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Abstract 

To studied Bayesian aspect of small area estimation using Unit level model. In this paper we proposed and 

evaluated new prior distribution for the ratio )(/ 22  ev  
of variance components in unit level model 

rather than uniform prior. To approximate the posterior moments of small area means, Laplace 

approximation method is applied. This choice of prior avoids the extreme skewness, usually present in the 

posterior distribution of variance components. This property leads to more accurate Laplace approximation. 

We apply the proposed model to the analysis of horticultural data and results from the model are compared 

with frequestist approach and with Bayesian model of uniform prior in terms of average relative bias, 

average squared relative bias and average absolute bias. The numerical results obtained highlighted the 

superiority of using the proposed prior over the uniform prior. Thus Bayes estimators (with new prior) of 

small area means have good frequentist properties such as MSE and ARB as compared to other traditional 

methods viz., Direct, Synthetic and Composite estimators. 

Keywords:   Small Area Estimation, Unit Level Model, Hierarchical Bayes. 

1 Introduction 

Model-based small area estimation methods have been widely used in practice due to the 

increasing demand for precise estimates for local regions and various small areas. It is 

now generally accepted that the indirect estimates should be based on explicit models that 

provide links to related areas through the use of supplementary data such as census 

counts or administrative records; see, for example, (Jiang and Lahiri 2006) and (Rao 

2003) for more discussion on model-based small area methods.  Also, (Adam et. Al., 

2013) summarise the main methodological approaches to SAE and their linkages. [Jiango 

et. Al., 2013] investigate two new approaches: one relying on the work of Chambers, and 

the second using the concept of conditional bias to measure the influence of units in the 

population. [Chambers et. al., 2014] proposed two different analytical mean-squared error 

estimators for the ensuing bias-corrected outlier robust estimators. [Rao et al., 2013] 

relaxed the assumption of linear regression for the fixed part of the model and replace it 

by a weaker assumption of a semi-parametric regression.The model-based estimates are 

obtained to improve the direct design-based estimates in terms of precision and 

reliability, i.e., smaller coefficients of variation (CVs). There are two broad 

classifications for small area models: area level models and unit level models. The basic 
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unit level model is based on unit level auxiliary variables. In this paper we focus on Unit 

level models that are related to the unit level values of response through a nested error 

linear regression model, under the assumption that the nested error and the model error 

are independent of each other and normally distributed with common mean zero and 

common or different variances. The nested error unit level regression model was first 

used to model county crop areas in USA (Battese et al., 1988), they have used the 

normally distributed common errors variance assumption and revealed that based on the 

fitting-of-constants method the estimates of errors variances are slightly different from 

each other.  Techniques for validating their model on the basis of unit level auxiliary 

variables are also considered. This type of model is appropriate for continuous value 

response variables. Various extensions of this type of model have been proposed to 

handle binary responses, two-stage sampling within areas, multivariate responses and 

others (Rao, 2003, 2003a).  

 

The objective of this paper is to consider new improved prior on hyperparameters of 

variance component 22 / ev    of Unit Level model and illustrate the usefulness of this 

models through an application to horticultural survey data. The paper is organized as 

follows. In section 2, we first study Unit level models including EBLUP estimators of 

unit level model. Then in section 3 we propose Bayesian formulation of urea level model 

with new prior for variance component 22 / ev    and obtain HB inference for small 

area parameters through the MCMC method using Laplace approximation. In section 4, 

we apply the proposed model to the analysis of small area data from the Horticultural 

Survey. We compare the performance the proposed model i.e hierarchical Bayes estimate 

with the proposed prior (Proposed HB ) with the hierarchical Bayes estimate with uniform 

prior (HB(WINBUG)) and EBLUP estimates to investigate the effects of incorporating 

new prior on the variance component 22 / ev   . Bayesian model comparison and 

model fit analysis are also provided. Finally in section 5, we offer some concluding 

remarks. 

2 Unit level model 

The basic unit level model is based on unit level auxiliary variables. This type of model 

can be represented by the following mathematical equation 

miNjevxy iijiijij ,...,1,,...,1;'  ,     (2.1) 

where ijy  is the value of the study variable for the 
thj  unit belonging to the thi  area, ijx  

is the unit level 1p  vector of known covariates,   is a 1p  vector of unknown 

regression coefficients, iv  is the random small area effect, and ije  is the error term. We 

assume ),0(~ 2

vi Nv  and ),0(~ 2

eij Ne    

2.1 EBLUP estimator of unit level model 

For the basic unit level model defined in section (2) the BLUP estimator of i  is given 

as: 

)
~

(
~~ ''  iaiaiii xyX 

       
(2.1.1) 
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and    
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(2.1.4) 

 

The BLUP estimator (2.1.1) depends on the variance ratio 
22 / ev   which is unknown in 

practice. Replacing 
2

v
 
and 

2

e  by estimators 
2ˆ
v  and 

2ˆ
e

 
we obtain an EBLUP estimator 

(Jiang & Lahiri 2006). 

)ˆ(ˆˆˆ ''  iaiaiii xyX                                         (2.1.5) 

 

Where i̂ and ̂
 
are the values of i  

and   when 
2

v
 
and 

2

e  are replaced by 
2ˆ
v  and 

2ˆ
e . The MSE of the BLUP estimator i

~  can be obtained from the general results of 

MSE of mixed effects model or by direct calculation. It is given by 

),(),()~()~( 22

2

22

1

2

evieviiii ggEMSE      (2.1.6) 

where 
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(2.1.7) 

 

The second order MSE approximation i.e EBLUP estimate of i
~  is 

),(),(),()ˆ( 22

3

22

2

22

1 evievievii gggMSE  
    

(2.1.8) 

Where  ),()/(),( 22322222

3 evievievi haag              
 

)(2)()(),( 224422  veveeevvveev VVVh        where  
'22 ),( ev   , 

 

Now regarding the estimation of MSE( )ˆ
i the estimator of MSE is given by 

)ˆ,ˆ(2)ˆ,ˆ()ˆ,ˆ()ˆ( 22

3

22

2

22

1 evievievii gggmse  
   

 (2.1.9) 

3 Bayesian formulation of unit level model 

Our objective is to study the Bayesian approach in a unit level model for estimating the 

finite population means miyNY
iN

j ijii ,...,1;
1

1   

  for small areas. We propose a new 

prior for the variance component )/( 22

ev    and use laplace method to approximate 

the posterior moments involved in the HB approach.  
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Suppose a sample is  of size in  is drawn from the iN  units of the thi  area following 

some specified sampling design; i = 1,…,m and  


m

i i nn
1

. Following Battese et al. 

(1988) and Rao (2003), we assume that the sample values also follow the model (3.4), 

that is, we do not address the situation involving informative sampling. The assumption 

that the sample values also obey the model (3.5.1) holds true for simple random sampling 

from each area. For a proof of this absence of selection bias (Rao, 2003). 

 

We can also write the small area mean iŶ  as 

  insiisiinsiiisi
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i yfyfynNyn
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)1()(
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(3.1) 

where iii Nnf / , if1  is the finite population correction, isy  and insy  are the means of 

the sampled and non-sampled units, respectively, for the thi  area. Now applying a 

hierarchical Bayesian approach to estimate the small area means (3.1) for finite 

populations. A hierarchical Bayesian version of the Unit level model is given by 

 Level 1: miNjvxNvy ieiijeiij ,...,1,,...,1);,(~,,| 2'2    

 Level 2: ),0(~| 22

vvi Nv   

 

Our aim is to find the Bayesian estimator of small area means of unit level model and its 

measure of uncertainty, which are given by )|( iyYE  and )|( yYV i  respectively, where 

y is the vector of sampled values of y. Whether we are in Bayesian or frequentist 

paradigm depends on whether we assume a prior on the hyperparameters ),,( 22

ev  at 

the third level. To obtain the Bayesian summary statistics for Yi, we proceed as follows 

(assuming that the sample values follow the same model above, as discussed in Section 

2). First we write the likelihood using level 1 and level 2 of the hierarchical Bayesian 

model as: 
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(3.2) 

 

Now, following Ghosh and Lahiri (1989), Datta and Ghosh (1991), we specify prior on 

2

e and   at level 3 as: )()(),,( 22  ee  where 2

2

e

v




 
 
This completes our 

hierarchical Bayesian model. Combining the likelihood (3. 2) and the prior at level 3, we 

write the joint distribution of  ,),,...,(,, 2

1 emvvvy 
 
as 
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(3.3) 
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In (3. 3), we consider a flat prior (uniform prior) on 2

e  i.e., we consider

],0[,1)( 22 ee  . 

 

Typically, enough data will be available to estimate 2

e  precisely. Any reasonable non-

informative prior usually works well for 2

e  (Gelman, 2006). 

 

After collecting terms involving iv  from the exponent of (3.7.3), we can say that: 
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where )1/(1 ii nB  . Integrating out iv  from (3. 3), using matrix notation, we write the 

joint distribution (without the normalizing constant) of  ,,, 2

ey  as 
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where   
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and from expression (2.1.4), it follows that 
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The subscript   in both ̂ and   indicates the dependence of the terms on the ratio of 

variance component 22 / ev    alone. But one should note that AeeyV  22 ),,|(   

depends on both   and 2

e . Integrating out   from (3.5), we find 
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From the equation (3.7), it follows that 
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where IG(a,b) is the inverse gamma distribution with shape parameter “a” and scale 

parameter “b”. A random variable Z has an inverse Gamma distribution IG(a,b), if its pdf 
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is given by 0];/exp[)( )1(   zzbzzf a
. Using the property of inverse gamma 

distribution, we express the conditional posterior mean and variance of 2

e given   as 

4
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Integrating out 2

e  from (3.7.7), we can write the posterior distribution of a single 

variance component    as 
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To present the results in a unified way, we restate (3. 11) using matrix notation as 
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This formulation is presented for the ease of writing codes in simulation and data 

analysis. 

3.1 Posterior moments of finite population mean when   known 

We derive )|( yYE i  and )|( yYV i  in two steps. First, we find analytical expressions for 

these quantities when   is known. Then using the Laplace approximation, we obtain the 

final results. Using the iterative expectation and variance technique and the results given 

in (3..4), (3. 6), and (3. 9), it is not very difficult to get 
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where })1({,, isiinsiiiisiiiinsii xBXfpcDAxBfpcDXfpcA  . ̂  
and A  are 

defined in (3. 6). Note that A  is different from   in). Now let‟s consider some special 

case. 

Common mean model, Balanced case, and 0if  

Here, besides the common mean assumption, we assume that mknkn ii  ,,  and 

hence )1/(1 kBBi  . Then the posterior distribution of   is given by: 

)(
2/)3(

).

2/)1(
)1(

)|( 











n

SSBBSSW

m
k

yf
 



Hierarchical Bayes Small Area Estimation under a Unit Level Model with Applications in Agriculture  

Pak.j.stat.oper.res.  Vol.XII  No.3 2016  pp491-506 497 

where  

SSW = 
i j isij yy 2)( and    SSB =  

i isyk 2)ˆ(  ; 
i isy

m

1
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are the usual definition of within sum of square and between sum of square used in the 

balanced one-way ANOVA. After some modification and simplification of (3.7.13) and 

(3.7.14), we find  
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3. 2 Choice of proir on   

To obtain the posterior mean and variance of iY  from (3.1.1) and (3.1.2), we need to 

perform one-dimensional integral with respect to the posterior distribution of  . For that 

we need to assume a prior distribution on  . The uniform prior on  is non-informative 

and yields a posterior distribution of   for which the mode is identical to the residual 

maximum likelihood (REML) estimator of  , following the arguments discussed above. 

The posterior mode of   with uniform prior or equivalently, the REML estimator of   

can be zero for a particular application. In many practical applications, the maximum 

likelihood (ML) or restricted maximum likelihood (REML) estimates of hyperparameters 

occur at the boundary point. we match the posterior distribution of   given in (3. 11) to 

the adjusted profile likelihood function of   to obtain an appropriate prior distribution of 

 . This prior leads to a posterior distribution of   for which the mode is always positive 

and results in estimators of the shrinkage factor and small area mean that have good 

frequentist properties. By profile likelihood, we mean the likelihood of   that does not 

account for the loss of degrees of freedom due to the estimation of regression coefficient 

 . This is given by 
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Note that, to obtain the profile likelihood (3.2.1), we consider   as the only nuisance 

parameter. We plug in the ML estimate of   in (3.5) [without the term )( ] to obtain 

the joint profile likelihood of   and 2

e . Then integrating out 2

e  , we derive the 

marginal profile likelihood of  . This leads to the prior 
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To simplify the prior for some special cases, we proceed as follows: 
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For the common mean model, balanced case (i.e. knp i  ,1  i ),  
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n
iii
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 11

1 '

     

and      
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1
 

where SSW and SSB is defined earlier. Hence, simplifying it further we can say 

)1(
)(

kSSWSSB 





 . 

3. 3 Laplace approximation 

The posterior moments of iY , using the prior in (3.2.2) are not in a closed-form, but can 

be obtained either by numerical integration or by the Monte Carlo Markov Chain 

(MCMC) method (Spiegelhalter et al., 1997). We have written a program, using the 

R2JAGS package in R [R Development Core Team, 2008], that allows the hierarchical 

Bayes analysis for our new prior using the MCMC method. But the slow computation 

speed of the MCMC method does not permit its evaluation by repeated use in simulation. 

Thus, for convenient implementation and evaluation of our hierarchical Bayes method, 

we approximate the posterior moments of iY  using Laplace's method. This method has 

been applied by many authors in the context of Bayesian analysis. See [Butar and Lahiri 

2002], [Kass Staffey 1989], [Tierney and Kadane1986] [Tierney et al., 1989]. Following 

[Kass Staffey 1989] the first order approximation to the posterior mean and variance of 

i  under the area level model described above in section-2 is given byThe first order 

Laplace approximation of the posterior moments of iY  can be given by 

)/1()ˆ()|( mOgyYE ii                  (3.3.1) 

Below we derive the analytical expressions of the posterior moments of iY  using 

equation (3.3.1) and (3.3.2) under some special cases. 

Common mean model, Balanced case, and 0if  
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4 Numerical study 

This section compares the performance of the approximate hierarchical Bayesian (HB) 

approach using our new/proposed prior on   with several other existing choices. The HB 

approach is approximate as it is implemented through Laplace approximation. Moreover, 

we consider one classical approach in estimating small area means that uses the REML 

method to estimate the variance component  . Here we study the frequentist properties 

of the resulting Bayes procedure by a Monte Carlo simulation study under the assumption 

of a balanced set-up, common mean ( ) model with 0if . In the tables, we denote the 

hierarchical Bayes methods resulting from new proposed prior for variance component    

by Proposed HB. For inference about the small area means i  
we compare our proposed 

Bayesian estimator with empirical best linear unbiased predictors (EBLUP) and 

Heirarchical Bayes (HB(WINBUG)) estimators of  .  

 

Data collected through pilot survey conducted by the Division of Agri-Statistics on 

estimation of area and yield of apple in District Baramulla has been used for the purpose 

of our proposed small area estimation. The district Baramulla comprises of 12 blocks 

viz., Zanigeer, Boniyar, Tangmarg, Wagoora, Sopore, Baramulla, Uri, Pattan, Rohama, 

Singphora, Rafiabad and Kunzer. Each block consists of different number of villages. A 

fixed number of five villages were selected at random from each block by simple random 

sampling. The data set was named apple-1 for analysis and modeling in R/SAS 

software‟s. It has 61 rows and 7 columns. The columns names are Blocks, N, n, Yield, 

Area, Trees, Actual Yield for names of blocks, total number of villages in each block, 

number of villages selected from each block, yield of apple from each selected village in 

metric tons, area under apple orchards and total number of apple trees in each of the 

selected village, actual yield obtained as per census records. This data set has been used 

for unit level estimation.  

4.1   Comparison of different estimators 

The performance of different estimators is examined from the accuracy of the point 

estimates. This is considered through the relative bias and absolute relative bias of 

different estimators. The different estimators are compared according to four different 

criteria recommended by the panel on small area estimates of population and income set 

up by the United States committee on National Statistics (1978), [Datta et al., 2002] 

[Ghosh et al., 1996],[ Datta et al., 2012.],[ Pfeffermann 2013.]. We compare different 

estimators on the basis of average relative bias, average squared relative bias, average 

absolute bias and average squared deviation. Suppose iact  denotes the true value of the 

variable for the ith small area, and iest  is any estimate of iact mi ,...,2,1 . Then 

average relative bias 
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average squared relative bias 
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Now using the above four criteria on the apple data set already discussed above. A 

Comparison of HB estimates using proposed prior with EBLUP estimates and HB 

estimates with uniform prior is made using above discussed four different criteria and is 

reported in Table-1. 

Table-1: Comparison of estimators using four different criteria 

Criteria 

Estimates 
ARB ASRB ABS ASD 

EBLUP 0.0873 0.0122 126.45 30351.32 

HB(WINBUG) 0.0561 0.0076 89.64 22587.31 

Proposed HB 0.0390 0.0057 65.57 17169.36 

 

It is clear from the Table-1 that the proposed prior for   performed significantly better 

than the uniform gamma prior and EBLUP estimates in terms of all the four criterion. 

This motivates us to argue that our proposed prior is superior even in the cases where the 

standard hierarchical Bayes estimate with uniform prior seems more appropriate. The 

value of % ARB is 3.9 per cent in HB (will proposed prior) as compared to 5.61 and 8.73 

per cent in HB (with uniform prior) and EBLUP respectively.  

 

Now An Empirical comparison of proposed prior for   with REML and WINBUG 

estimates for all the small areas separately using Percent Absolute Relative Error(ARE) 

and Absolute Error(AE) has been carried out and is depicted in the following Table 2. 
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Table -2: Empirical comparison of estimators  

Estimators   

Small area 

EBLUP WINBUG NEW 

ARB AB ARB AB ARB AB 

1. 3.27 98.48 0.61 18.39 0.28 8.44 

2. 3.73 29.09 1.40 9.79 0.11 .80 

3. 4.37 25.25 2.33 13.44 0.67 3.88 

4. 15.18 132.77 1.73 15.13 0.50 4.41 

5. 4.58 168.42 3.15 116.08 2.23 82.16 

6. 12.05 85.95 7.01 49.97 4.55 32.46 

7. 5.96 37.07 2.89 18.0 1.03 6.42 

8. 23.99 406.94 22.93 389.04 20.08 340.62 

9. 19.10 342.94 16.97 304.67 15.93 286.02 

10. 3.27 56.95 1.81 31.61 0.12 2.09 

11. 4.35 104.78 3.81 91.72 0.62 15.02 

12. 4.87 31.85 2.74 17.91 0.70 4.63 

 

From the Table-2 it is evident that HB model with proposed prior exhibits smaller errors 

and a lower incidence of extreme error than either of the HB (with uniform prior) and 

EBLUP estimates.  

 

Fig.1 shows the comparison of the values of percent relative bias and absolute bias for 

EBLUP, hierarchical Bayes and proposed Heirarchical Bayes ( LLHB ) 
 

 

 
 

Fig. 1: Comparison of percent average relative bias and absolute bias for 

EBLUP, HB (will uniform prior) and HB will proposed prior on λ 

 
Fig.1 plots the values of % ARB and AB of EBLUP, hierarchical Bayes and proposed 

Heirarchical Bayes against small areas. significant disparity is observed among the three 

estimators. Heirarchical Bayes with the new/proposed prior performed better by 
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providing the lowest value of both % ARB and AB for each of the small areas compared 

to EBLUP and hierarchical Bayes (with uniform prior). 

 

Mean Square Error (MSE) of Estimators of Variance components for 12 small areas are 

reported below in Table 3 

Table 3:  MSE of Estimators of Variance components  

Estimators 

Small Areas 
EBLUP 

HB                 

(uniform prior) 

HB                

(proposed prior) 

1 6522.55 6197.14 5408.61 

2 728.05 670.19 619.88 

3 188.79 165.85 138.82 

4 2118.14 158.14 114.81 

5 10004.3 7853.11 7031.26 

6 70.55 59.55 35.19 

7 124.68 110.61 90.82 

8 1284.61 985.80 920.61 

9 551.10 81.08 265.87 

10 772.38 750.38 690.18 

11 1005.73 905.81 801.52 

12 139.17 121.25 103.51 
 

Table-3 reports the different estimates of A for each of the 12 small areas. From the table 

it is clear that in term of MSE the performance of proposed prior is better than rest of two 

techniques.  

Table -4:   EBLUP and HB estimates and associated Standard Errors 

Estimators 

 

Small Areas 

EBLUP 
HB                 

(uniform prior) 

HB                

(proposed prior) 

Actual 

value 

Estimate S.E 
Estimat

e 
S.E 

Estimat

e 
S.E Yield  

1 3105.28 79.51 3025.19 76.79 3015.24 71.47 3006.8 

2 672.85 25.06 698.15 23.87 698.14 22.58 698.94 

3 551.29 12.60 563.10 11.34 572.66 10.46 576.54 

4 541.67 10.86 859.31 9.75 870.03 9.09 874.44 

5 3508.18 100.02 3560.52 89.58 3594.44 83.85 3676.6 

6 798.75 7.71 762.77 5.48 745.26 5.01 712.8 

7 658.25 12.02 639.18 10.51 627.6 9.78 621.18 

8 2103.08 35.84 2085.18 34.37 2036.76 31.31 1696.14 

9 1451.80 9.22 1490.07 8.37 1508.72 8.11 1794.74 

10 1797.81 27.79 1772.47 26.45 1742.95 25.49 1740.86 

11 2508.18 32.49 2495.12 31.39 2418.42 28.46 2403.4 

12 621.35 12.17 635.29 11.58 648.57 10.40 653.2 
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Table-4 reports the EBLUP, HB (uniform prior) and proposed prior estimates and their 

associated standard errors for all the 12 small areas separately. It is clear from the table 

that the new/proposed prior for   provides better estimates than EBLUP and HB 

(uniform prior). In terms of standard error also new/proposed prior provides better 

estimates than the EBLUP and HB (uniform prior). 

 

Fig. 2 plots the point estimates of i  for EBLUP, HB (with Uniform prior), HB (with 

new/proposed prior) against the small areas and also provides a comparison of these 

values with the actual value of yield obtained in each of the small area. 

 

 

 

 

 
Fig. 2:  EBLUP, HB(with Uniform prior), HB(with new/proposed prior) estimates 

compared to the true means 

 

 

Fig.2 displays EBLUP, HB(with Uniform prior), HB(with new/proposed prior) estimates 

and their deviation from the actual mean. Here we can see that the values of i  obtained 

by HB(with new/proposed prior)  are more closer to actual values as compared to HB and 

EBLUP. Thus for the plot also we conclude that among the three techniques discussed 

the HB(with new/proposed prior)  is the best technique for obtaining the estimates. 
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Table 5:  Relative contribution of the three terms to the posterior variance of i  

using new/proposed prior on   

Small 

Areas 
)( 1

1

1 igT  )( 2

2

2 igT  )( 3

3

3 igT  

1. 4850.13 254.58 151.85 

2. 615.81 0.7500 1.40 

3. 137.51 0.0064 0.1045 

4. 112.99 0.0061 0.0570 

5. 6028.26 463.71 259.64 

6. 23.89 0.0033 0.0247 

7. 88.80 0.0076 0.0868 

8. 900.51 4.23 6.48 

9. 255.81 1.51 2.35 

10. 680.20 2.55 3.49 

11. 788.51 3.99 4.41 

12. 100.71 0.0050 0.0855 

1 Uncertainty in the model in estimating i  

2 Uncertainty in estimating coefficient   
3 Uncertainty in model in estimating the variance component A. 

 

 

Table-5 reports the relative contribution of the three terms to the posterior variance of i  

obtained by using the new/proposed prior. The three columns T1, T2, T3 exhibits the 

relative contribution of term1, term 2, term 3 respectively. From the values in the table 

we conclude that the contribution of the term which accounts for the uncertainty in 

estimating the variance component is substantially small relative to the first term which 

accounts for the uncertainty in the model in estimating the small area means.  

5 Conclusion 

In this paper Bayesian implementation of Unit level model is carried out and new prior is 

proposed on the variance component  . Besides being simple, this prior has two main 

advantages. It removes the possibility of yielding zero estimates for the variance 

component; the popular choice of uniform prior on   suffers from this drawback if 

posterior mode is considered as an estimator. This prior also enjoys good small sample 

frequentist properties; real agricultural study results justify this conclusion. Also, in order 

to have closed form expressions of the posterior mean and variance of the true small area 

mean, Laplace approximation to ratio of integrals, following [Kass and Staffey 1989] is 

being used. To illustrate the method numerically a real data set on apple has been used 

and the results showed that the Bayes estimators (with new prior) of small area means 

have good frequentist properties such as MSE and ARB as compared to other methods 

viz., EBLUP and HB(WINBUG) estimators. 
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