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Abstract
This paper extends and improves on the performance measures of the Single-Server Single
Queue System with Multiple Phases. The extension results in a new Queuing System of Multi-
Server with Multiple Phases under the conditions of First Come First Served, infinite population
source, Poisson arrivals and Erlang service time. Queuing properties such as expected total
service time, its variance and some performance measures like the expected number of phases
in the system, expected number of phases in the queue, expected number of customers in the
queue, expected waiting times in the queue and in the system as well as the number of
customers in the system have been derived in this work for this Multi-Server with Multiple Phases
(M/Ek/s: ( /FCFS)) queuing model with k identified stages in series. These performance
measures so obtained were compared with those of the already existing Single-Server with
Multiple Phases (M/Ek/1: ( /FCFS) model. Numerical illustration indicates the efficiency and
effectiveness of the latter over the former.

Keywords: Multi-server, Single queue, Multiple phase queue model, Erlang
distribution, Performance measures.

1.0 Introduction

In many areas of real life, for instance, in the multi-specialty outpatient clinic,
patients first form the queue for registration and then is triaged for assessment,
then for diagnostics, review, treatment, intervention or prescription and finally exit
from the system or triage to different providers. This describes a multi-queue
multi-server model. We also have cases in a queue where customers are served
in multi-channels and in stages at different points. Many queue models have
been developed to solve varying congestion or queue problems; but this cannot
be achieved because of the varying and stochastic characteristics of queues. In
this light, more models still need to be developed to help solve queue problems
on the bases of their features. Consequently, this paper develops a new queue
model referred to as a multi-server single queue system with each service
channel having k identical phases in series, (see figure 1.0), with Poisson arrivals
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and Erlang service time (M/Ek/s:( /FCFS)), which is an extension of the
M/Ek/1:( /FCFS) model with multiple service channels; see Sharma (2007) and
Gupta (2008).

Maurya (2009) analyzed multiple service channels queuing with practical
situations arising at those places where phase service is provided under priority
queue discipline. He added that the models become more significant when the
source of input customers is to be classified into two or more categories.
Dimitriou and Langaris (2010) analyze a repairable queuing model with a two-
phase service in succession provided by a single server. They considered a case
where customers arrive in a single queue and after the completion of the first
phase service, either proceed to the second phase or join a retrial box from
where they retry after a random amount of time and independently of the other
customers in orbit, to find a position for service in the second phase. Moreover,
the server is subject to breakdowns and repairs in both phases, while a start-up
time is needed in order to start serving a retrial customer.  When the server upon
a service or a repair completion finds no customers waiting to be served, he
departs for a single vacation of an arbitrarily distributed time. Luh (2004)
considered a queuing model of general servers in tandem with finite buffer
capacities. He studied the probability of blocking and in order to obtain the steady
state probability distribution of this model, he constructed an embedded Markov
chain at the departure points. He further solved the model analytically and its
analysis is extended to semi-Markovian representation of performance measures
in queuing networks.

2.0 Method

The Model: The model is made up of ‘s’ multiple service channel with k identical

stages in series, each with average service time of
s
1 . The distribution of total

servicing time of customers in the system is some joint distribution of time in all
these stages.

Customers arrive in a single queue and a set of them, whose number is based on
the number of servers in each phase, enters the system to be served in the first
phase before proceeding to the second phase, up to the kth phase. The
assumptions are that each set of customers is served in k-phases set-by-set and
a new service does not start until all k-phases have been completed. Moreover,
the queue discipline is first come first served with infinite source. The arrivals
follow a Poisson distribution and the service times follow Erlang distribution.
Symbolically, the model can be expressed as M/Ek/s: ( /FCFS). The queue
facility is represented in figure 1.0 (see Reid and Sanders, 2010).
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Figure 1.0: Model of single queue with S servers in k-phases

3.0 Determination of Expected Total Service Time and its Variance
Let s denote the number of customers served per unit time, then ks will be the
number of phases served per unit time. The probability density function for
Erlang distribution is;
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4.0 Derivation of Performance Measures of the M/Ek/s:( /FCFS) Model
Consider Pn (t) to be the probability that there are n customers in the k phases in
the system at time t.  Let )( ttPn  be the probability that there are n customers
in the system, t be the probability that a customer is in the queue at time t ,
t the probability that a customer is served and tks  is the probability that the

customers in the s service points in all the phases. )(1 tPn and )(1 tPn are
probabilities that there are n+1 and n-1 customers in the system respectively.
The probability that the system will contain n customers at time (t+∆t) in the k-
phases can be expressed as the sum of joint probabilities of mutually exclusive
and collectively exhaustive cases. The difference equations for the model are
given as follows:
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The steady state system of difference equations are obtained as:
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To solve (4.5) and (4.6), the method of generating function is used:
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Multiplying (4.5) by yn and summing over the range, we obtain
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An addition of 0 to LHS of (4.8) and 01   to RHS of (4.8), yields:
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Putting the value of 0 in (4.10), we obtain
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5.0 Results

To determine the expected number of phases in the system
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If nnandnkn  1 , then RHS becomes;
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The other operating characteristics of the model have been obtained as follows:
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Expected Waiting Time in the Queue
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6.0 Applications

Illustration 1
In a National Youth Service Camp in Nigeria, there are four counters through
which all Corp members must pass before Registration and accreditation are
completed. At the first counter, registration is done; in the second counter, there
is a presentation of credentials for authentication. At the third counter, traveling
allowances are paid and at the fourth counter, assignment of Corp members to
various hostels is done. If arrival of Corp members follows a Poisson process
with a mean arrival of 9/hr, the service times follow an Erlang distribution with a
mean of 1.5 minutes per Corp member, and the Queue discipline is first come
first served with infinite population; the performance measures can be obtained
as follows:

CASE 1:
We note that this is a case of Multiple Phases Queue model with a single server
in each phase, that is, M/EK/1

λ = 9/hr, µ = 1.5mins/Corp member, = 10 Corp members/hr
k = 4

The following results are obtained:
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Case 2:
Now, suppose each counter has 2 service points, we can obtain the performance
measures as is the case in this work using M/EK/2
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In contrast, the performance measures in case 2 give improved results in
handling congestion through queuing model. For instance, in case 2, Wq = 9S
indicates that in adopting the two-server multi-phase queuing model, a Corp
member can only wait in the queue for 9 seconds; the result Lq = 0.023 shows
that by adopting this model there will be little or no congestion at all. Whereas in
case 1, a Corp member can spend 33.75mins in a queue before he is being
served.

Illustration 2
Suppose the Corp members arrive at the mean rate of 18 per hour while the
mean service time is still 1.5mins per Corp member. We find out in this case, that
the application of case 1 will be impracticable, because arrival out-matches the
service rate, such that

0
)(2

1L
2

q 















 





k

k

This implies that the single server will not be able to contain or control the
congestion.
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On the other hand, case 2 which is Multiple-Server Multi-Phase Queuing System
becomes more practicable, since it involves more service point at each phase.
Thus:

(5.3) gives membersCorp
ssk

k 50625.5
)1820(20

)18(
8
5

)(2
1L

22

q 























 ;

(5.4) gives shr min875.16281.0
18
0625.5L

W q
q 


;

(5.5) is shr
s

Wq min875.1933125.0
20
1281.01Ws 


;

and (5.6) gives .69625.533125.018L s membersCorpWs  

Also, sorhr
s

TE min305.0
20
11)( 



7.0 Conclusion
In this paper, we have extended the M/Ek/1: (/FCFS) model with single server
to M/Ek/s:(/FCFS) model with multiple server and obtained its performance
characteristics which is an improvement of the M/EK/1: (/FCFS) model for
handling congestion especially at peak period which in turn sustains customer’s
goodwill. Numerical illustrations have shown that the extended M/Ek/s: (/FCFS)
model outperformed the single server M/EK/1: (/FCFS) model when the arrival
rate of customers is very high with a fixed mean service time. In the first
illustrations, it is observed that with M/Ek/1: (∞/FCFS), an average of five corps
members would wait in the queue for service and each corp member would
spend 33.75 mins waiting for service. In contrast, the use of M/Ek/s: (/FCFS)
model indicates that little or no queue would be obtained and a corp member can
only wait for 9seconds only for service. These results show the efficiency and
effectiveness of the latter model over the former. Further, in the second
illustration, case 1 cannot be applied here because the traffic intensity here could
not contain this model. Therefore the second case becomes suitable and
practicable.
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