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Abstract 

The use of finite mixture distributions, to control for unobserved heterogeneity, has become increasingly 

popular among those estimating dynamic discrete choice models. One of the barriers to using mixture 

models is that parameters that could previously be estimated in stages must now be estimated jointly: using 

mixture distributions destroys any additive reparability of the log likelihood function. In this research, 

Bayesian estimators have been obtained for the parameters of the mixture of exponentiated Weibull 

distribution when sample is available from censoring scheme. 

 

The maximum likelihood estimators of the parameters and the asymptotic variance covariance matrix have 

been obtained by Elshahat and Mahmoud (2016). Bayes and approximate Bayes (Lindley's form) 

estimators have been developed under squared error loss function as well as under LINEX loss function 

using non –informative type of priors for the parameters will be obtained. A numerical illustration for these 

new results is given.  

Keywords and Phrases:  Mixture of two exponentiated Weibull distribution (MTEW), 

Maximum likelihood estimation, Bayesian estimation, Approximate Bayesian estimation, 

Lindley approximation Monte-Carlo simulation. 

1. Introduction 

In probability and statistics, a mixture distribution is the probability distribution of a 

random variable whose values can be interpreted as being derived in a simple way from 

an underlying set of other random variables. In particular, the final outcome value is 

selected at random from among the underlying values, with a certain probability of 

selection being associated with each. Here the underlying random variables may be 

random vectors, each having the same dimension, in which case the mixture distribution 

is a multivariate distribution. 

 

In cases where each of the underlying random variables is continuous, the outcome 

variable will also be continuous and its probability density function is sometimes referred 

to as a mixture density. The c.d.f. of a mixture is convex combination of the c.d.f’s of its 

components. Similarly, the p.d.f. (pdf) of the mixture can also express as a convex 

combination of the p.d.f’s of its components. The number of components in mixture 

distribution is often restricted to being finite, although in some cases the components may 

be countable. More general cases (i.e., an uncountable set of component distributions), as 

well as the countable case, are treated under the title of compound distributions. 
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A mixture is a weighted average of probability distribution with positive weights that add 

up to one. The distributions thus mixed are called the components of the mixture. The 

weights themselves comprise a probability distribution called the mixing distribution. 

Because of these weights, a mixture is in particular again a probability distribution. 

Probability distributions of this type arise when observed phenomena can be the 

consequence of two or more related, but usually unobserved phenomena, each of which 

leads to a different probability distribution. Mixtures and related structures often arise in 

the construction of probabilistic models. Pearson (1894) was the first researcher in the 

field of mixture distributions who considered the mixture of two normal distributions. 

After the study of Pearson (1894) there was long gap in the field of mixture distributions. 

Decay (1964) has improved the results of Pearson (1894), Hasselbled (1968) studied in 

greater detail about the finite mixture of distributions. 

 

Life testing is an important method for evaluating component’s reliability by assuming a 

suitable lifetime distribution. Once the test is carried out by subjecting a sample of items 

of interest to stresses and environmental conditions that typify the intended operating 

conditions, the lifetimes of the failed items are recorded. Due to time and cost constraints, 

often the test is stopped at a predetermined time (Type I censoring) or at a predetermined 

number of failures (Type II censoring). If each item in the tested sample has the same 

chance of being selected, then the equal probability sampling scheme is appropriate, and 

this has lead theoretically to the use of standard distributions to fit the obtained data. If 

the proper sampling frame is absent and items are sampled according to certain 

measurements such as their length, size, age or any other characteristic (for example, 

observing in a given sample of lifetimes that large values are more likely to be observed 

than small ones). In such a case the standard distributions cannot be used due to the 

presence of certain bias (toward large value in our example), and must be corrected using 

weighted distributions. 

 

In life testing reliability and quality control problems, mixed failure populations are 

sometimes encountered. Mixture distributions comprise a finite or infinite number of 

components, possibly of different distributional types, that can describe different features 

of data. Some of the most important references that discussed different types of mixtures 

of distributions are Jaheen (2005b) and AL-Hussaini and Hussien (2011). 

 

Finite mixture models have been used for more years, but have seen a real boost in 

popularity over the last decade due to the tremendous increase in available computing 

power. The areas of application of mixture models range from biology and medicine to 

physics, economics and marketing. On the one hand these models can be applied to data 

where observations originate from various groups and the group affiliations are not 

known, and on the other hand to provide approximations for multi-modal distributions 

[see Everitt and Hand (1981); Titterington et al. (1985); Maclachlan and Peel (2000), 

Shawky and Bakoban (2009) and Hanna and Abu-Zinadah (2010)]. 
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We shall consider the exponentiated Weibull model, which includes as special case the 

Weibull and exponential models. The Exponentiated Weibull family EW [introduced by 

Mudholkar and Srivastava (1993) as extention of the Weibull family] contains 

distributions with bathtub shaped and unimodal failure rates besides a broader class of 

monoton failure rates. Applications of the exponentiated models have been carried out by 

some authors as Bain (1974); Gore et al. (1986); and Mudholkar and Hutson (1996). 

 

Some statistical properties of this distribution (EW) are discussed by Singh et al. (2002) 

obtained Bayes estimators for the distribution parameters, reliability function and hazard 

function with type II censored sample under squared error loss function as well as under 

LINEX loss function. Nassar and Eissa (2004) obtained Bayes estimators of the two 

parameters EW distribution, reliability and failure rate functions using Bayes 

approximation form due to Lindley (1980) under the squared error loss and LINEX loss 

functions. Elshahat (2006), derived Bayes estimators for the two unknown shape 

parameters of the EW based on progressive type I interval censored sample. Salem and 

Abo-Kasem (2011) derived Bayes estimators for the two unknown shape parameters of 

the EW based on progressive hybrid censored sample. Approximate Bayes estimators for 

the two unknown shape parameters are drived by Elshahat (2008) based on Lindley 

(1980) and tierny and kadane (1986) and approximate credible intervals for the unknown 

parameters are obtained with progressive interval censoring. Ashour and afifiy (2008) 

derived maximum likelihood estimators of the parameters for EW with type II 

progressive interval censoring with random removals and their asymptotic variances. 

Elshahat and Mahmoud (2016) obtained maximum likelihood estimators of the 

parameters of the mixture of exponentiated Weibull distribution, reliability and 

hazard functions from type II censored samples. 

Research outline 

1. Obtain Bayesian and approximate Bayesian (Lindley's-approximation) estimators 

of the parameters with two different loss function, squared error loss function and 

LINEX loss function. 

2. Monte Carlo simulation study will be done to compare between these estimators 

and the maximum likelihood, Bayesian and approximate Bayesian ones. 

3. Applications of mixed models will be presented. 

In additional to above introduction, the research contains four sections. Section 

(2) is devoted to some important definitions and notation which will be used in 

the present research. In Section (3) the estimation of the Mixture of the 

exponentiated Weibull distribution parameters has been drived via Bayesian 

method. In Section (4) estimation of the Mixture of the exponentiated Weibull 

distribution parameters has been drived via approximate Bayesian method and in 

Section (5) Numerical illustration using real data and simulation technique has 

been used to study the behaviour of the estimators using the Mathcad (2011) 

packages.  
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2. Definitions and Notation 

This section is devoted to some important definitions and notation which are used in the 

present research. 

2.1. One Stage Single Censord Samples 

In such experiment, one of the two main types of censoring schemes (type -I or type – II) 

is used. Suppose we put-n items on a test and terminate the experiment at pre-assigned 

time (T), the samples obtained from such an experiment are called "time-censored" 

samples. The number of failures r  and all the failure times are random variables. If the 

experiment is terminated when pre-assigned fixed number of items, say nr   have 

failed, the samples obtained from such an experiment are called "failure – censored" 

samples. The likelihood function of type-I (time censored) and type-II (failure censored) 

censored can be given as follow: 
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where f (.) and F (.) are the density and distribution functions, respectively.  

 

When T , then (1) reduces to the likelihood function of type-I censored, and when 

)(rt then (1) reduces to the likelihood function of type–II censored. Type-I and type–II 

censoring corresponding to complete sampling when rn  . 

2.2. Mixture Model 

Mixtures of life distributions occur when two different causes of failure are present, each 

with the same parametric form of life distributions. In recent years, the finite mixtures of 

life distributions have proved to be of considerable interest both in terms of their 

methodological development and practical applications [see Titterington et al. (1985), 

Mclachlan and Basford (1988), Lindsay (1995), Mclachlan and Peel (2000) and 

Demidenko (2004)]. 

 

Mixture model is a model in which independent variables are fractions of a total. One of 

the types of mixture of the distribution functions which has its practical uses in a variety 

of disciplines.  

 

Finite mixture distributions go back to end of the last century when Everitt and Hand 

(1981) published a paper on estimating the five parameters in a mixture of two normal 

distributions. Finite mixtures involve a finite number of components. It results from the 

fact that different causes of failure of a system could lead to different failure 

distributions, this means that the population under study is non-homogenous. 

 

Suppose that T is a continuous random variable having a probability density function of 

the form: 





k

j

jj kttfptf
1

,1,0),()(

      

(2)  



A Study on the Mixture of Exponentiated-Weibull Distribution Part II (The Method of Bayesian Estimation) 

Pak.j.stat.oper.res.  Vol.XII  No.4 2016  pp709-737 713 

where  kjp j ,...,2,1,10   and 
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1. The corresponding c.d.f. is given by: 
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where k is the number of components, the parameters            are called mixing 

parameters, where    represent the probability that a given observation comes from 

population "i" with density    ( ), and    ( )   ( ),…,   ( )   are the component densities 

of the mixture. When the number of components k=2, a two component mixture and can 

be written as: 

),()1()()( 21 tfptfptf   

 

When the mixing proportion 'p' is closed to zero, the two component mixture is said to be 

not well separated. 

 

Definition (1): Suppose that T and Y be two random variables. Let  ( | ) be the 

distribution function of T given Y and G(y) be the distribution function of Y. The 

marginal distribution function  ( ), defined by: 
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is called a mixture of the distribution function  ( | ) and  ( ) where  ( | ) is known 

as the kernel of the integral and  ( ) as the mixing distribution . 

 

A special case from definition (1) when the random variable Y is a discrete number of 

points *              +  and G is discrete and assigns positive probabilities to only 

those values of Y; the integral (4) can be replaced by a sum to give a countable mixture: 
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where )( jyg  is the probability of jy . If the random variable Y assumes only a finite 

number of distributions *              +    Ahmed et al. (2013) have been used the 

finite mixture: 





k

j

ji tFwtF
1

),()(

        

(5) 

 

By differentiating (5) with respect to T, the finite mixture of probability density functions 

can be obtained as follows 
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In (6), the masses     called the mixing proportions, they satisfy the conditions: 

0jw     and           



k
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jw
1

,1  

  ( )       ( )  are called the     component in the finite mixture of distributions (5) and 

probability density functions (6), respectively. Thus, the mixture of the distribution 

functions can be defined as a distribution function that is a linear combination of other 

distribution functions where all coefficients are non-negative and add up to 1. 

 

The parameters in number of expressions (5) or (6) can be divided into three types. The 

first consists solely of k, the components of the finite mixture. The second consists of the 

mixing proportions w . The third consists of the component parameters (the parameters 

of     ( ) or    ( ))   

 

There is a number of papers dealing with 2-fold mixture models for times to failure 

modeling. For example, Jiang and Murthy (1995) characterized the 2-fold Weibull 

mixture models in terms of the Weibull probability plotting, and examined the graphical 

plotting approach to determine if a given data set can be modeled by such models. Ling 

and pan (1998) proposed the method to estimate the parameters for the sum of two three- 

parameter Weibull distributions. Based on these findings, a new procedure for the 

selection of population distribution and parameter estimation was presented. 

The reliability of the mixture distributions is given by: 
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2.3. Exponentiated Weibull Distribution (EW) 

Salem and Abo-Kasem (2011) derived EW distribution in the following details;  the 

“exponentiated Weibull family” introduced by Mudholkar and Srivastava (1993) as 

extension of the Weibull family, contains distribution with bathtub shaped and unimodale 

failure rates besides a broader class of monotone failure rates. The applications of the 

exponentiated Weibull (EW) distribution in reliability and survival studies were 

illustrated by Mudholkar et al. (1995). Its properties have been studied in more detail by 

Mudholkar and Hutson (1996) and Nassar and Eissa (2003). The probability density 

function (p.d.f.), the cumulative distribution function (c.d.f.) and the reliability function 

of the exponentiated Weibull are given respectively by; 
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Where α and θ are the shape parameters of the model (8). The distinguished feature of 

EW distribution from other life time distribution is that it accommodates nearly all types 

of failure rates both monotone and non-monotone (unimodal and bathtub). The EW 

distribution includes a number of distributions as particular cases: if the shape parameter 

θ = 1, then the p.d.f is that Weibull distribution, when α = 1 then the p.d.f is that 

Exponentiated Exponential distribution, if α = 1 and θ = 1 then the pdf is that Exponential 

distribution and if α = 2 then the p.d.f is that one parameters Burr-X distribution. 

Mudholkar and Hutson (1996) showed that the density of A random variable T is said to 

be followed a finite mixture distribution with k components, if the p.d.f, c.d.f and R(t) of 

T can be written as in the forms (2), (3) and (7) respectively [see Tittrerington et al. 

(1985)]. 

 

The hazard function (HF) of the mixture is given by;  
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function of the EW distribution is decreasing when αθ ≤ 1 and unimodal when αθ ≥ 1. 

The natural logarithm of the likelihood function (1) is given by; 
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2.4. The Mixture of Two Exponentiated Weibull Distribution (MTEW) 

In this chapter, we shall consider the mixture of two – component Exponentiated Weibull 

(MTEW) distribution. Some properties of the model with some graphs of the density and 

hazard functions are discussed. Elshahat and Mahmoud (2016) obtained the following 

maximum likelihood estimation under type II censored samples. 

 

The failure of an item or a system can be caused by one or more than one cause of 

failure; it results that the density of time to failure can have one mode or multimodal 

shape and in that case, finite mixtures represent a good tool to model such phenomena. 

Suppose that two populations of the exponentiated Weibull (EW) distribution with two 

shapes parameters α and θ [see Mudholkar and Hutson (1996)] mixed in unknown 

proportions p and (1-p) respectively.   

 

A random variable T is said to follow a finite mixture distribution with k components, if 

the p.d.f. of T can be written in the form (2) [see Titterington et al. (1985)]. Where 

       , fj(t) the j
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 p.d.f. component (8) and the mixing proportions, pj, satisfy the 
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 c.d.f., component (9) , the reliability function (RF) of the mixture is given by (7), 
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where Rj(t) is the j
th

 reliability component (10) . The hazard function (HF) of the mixture 

is given by (11), where )(tf  and )(tR are defined in (2) and (7) respectively.    

Mixture of K EW components: Substituting (8) and (9) in (2) and (3), the p.d.f and 

c.d.f. of MTEW components are given respectively, by: 
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where, for kj ,...,1 , 10  jp  and 
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dividing (4.1.1) by (4.1.3), we obtain the HF of MTEW distribution as:  
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If k = 2, the p.d.f., c.d.f. RF and HF of MTEW distribution are then given, respectively 

by  ( )                  (       )      (   )              (  
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2.5. Maximum likelihood Estimation for the Unknown Parameters of MTEW under 

Type II Censored Sample 

Suppose a type-II censored sample ),...,,( ;;2;1 nrnn tttt   where it  
the time of the i

th
 

component to fail. This sample of failure times are obtained and recorded from a life test 

of n items whose life time have MTEW distribution, with p.d.f, and c.d.f given, 

respectively, by (13) and (14). The likelihood function in this case [see lawless (1982)] 
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can be written as equation (2.13). Where )( ;nitf
 
and )( ;nitR

 
are given, respectively, by 

(13) and (15). The natural logarithm of the likelihood function (1) is given by equation 

(12). Assuming that the parameters,    and    are unknown, we differentiate the natural 

logarithm of the likelihood function (12) with respect to     so the likelihood equations 

are given by  
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Substituting (18) and (19) in (17), we obtain  
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where     is the first derivatives of the natural logarithm of the likelihood function (12) 

with respect to    for j = 1,2, and i = 1,2, ..., r 
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parameters,    and    are unknown, we differentiate the natural logarithm of the 

likelihood function (12) with respect to    so the likelihood equations are given by: 
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where 
j

l
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 is the first derivatives of the natural logarithm of the likelihood function(12) 

with respect to   , from (13) and (15) respectively, we have  
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Substituting (25) and (26) in (24), we obtain  
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 is the first derivatives of the natural logarithm of the likelihood function (12) 

with respect to    for  j = 1,2,   and i = 1,2,…, r, 
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(    )   (    )  and   (    ) are given respectively by (23), (27) and 

(28). 

 

The solution of the four nonlinear likelihood equations (22) and (29) yields the maximum 

likelihood estimate (MLE): 

 ̂  ( ̂      ̂      ̂      ̂   )      (              ), 

 

The MLE's of R(t) and H(t) are given, respectively, by (15) and (16) after replacing 

(              ) by their corresponding MLE's,  ̂      ̂      ̂          ̂     .  

 

Since the equations (22) and (29) are clearly transcendental equations in  ̂  and  ̂    that 

is, no closed form solutions are known they must be solved by iterative numerical 

techniques to provide solutions (estimators),  ̂  and  ̂  , in the desired degree of accuracy. 

To study the variation of the MLE's  ̂  and  ̂  , the asymptotic variance of these 

estimators are obtained. 

 



A Study on the Mixture of Exponentiated-Weibull Distribution Part II (The Method of Bayesian Estimation) 

Pak.j.stat.oper.res.  Vol.XII  No.4 2016  pp709-737 719 

The asymptotic variance covariance matrix of  ̂  and  ̂   is obtained by inverting the 

information matrix with elements that are negative expected values of the second order 

derivatives of natural logarithm of the likelihood function, for sufficiently large samples, 

a reasonable approximation to the asymptotic variance covariance matrix of the 

estimators can be obtained as; 
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The appropriate (30) is used to derive the 100 (1-  ) % confidence intervals of the 

parameters as in following forms : 

 ̂    

 

√ ( ̂ )    ̂    

 

√ ( ̂ )            

where,   

 
 is the upper  

 

 
  percentile of the standard normal distribution. 

 

The asymptotic variance – covariance matrix will be obtained by inverting the 

information matrix with the elements that are negative of the observed values of the 

second order derivate of the logarithm of the likelihood functions .using the logarithm of 

the likelihood functions (12), the elements of the information matrix are given by: 
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where     is the first derivatives of the natural logarithm of the likelihood function (12) 

with respect to   and    is the first derivatives of the natural logarithm of the likelihood 

function (12) with respect to   . 

and for i = 1, 2, …, r  
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Where     is the second derivatives of the natural logarithm of the likelihood function 

(12) with respect to   , for                 the functions   
 (.) and    (.) are 

given by (20) and (21), 
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For j=1,2 the functions Sj (.) and   (.) are as given by (27) and(28),
 

  
(.) and 

 

   
(.) 

by(23). 

2.6. LINEX Loss Function  

Linear- Exponential loss function (LINEX) was proposed by Varian (1975) in the context 

of real-estate valuations. Klebanov (1976a) derived this loss function in developing his 

theory of loos function satisfying a Rao-Blackwell condition. The name LINEX is 

justified by the fact that this loss function rises approximately linearly on one side of zero 

and approximately exponentially on the other side, Zellner (1986) provided a detailed 

study of LINEX loss function and initiated a good deal of interest in estimation under this 

loss function. The LINEX loss function may be expressed as: 

,0,1)L( 


cce
c

        (45) 

where .
~

   the sign and magnitude of the shape parameter c reflects the direction 

and degree of asymmetry respectively. (If c > 0, the overestimation is mor serious than 
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underestimation, and vice – versa). For c closed to zero, the LINEX loss is approximately 

squared error loss and therefore almost symmetric. 

 

The posterior expectation of the LINEX loss function is:  

)
~

exp()]
~

([  cLE   

                      = ,1))(
~

()]([exp   Ecc
     

(46) 

where Eθ(.) denoting posterior expectation with respect to the posterior density of θ. By a 

result of Zellner (1986), the (unique) Bayes estimator of θ, denoted by 
L

~
  under the 

LINEX loss is the value 
~

which minimizes (2.8) is given by  

  ,)][exp(ln
1~

L   cE
c

        (47) 

Provided that the expectation )[exp(  cE  , exists and is finite [see Shawky and 

Bakoban (2009)]. 

2.7. Approximate Bayesian Methods 

When the posterior distribution takes a ratio form that involves integration in the 

denominator and cannot be reduced to a closed form, the evaluation of the posterior 

expectation for obtaining the Bayes estimators will be tedious. Among the various 

methods suggested to approximate the ratio of integrals in this case, perhaps the simplest 

one is   Lindley's (1980) approximation method  

 

Lindley's procedure was developed by Lindley (1980) to evaluate the posterior 

expectation of )(  as  
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where  ),...,,( 21 n  is a vector of parameters, )|( tL   is the likelihood function 

and )( is the prior density of  .  

 

This procedure has been used by many authors to obtain Bayes estimators of the 

parameters of some distributions. See for example Soliman (2000), Jaheen (2005b). 

 

The ratio of the integrals (48) may thus be approximated by using a form due to Lindley 

(1980) which reduces, in the case of two parameters, to the form: 
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logarithm of the likelihood function.  
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i  . All functions in equation (29) are evaluated 

at )ˆ,ˆ( 21  , the mode of the posterior density [see Salem and Nassar (2011)]. 

3.  Bayesian Estimators for the Unknown parameters of MTEW under Type II 

Censored Sample  

In this section, Bayesian method is used to obtain the estimators and posterior variance of 

the unknown parameters of finite mixture of two Exponentiated Weibull (MTEW) 

distribution. Bayesian risks are also obtained using the symmetric squared error loss. 

Moreover, for illustration, numerical examples are given. 

3.1. Estimation under squared error loss function: (when    and   are known) 

The likelihood function of the total life times t1;n, t2;n, …, tr;n, where ti;n is the i
th

 

component to fail. Considering the type II censored case this sample of failure times are 

obtained and recorded from a life test of n items independent and identically distributed, 

the Bayes estimators for            using the likelihood function given by (1). 

 

Assumed that the parameters have independent prior distribution and let the non 

informative prior (NIP) for            are respectively given by. 

 (  )    
                       and     (  )    

                    

 

Consequently, the joint (NIP) will be as follows:  

 ( )  (      )                                                                       (50) 

 

Multiplying (1) by (50), the joint posterior density of            given the data will be 

g(       ) =    /   ,                                                                                      (51) 

where,    is normalized constant equal to  
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      ,       (52) 

   (      )   ( |  )          (53) 

 

Now, the marginal posterior of    can be obtained as. 
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and finally, the marginal posterior of    can be obtained as. 

  (  |    )     |                                                              (55) 

where  

   (  )  ∫ (
 

 
  )   ( | )                               (56) 

 

It is well known that under a squared error loss function, the Bayes estimator of a 

parameter will be its posterior expectation. To obtain the posterior mean and posterior 

variance of the unknown parameters, non – tractable integrals will be confronted. So, in 

this problem numerical integration is required. Then, both the posterior mean and 

posterior variance of the unknown parameters (     ) are expressed as follow. 
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Equations (57) to (60) are very complicated for solving. An iterative procedure is applied 

to solve these equations numerically using mathcad (2011).  

3.2. Estimation under LINEX Loss Function: (when    and    are known) 

The Bayes estimators for the parameters       of MTEW distribution can be expressed 

as: 
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4.   Approximate Lindley Bayesian Method 

4.1. Lindley's Procedure: (when    and   are known). 

Applying Lindley's form (49), we first obtain the elements    , which can be obtained as 
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For   j, s = 1,2 and  j      
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
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4.2.  Approximate Bayes (Lindley's Procedure) Estimation Under Squared Error 

Loss Function: (when           are known) 

Now, we shall study the case when the parameters           are known, Suppose that 

the mixing proportion,          and          are known. 

Approximate Bayes Estimation of the Vector of Parameters 

The two parameters,    and    can be approximately estimated using Lindley's 

approximation from (49) as follow:  

i. The Bayes estimator of the parameter (  ) 

Set  ( )         (  ) , then 

   
  

   
       

  

   
      

for                          
   

      
     

S = 0,                   , 

       
                ,  

            and                
  

 

Substituting the above functions and [67 – 70] in (49) yields, the 

Bayes estimator under squared error loss function,  ̃̃           

ii. The Bayes Estimator of the Parameter   : 

Set  ( )        (  )       

   
  

   
       

  

   
      

for i, j = 1, 2 ,         
 

 
 

      
   

S = 0   ,                   ,                     
 , 

                 
    and               

Substituting the above functions and [67 – 70] in (49) yields, the 

Bayes estimator under squared error loss function ,  ̃̃           

The Bayes estimator of RF:  

Set  ( ) = R(t)  in  (49)  

where  R(t) is given as in (4.1.3) , then , for  j=1,2  
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where   ( ),   ( ) and   ( ) are as given, respectively, by (8), (9)  and (21) substituting 

(76), (77) and (67 - 70) in (49) yields the Bayes estimator under squared error loss 

function,  ̃̃ , of  R(t). 

The Bayes estimator of HF:  

Set  ( ) = H(t) in (2.12), where H(t) is given as in (16) , then , for  j=1,2 , 
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(20), (75) and (21). 

 

For i , j = 1 , 2 and i ≠ j ,  
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Substituting (78 - 80) and (67 – 70) in (49) yields the Bayes estimator under squared error 

loss function,  ̃̃ , of H(t). 
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4.3.  Approximate Bayes Estimation (Lindley's Procedure) Under LINEX Loss 

Function 

On the basis of the LINEX loss function (47), the Bayes estimate of a function w = 

w(     )  of the unknown parameters            is given by  

,0),|(ln
1

ˆ
L   cteE

c
w cw        (81) 

where 

 (    | )  
∫     ( )
  ( | ) ( )  

∫  ( | ) ( )   

,       (82) 

where    is the region in the   and     plane on which the posterior density  ( | ) is 

positive. 

 

Suppose  ( )      ( )  we can apply Lindley's approximation to evaluate (49) so we 

obtain the following: 

 

Bayes Estimation of the vector of parameters: The two parameters           can be 

approximately estimated by using Lindley's approximation from (49), as follow: 

i. The Bayes estimator of the parameter   :   

Set  ( )             (    ) then 

   
  

   
                 

   

   
                  

  

   
   

    
   

   
                                

   

      
   

Substituting the above functions and (67 - 70) in (49) then into (81) yields the      Bayes 

estimator under LINEX loss function,  ̃           

ii. The Bayes estimator of the parameter   : 

Set  ( )             (2.12), then  

   
  

   
               

   

   
                

  

   
    

    
   

   
                               

   

      
   

Substituting the above functions and (67 - 70) in (49) then into (81) yields the Bayes 

estimate under LINEX loss function ,  ̃̃          . 

The Bayes estimate of RF:  

Set  ( )        ( )     (49) where R(t) is given as in (15). Then for j = 1,2  
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for i, j =1,2 and          
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  ( )     ( )                         (84) 
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and 
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Where   ( )    ( )       ( ) are as given, respectively, by (8), (9) and (21)  

 

Substituting (83 – 85) and (67 - 70) in (49) then into (81) yields the Bayes estimator 

under LINEX loss function,  ̃̃       ( ) . 

 

The Bayes estimator of HF: Set  ( )        ( )    (49) where H(t) is given as in 

(16). Then for  j = 1, 2 

    
  

   
  

      ( )

   
        ( )   ( )

   
    

where   
  ( )

   
  is defined in (4.2.29), then  

   
         ( )

( ( ))   
                                            (86) 

where  

  
    ( )  ( )  

 ( )   ( )  ( ) 
 ( )                       (87) 

    
   

   
  

       ( )

   
  

=
         ( )

( ( ))  ,( ( )) [  ( ) . ( )  
  ( )   ( )  

  
( )    ( ) ( )/  

     
  

( ( )) ]    

                                              ( )  ( ) 
 ( )  

 ( ) -                                                       (88) 
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where   ( )   ( )    
 ( )    

  ( )    
 ( )       ( ) are given, respectively by (8), (9), 

(20), (75), (87) and (21). 

 

Substituting  (  ) (  ) (  ) and  (     ) in (49) then in to   (  )  yields the Bayes 

estimation under LINEX loss function,  ̃̃       ( ) . 

5.   Numerical illustration 

5.1. Real Data Set  

We obtained in the above chapters [3 and 4], Bayesian [Bayes and approximate Bayes] 

and non-Bayesian (MLE's) estimators of the vector parameters  , of MTEW distribution. 

We adopted the squared error loss and LINEX loss function. In order to asses the 

statistical performances of these estimators, a real data study is conducted. The data set is 

from Cancho et al. (2007). 
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To illustrate the approaches developed in the previous chapters [3 and 4], we consider the 

data set presented in Aarset (1987) to identify the bathtub hazard rate contains life time of 

50 industrial devices put on life test at time zero. Cancho et al. (2007) considered the EW 

distribution and developed a Bayesian methodology for analysis of lifetime data with 

hazard in form bathtub. 

 

Considering the data in Aarset (1987), table (A) we fit (MTEW) distribution to the data 

set and summarized it in tables (1)and (2) by using MATHCAD package (2011).  

Table (A):   Life times for the 50 devices 

T 0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 
               

t 18 18 18 18 21 32 36 40 45 46 47 50 55 60 
               

t 63 63 67 67 67 67 72 79 82 82 83 84 84  
               

t 84 85 85 85 85 85 86 86       

For comparison purpose we compute Bayes and approximate for the parameters of the 

mixture of two exponentiated Weibull distribution when                  
                   . 

Table (1):  Bayesian estimates for the two shape parameters 1  and 2 of MTEW 

distribution for Aarset (1987) data 

Parameters 

1 2( , ) 
 

SEL 
LINEX 

cc=0.22 

Bayes MSE ksiR Bayes MSE ksiR  

       0.570 0.200 0.195 0.510 0.004 0.003 

       0.590 0.200 0.192 0.510 0.003 0.002 

Table (2):  Approximate Bayesian (Lindley's approximation) estimates for the two 

shape parameters ,1 and 2 of MTEW distribution for Aarset (1987) 

data 

Parameters 

1 2( , ) 
 

SEL 
LINEX 

cc=0.22 

Mean MSE ksiR Mean MSE ksiR  

       0.550 0.200 0.198 0.560 0.030 0.030 

       0.490 0.010 0.009 0.500 0.001 0.001 
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Concluding Remarks: 

In this research, we have presented the Bayes and approximate Bayes of the vector 

parameters   of MTEW distribution. The estimations are conducted on the basis of type-

II censored samples. Bayes and approximate Bayes, under squared error loss and LINEX 

loss functions, are derived by using Lindely's method. The MLE's are also obtained. Our 

observations about the results are stated in the following points: 

 

1. Table 1 shows the Bayes estimators under the squared error and LINEX loss 

functions, it indicated that the Bayes estimators under LINEX loss function are 

the best estimates as compared with the biases estimators under squared error loss 

function or MLE's. On the other hand, the Bayes estimator's under the LINEX 

loss function has the smallest estimated MSE's as compared with the estimates 

under squared error loss function. 

2. Table 2 shows the approximate Bayes estimators under the squared error and 

LINEX loss functions it indicated that the Bayes estimators under squared error 

loss function are the best estimates as compared with the biases estimators under 

LINEX loss function or Bayes and MLE's. On the other hand, the approximate 

Bayes estimator's under the LINEX loss function has the smallest estimated 

MSE's as compared with the estimates under quadratic loss function or Bayes.  

5.2. Simulation Study 

In the above sections [3and 4], Bayesian estimators of the vector parameter   of MTEW 

distribution are presented. Approximate Bayes and Bayes estimates with squared error 

loss function are also obtained. 

 

In order to assess the statistical performances of these estimates, a simulation study is 

conducted. The computations are carried out for censoring percentages of 60% for each 

sample size (n =10, 15, 20, 25, 30, 40 and 50). The mean square errors (MSE's) using 

generated random samples of different sizes are computed for each estimator.  

Simulation Study for (Bayesian and approximate Bayesian) methods 

Also, MATHCAD package was used to evaluate Bayes and approximate Bayes 

estimators under censored type-II using equations [(57) and (59)] for Bayes and [(48)] for 

approximate Bayes and for parameters values (θ1 = 2.8, θ2 = 4). The performance of the 

resulting estimators of the parameters has been considered in terms of the mean square 

error (MSE). The Simulation procedures will be described below: 

Step 1: 1000 random samples of sizes 10, 15, 20, 25, 30, 40, and 50 were generated 

from MTEW model. If U has a uniform (0, 1) random number, then      

       (   )      where       ,    (  (    )
 

  -
 

         

,    ,  (    )
 

  --
 

   follows MTEW model. The selected values for 

parameters are (θ1 = 2.8, θ2 = 4) 
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Step 2:  Choose the number of failure r, we choose r to be less than the sample size n. 

Step 3:  Numerical integration method was used for solving the equations (58) and 

(59), to obtain Bayes estimators under squared error loss and LINEX loss 

function or the posterior mean and the mean square error (MSE). 

Step 4:  The approximate Bayes (Lindley's) estimators relative to squared error loss,  ̃̃   

computed, using (49) after considering the appropriate changes according to 

section (4.1). Also, the approximate Bayes (Lindley's) estimators relative to 

LINEX loss  ̃̃  computed, using (49) after considering the appropriate changes 

according to sectionsr (4.2 and 4.3). 

Table (3):  Bayes Estimates, MSE and Risk for different sized samples when p = 

0.2, 1 2.8   and 2 4   using type -II censoring ( 0.8r n ) from MTEW 

distribution 

n  
Parameters 

1 2( , )   

SEL 

               

LINEX 

                      

Bayes MSE Risk Bayes MSE Risk 

01 1  1.659 1.364 161.0 1.883 0.875 16100 

 2  2.830 1.423 16100 3.037 0.974 16100 

00 1  3.883 1.232 161.1 3.644 0.740 161.0 

 2  5.154 1.383 16101 4.925 0.895 16100 

.1 1  1.755 1.150 16100 2.104 0.503 16100 

 2  2.908 1.243 16100 3.129 0.784 161.. 

.0 1  3.839 1.132 16100 3.414 0.383 1611. 

 2  2.965 1.116 16100 3.267 0.557 161.1 

01 1  3.819 1.085 16100 3.391 0.352 16110 

 2  3.018 1.006 16100 4.603 0.389 161.0 

00 1  3.815 1.062 1610. 3.373 0.332 16110 

 2  3.033 .9721 1610. 4.596 0.352 161.1 

01 1  1.787 1.052 161.. 2.252 0.303 16110 

 2  3.096 0.848 16100 3.441 0.324 1610. 

00 1  1.792 1.036 16100 2.267 0.289 16110 

 2  3.125 0.787 161.. 3.463 0.299 16101 

01 1  1.832 0.959 161.0 2.311 0.243 16110 

 2  3.219 0.629 16100 3.493 0.263 1611. 
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Table (4):  Approximate Bayes (Lindley's form) Estimates, MSE and ksik for 

different sized samples when p = 0.2, 1 2.8   and 2 4   using type -II 

censoring ( 0.8r n ) from MTEW distribution 

n 
Parameters 

1 2( , )  

SEL 

                

LINEX 

                       

Lindley MSE ksiR Lindley MSE ksik 

01 1 1.718 06000 0.022 3.449 16000 16110 

 2 2.971 06100 16100 3.219 16.00 16110 

00 1 3.859 06000 161.1 2.313 16.00 1611. 

 2 2.987 06100 16101 3.350 160.0 1611. 

.1 1 1.755 0600. 161.1 2.364 16000 16110 

 2 3.000 06110 16110 4.580 1600. 16110 

.0 1 1.772 06101 1610. 2.399 160.. 16110 

 2 3.114 16000 16100 4.468 16..0 16110 

01 1 1.789 06100 16100 3.146 160.0 16110 

 2 3.359 1600. 16110 3.577 1600. 16110 

00 1 3.796 0611. 16110 3.111 16010 16110 

 2 4.531 16.00 16110 4.397 160.1 1611. 

01 1 1.943 16001 16110 2.507 16100 16110 

 2 3.624 1600. 16110 3.671 16010 16110 

00 1 2.071 16000 16110 2.574 16100 1611. 

 2 3.671 16001 1611. 3.693 1610. 1611. 

01 1 2.306 0.246 1611. 2.952 161.. 16110 

 2 3.732 0.073 16110 3.765 161.0 16110 

Concluding Remarks:  

Simulation results are displayed in tables 3 and 4, which give the posterior mean and 

MSE. Simulation studies are adopted for different sized samples. We have presented the 

Bayesian, and approximate Bayesian estimators of the vector parameters θ, of the life 

times follow MTEW distribution. The estimator is conducted on the basis of type- II 

censored samples. Bayes estimators, under squared error loss and LINEX loss functions, 

and Approximate Bayes form by using Lindley's method.  

1. Our observations about the results are stated in the following Points: Table (3) 

shows the Bayes estimates under quadratic and LINEX loss functions. From table 

(3), we conclude that the Bayes estimates under LINEX loss function are the best 

estimates as compared with the biases of estimates under quadratic loss function. 

It is immediate to note that MSE's decrease as sample size n and the number of 

replication N increases. On the other hand Bayes estimates under the LINEX loss 
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function have the smallest estimated MSE's as compared with the estimates under 

quadratic loss function.  

2. Table (4) shows the approximate Bayes (Lindley's) estimates under quadratic and 

LINEX loss functions. From table (4) we conclude that the Bayes estimates under 

the LINEX loss function are the best estimates as compared with the biases of 

estimates under quadratic loss function or Bayesian. It is immediate to note that 

MSE's decrease as sample size n and the number of replication (N) increases. On 

the other hand, Bayes estimates under the LINEX loss function have the smallest 

estimated MSE's as compared with the estimates under quadratic loss function or 

Bayesian.   
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Appendix 

The following proofs for some equations which were included in this research. 

Proof of equation (67) and (68):  
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Proof of equations (69) and (70): 
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