10, 15, …, 50 and the means gy and gx  for G = 1, 2, …, 30 
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groups were observed. The regression for model (11) was run on the means of 20 and 30 

groups, separately. These experiments were replicated 5000 times each for G =10, 20 and 

30. The estimates of the  ’s were computed by the OLS, and the estimates of 

 ˆ
OLSCov   were computed using Eq. (3) i.e. using the OLS and the HCCMEs, HC0, 

HC1, HC2, HC3 and HC4, given in Eqs. (5)-(9), respectively. All the computations were 

performed through programming routines in the econometric package EViews 5.0 (visit 

www.eviews.com). 

 

Following Cribari-Neto and Galvão (2003) and Cribari-Neto (2004), we computed the 

total relative bias (TRB) of the OLS, the HC0, HC1, HC2, HC3 and HC4 covariance 

estimators. The total relative bias yields the sum of the absolute relative biases of the 

estimated variances of 0̂  and 1̂ . The relative bias is defined as the difference between 

the mean value of variance estimator and the true value of variance divided by the true 

variance. Thus, the TRB is defined as 

 TRB = 
    

 

    

 
0 0 1 1

0 1

ˆ ˆ ˆ ˆˆ ˆ

.
ˆ ˆ

E Var Var E Var Var

Var Var

   

 

 
  

 

Table 1 and 2 presents the TRB under DGP-I and -II respectively for the OLS, HC0, 

HC1, HC2, HC3 and HC4 variance estimators. 

Table 1:   Total Relative Bias under DGP-I 

G OLS HC0 HC1 HC2 HC3 HC4 

10 0.78 1.41 1.27 0.56 2.96 70.39 

20 0.74 0.72 0.58 0.13 0.83 4.31 

30 0.79 0.81 0.72 0.50 0.10 0.95 

Table 2: Total Relative Bias under DGP-II 

G OLS HC0 HC1 HC2 HC3 HC4 

10 1.15 2.91 2.47 1.12 3.31 38.32 

20 1.23 1.19 0.97 0.44 1.83 3.51 

30 1.29 1.22 1.13 0.97 1.21 1.79 

 

The figures in Table 1 and 2 convey that when G = 10, the HC4 estimator is much biased 

than the other estimators. On the other hand, the HC2 estimator yields lowest bias among 

all the estimators. When G = 20, we observe that the HC4 estimator is again much biased 

as compared to other estimators but the amount of bias reduces considerably when the 

number of groups (G) in which the data have been divided, increases. The HC2 estimator 

is again less biased than the other estimators. Cribari-Neto (2004) reported that the HC4 

estimator was much biased among all the estimators and the same behavior has been 

observed in our case. We note that as the number of groups i.e. G increases, the TRB of 
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HC3 and HC4 estimators reduces, dramatically but the similar behavior is not observed 

for the OLS, HC0, HC1 and HC2 estimators.  

 

Again following Cribari-Neto (2004), we computed the root mean square error (RMSE) 

of the OLS, HC0, HC1, HC2, HC3 and HC4 estimators. Table 2 presents the square root 

of the total mean squared error ( 5000 ) for each variance estimator under 

consideration. It is defined as 

      0 1
ˆ ˆˆ ˆ 5000RMSE MSE Var MSE Var    , 

where 

          
2

0 0 0
ˆ ˆ ˆˆ ˆ ˆMSE Var Var Var Bias Var    , 

and 

          
2

1 1 1
ˆ ˆ ˆˆ ˆ ˆMSE Var Var Var Bias Var    , 

where  0
ˆˆVar   and  1

ˆˆVar   are the estimates of  0
ˆVar   and  1

ˆ ,Var   respectively. 

The MSE thus comprises of not only bias but also the variance of different estimators. 

Table 3:   Total RMSE ( 5000 ) under DGP-I 

G OLS HC0 HC1 HC2 HC3 HC4 

10 63.01 83.47 79.21 93.76 387.63 6751.08 

20 25.96 36.35 37.37 48.75 81.62 226.84 

30 18.08 23.69 23.83 26.20 32.69 58.65 

Table 4:   Total RMSE ( 5000 ) under DGP-II 

G OLS HC0 HC1 HC2 HC3 HC4 

10 87.03 115.29 109.41 129.50 533.40 7324.62 

20 34.86 50.21 49.61 66.33 112.73 213.37 

30 23.97 32.72 32.91 36.19 45.15 81.01 

 

Table 3 and 4 display the values of Total RMSE ( 5000 ) under DGP-I and –II, 

respectively for each variance estimator under consideration. The numerical results 

presented in Table 3 and 4 show that the OLS estimator yields the smallest RMSE as 

compared to other estimators under consideration for all G (number of groups). The HC4 

estimator yields the largest RMSE as compared to other estimators. Cribari-Neto (2004) 

also reported the similar results but for the ungrouped data. 

 

Following Cribari-Neto (2004), we computed the estimated null rejection rate (NRR) of 

quasi-t tests, based on the OLS and HCCM estimators. Table 5, 6 and 7 presents the NRR 
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(in percentage) of quasi-t tests corresponding to the nominal level α = 1%, 5% and 10%, 

respectively. For convenience, we focus on the testing the null hypothesis 0

0 1 1:H    

against the alternative hypothesis
0

1 1 1:H   , where 
0

1  is the true value of
1 . The test 

statistic that has been used is 

 
0

1 1

1

ˆ

ˆˆvar( )
t

 




 , 

where )ˆr(âv 1  denotes the estimate of variance of 1̂  obtained from the OLS and 

HCCMEs. Under the null hypothesis, the test statistic has a limiting normal distribution 

with zero mean and unit variance. The absolute values of test statistics thus obtained are 

compared with the critical values from this limiting distribution corresponding to the 

nominal level α = 1%, 5% and 10%. 

Table 5:   Estimated null rejection rates of quasi t-tests (α = 1 %) under DGP-I 

G OLS HC0 HC1 HC2 HC3 HC4 

10 8.34 24.50 20.22 13.14 6.10 1.94 

20 6.10 10.26 9.00 7.26 5.10 2.46 

30 14.02 18.94 17.56 15.52 12.64 9.22 

 

Table 5 presents the estimated NRR of the quasi t-tests corresponding to the nominal 

level α = 1% under DGP-I. The figures presented in Table 5 show that when G =10, the 

tests based on the HC0, HC1 and HC2 estimators result in larger size distortion. 

However, when G = 20, the performance of tests based on these estimators improves 

regarding size distortion. The tests that use the OLS, HC3 and HC4 estimators result in 

relatively less size distortion. We note that when G = 10 and 20, the tests based on the 

HC4 estimator, show satisfactory performance if the criterion is size distortion. For 

instance, when G = 10 and 20, the HC4-based test rejects the null hypothesis 

approximately 2% of the times that is close to the nominal level of the test. For G = 30, 

the tests based on all the covariance estimators, considered here, show large size 

distortion. However, the HC4 estimator results in less size distortion among rest of the 

estimators. Table 6 and 7 reveal the similar behavior for 5% and 10% level of 

significance, respectively under DGP-I. Table 8 presents the estimated NRR of the quasi 

t-tests corresponding to the nominal level α = 5% under DGP-II. Almost similar behavior 

of NRR is observed under both DGP-I and DGP-II 

Table 6:   Estimated null rejection rates of quasi t-tests (α = 5 %) under DGP-I 

G OLS HC0 HC1 HC2 HC3 HC4 

10 17.14 36.28 31.28 21.90 10.74 3.08 

20 14.46 19.52 17.48 14.10 10.36 5.90 

30 27.38 30.50 29.22 26.66 22.58 16.66 
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Table 7:   Estimated null rejection rates of quasi t-tests (α = 10 %) under DGP-I 

G OLS HC0 HC1 HC2 HC3 HC4 

10 24.92 43.62 38.78 28.92 14.68 4.38 

20 22.22 27.08 24.86 20.34 15.06 9.10 

30 35.48 38.58 37.08 34.24 30.08 23.18 

Table 8:   Estimated null rejection rates of quasi t-tests (α = 5 %) under DGP-II 

G OLS HC0 HC1 HC2 HC3 HC4 

10 15.12 32.12 27.60 19.42 9.48 2.62 

20 12.36 17.24 15.42 12.46 9.14 5.20 

30 24.14 26.92 25.68 23.34 19.82 14.66 

 

Following Cribari-Neto and Lima (2009), we evaluated the performance of the OLS and 

HCCMEs, under groupwise heteroscedasticity, for interval estimation. The confidence 

intervals based on the OLS and HCCM estimators are constructed for 0  and 1 . The 

100(1-α) % two sided confidence intervals for
j

 ( j = 0, 1) are constructed as: 

 
1

2

ˆ ˆˆ ( ),
j j

Z Var


 


  

where ˆ
j

  are the OLS estimator of 
j

  and ˆˆ ( )
j

Var   the is the estimator of ˆ( )
j

Var   

obtained by the OLS and HCCM estimators, under consideration. The nominal coverage 

of all the confidence intervals, under consideration, is 1 0.95.   We compute the 

empirical coverage and average length of confidence intervals for the both coefficients 

0  and 
1


 
but for discussion here, we focus on 

1
 only. 

 

Table 9 shows the empirical coverage and average length of confidence intervals for 1 , 

under DGP-I, based on the OLS and HCCM estimators. The figures show that when G = 

10, the empirical coverage of confidence intervals based on the HC4 estimator is good as 

compared to the other estimators (i.e. OLS, HC0, HC1, HC2 and HC3). This coverage is 

96.92% which is close to the nominal level (95%). The HC0-intervals show the worst 

performance in the sense of coverage which is 63.72%. Additionally, we see that the 

average length of the HC4-intervals is largest. When the group size increases from 10 to 

20, the empirical coverage of all the estimators tends to increase, except for the HC4-

intervals. On the other hand, the average length of the HC4-intervals decreases 

considerably. When G = 30, the empirical coverage of confidence intervals based on all 

estimators reduces considerably. Here all the estimators show poor performance 

regarding the coverage of confidence intervals. However, the HC4 estimator performs 

relatively well as compared to the other estimators, giving about 83% coverage. The 

same measures have also been calculated under DGP-II and almost the similar behavior 

is observed. That is why, they have not been reported here. 
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Table 9:    Confidence intervals for
1
 : Coverage (%) and average length under 

DGP-I 

G 
OLS HC0 HC1 HC2 HC3 HC4 

Coverage Length Coverage Length Coverage Length Coverage Length Coverage Length Coverage Length 

10 82.86 3.61 63.72 2.48 68.72 2.77 78.10 3.68 89.26 6.41 96.92 22.94 

20 85.54 2.66 80.48 2.57 82.52 2.71 85.90 3.05 89.64 3.68 94.10 5.29 

30 72.62 2.13 69.50 2.04 70.78 2.11 73.34 2.26 77.42 2.52 83.34 3.05 

6.   Conclusion 

It is common practice to use the HCCMEs to get the consistent estimates of variances of 

the OLS estimates for heteroscedastic linear regression models. In many practical 

situations, averages of the dependent and explanatory variables are used and regression is 

run on these average values. In this situation, the problem of groupwise heteroscedasticity 

is evident. The present study unfolds the performance of the conventional HCCMEs to 

encounter groupwise heteroscedasticity by providing consistent covariance matrix 

estimates. Five versions of HCCME i.e. HC0-HC4, have been computed for the linear 

regression model, facing groupwise heteroscedasticity. The Monte Carlo results reveal 

that the HC3 and HC4 estimators perform adequately well in the presence of groupwise 

heteroscedasticity as they do in the usual heteroscedastic linear regression model. 

However, the HC4 estimator outperforms the HC3 estimator, giving less size distortion 

and better coverage in interval estimation.  
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