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Abstract 

In this paper, Bayesian analysis is used in nonlinear structural equation models with two population of data 

and the Gibbs sampling method is applied for estimation and model comparison. Hidden continuous normal 

distribution (censored normal distribution) is used to solve the problem of ordered categorical data in 

Bayesian multiple group SEMs and compared with the method that treats ordered categorical variables as a 

continuous normal distribution. Statistical inferences, which involve the estimation of parameters and their 

standard errors, and residuals analyses for testing the posited model are discussed. The proposed procedure 

is illustrated using real data with the results obtained from the WinBUGS program. 

Keywords: Structural Equation Models, Bayesian Analysis, Censored Normal 

Distribution, Gibbs Sampling, Ordered Categorical Variables. 

1. Introduction 

Structural equation models (SEMs) (Bollen and Paxton, 1998; Lee, 2007) constitute a 

statistical methodology for modelling multivariate correlated data to assess the 

interrelationships among observed and latent variables. 

 

At present, most statistical theory and computer software in the field of SEMs are based 

on models that involve nonlinear relationships among the manifest and the latent 

variables. More statistically sound methods for nonlinear SEMs and factor analysis have 

been proposed by Lee & Tang, (2006), Lee & Tang, (2007), Cai et al., (2008(, Lee et 

al.,(2010), Thanoon & Adnan, (2015), Thanoon & Adnan, (2016a), Thanoon & Adnan, 

(2016b), Thanoon & Adnan, (2016c), Thanoon & Adnan, (2016d), Thanoon et al., 

(2017). 

 

Lee & Song,
 
(2002) proposed a method using Bayesian approach for multi-group 

nonlinear factor analysis. A Bayesian approach for a general multi-group nonlinear factor 

analysis model is developed. Joint Bayesian estimates of the factor scores and the 

structural parameters subjected to some constraints across different groups are obtained 

simultaneously. A hybrid algorithm that merges the Metropolis- Hastings algorithm and 

the Gibbs sampler is conducted to produce these joint Bayesian estimates. It is shown that 

this algorithm is computationally efficient. The Bayes factor approach is introduced for 

comparing models under various degrees of invariance across groups. The Schwarz 

criterion (BIC), a simple and useful approximation of the Bayes factor, is calculated on 
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the basis of simulated observations from the Gibbs sampler. Efficiency and flexibility of 

the proposed Bayesian procedure are illustrated by some simulation results and a real-life 

example. Song and Lee, (2006) discussed multiple group nonlinear structural equation 

models with missing continuous and dichotomous data that involve data that are missing 

at random using maximum likelihood approach, as well as, he demonstrated the newly 

developed methods for estimation and model comparison by a simulation study and a real 

data application. Lee, (2007) used underlying latent continuous normal distribution with 

truncation to solve the problem of ordered categorical variables in Bayesian multiple 

group nonlinear structural equation models, as well as, Gibbs sampling method is used to 

estimate the parameters. Lu et al., (2012) used Bayesian analysis of multiple group 

nonlinear structural equation models with application to behavioral finance and treated 

the ordered categorical variables as a continuous normal distribution. The proposed 

method is used to investigate the relationships among all identified influential factors that 

have an impact on the motivation for insider trading within the framework of behavioural 

finance (Thanoon and Adnan, 2015). 

 

For the structural equation model with ordered categorical data, an important 

generalization is to extend the model to permit analysis of multiple groups or populations 

of individuals simultaneously. Multiple group analysis is important in various 

applications, such as cross-cultural research. It is very interesting to investigate whether 

the measurement items (which are often on Likert scales of a categorical nature) are of 

different cultures. To achieve this goal requires statistical methods for testing various 

hypotheses in the multi-sample structural equation models with ordered categorical 

variables. 

 

The Bayesian approach is developed with the Gibbs sampler (Geman & Geman, 1984) 

algorithm, in which the continuous latent measurements and the latent variables in 

different groups are treated as hypothetical missing data. Non-informative priors are used 

for the thresholds and conjugate priors are used for the structural parameters.  
 

Theoretically, the importance of generalizing nonlinear structural equation models to 

nonlinear models that include nonlinear terms of the latent variables is obvious. 

Practically, nonlinear relationships, such as quadratic and interaction terms, among the 

variables are important in establishing the substantive theory in many areas. The rapid 

growth of SEMs is due to the demand of subtle models and the related statistical methods 

for solving complex research problems in various fields. 
 

A major breakthrough for posterior simulation is the idea of data augmentation proposed 

by Tanner and Wong (1987). The strategy is to treat latent quantities as hypothetical 

missing data and to augment the observed data with them so that the posterior distribution 

based on the complete data set is relatively easy to analyze. The feature that makes SEMs 

different from the common regression model and the simultaneous equation model is the 

existence of random latent variables. 

 

The data augmentation provides a useful approach to cope with the problem that is 

induced by latent variables. By augmenting the observed variables in complicated SEMs 

with the latent variables that are treated as hypothetical missing data, we can obtain the 

Bayesian solution based on the complete data set. Theoretically, the importance of 
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generalizing nonlinear structural equation models to nonlinear models that include 

nonlinear terms of the latent variables is obvious. Practically, nonlinear relationships, 

such as quadratic and interaction terms, among the variables are important in establishing 

the substantive theory in many areas. The rapid growth of SEMs is due to the demand of 

subtle models and the related statistical methods for solving complex research problems 

in various fields. 

 

The main objective of this paper is to propose a Bayesian approach for analysing multiple 

group nonlinear SEMs with ordered categorical variables. The Deviance Information 

Criterion (DIC; see Spiegelhalter et al., 2002) will be used for model comparison. 
 

The main idea in handling the ordered categorical variables in the Bayesian analysis is to 

treat the underlying latent continuous measurements as hypothetical missing data and 

augment them with the observed data in the posterior analysis. 

 

The paper is organized as follows. The Model Description is described in Section 2.  The 

Bayesian estimation of multiple group structural equation models that contain nonlinear 

models is described in Section 3. The normal distribution is presented in section 4. The 

truncated normal distribution is explained in Section 5. The censored normal distribution 

is presented in Section 6. The comparison of models using DIC is described in Section 7. 

A real example study is presented in Section 8. Analysis of a real data are discussed in 

Section 9. The results and discussion are described in Section 10, and some concluding 

remarks are given in Section 11.  

2. Model Description 

Consider a set of G populations which may be different nations, states or regions, cultural 

or socio-economic groups, groups receiving different treatments, etc. The definition of 

the multiple group structural equation models is given by: 

 

For 1,2,...,g G , and 1,2,..., Ngi  , let ( )g

iy
 
be the 1p   random vector of observed 

variables that relate to the ith observation in the gth group. For each 1,2,...,g G , ( )g

iy  

is related to latent variables in a 1q   random vector ( )g

iw by the next measurement 

equation: (Lee & Song, 2012;  Lee, 2007; Lee et al., 2010) 

( ) ( ) ( ) ( ) ( ) , 1,...,g g g g g

i i i i n   y    
     

(1) 

 

Where ( )g
u is the intercepts vector, ( )g  is the parameter matrix of regression coefficients 

that reflect the relation of manifest variables in  ( )g

iy with the latent variables in ( )g

iw  , 

and ( )g

i  is a random vector of the measurement errors. It is presumed that ( )g

iw  and ( )g

i

are independent while the distribution of ( )g

i is ( )[0, ]gN  , where ( )g

  is a diagonal 

covariance matrix. Let ( ) ( ) ( )( , )g g g T T

i i iw   , where ( )g

i  stand for the 
1 1q   vector of 

endogenous latent variables and ( )g

i  stand for the 
2 1q   vector of the exogenous latent 

variables. Note that it is naturally presumed that  
1q  and 

2q  are independent of g, that is, 

they are the same for each group. So, to assess the effects of the nonlinearity of latent 
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variables in  ( )g

i  to ( )g

i  we consider a nonlinear SEM with the following nonlinear 

structural equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) * ( ) ( )( ) ( )g g g g g g g g g

i i i i w i iH H w         
   

(2) 

 

Where ( )g  and 
( )g  are unknown parameter matrices, and  ( )g

i  is the random vector 

of error measurements that is independent of ( )g

i  ; ( ) ( ) ( )( , )g g g

w    ,  

* ( ) ( )T ( )(w ) ( , ( ) )g g g T T

i i iH H   and ( ) ( ) ( )

1( ) ( ( ),..., ( ))g g g T

i i a iH h h   , in which the hs are 

nonzero and known differentiable functions that include polynomials. 

 

It is expected that the vector-valued functions H  and *
H  do not depend on g . 

However, different groups can require different linear or nonlinear function of ( )g

i  by 

major appropriate of H or *
H  and assigning zero values to appropriate elements in ( )g . 

For instance, let ( ) ( ) ( ) ( )

1 2( , , )g g g g T

i i i iw    for 1,2g  . Suppose that the structural equations 

in the first and second groups are given as:  

(1) (1) (1) (1) (1) (1) (1) (1) (1)

1 1 2 2 3 1 2i i i i i i           
     

(3) 

(2) (2) (2) (2) (2) (2) (2) (2) (2)

1 1 2 2 4 1 1i i i i i i           
     

(4) 

 

To define these structural equations, we consider 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 1( ) ( , , , )g g g g g g g T

i i i i i i iH       
,

(1) (1) (1) (1)

1 2 3( , , ,0)   
and

(2) (2) (2) (2)

1 2 4( , ,0, )   
.  

In reality, the models in different groups typically have similar linear and nonlinear of 
( )g

i . For handling really complicated different nonlinear functions in the models, this 

assumption can be relaxed with minor changes. Likewise, as for the models, it is assumed 

that ( )g   is a non-singular matrix where the determinant is not dependent on 

elements in ( )g . It is further assumed that  ( )g

i  is distributed as (g)[ , ]N 0   and ( )g

i  is 

distributed ( )[ , ]gN 0  , where ( )g

  is a diagonal covariance matrix. 

 

To handle the ordered categorical outcomes, suppose that ( )g

iy is an 1s   subvector of 

unobservable continuous responses, the information of which is reflected by an 

observable ordered categorical vector ( )g

iz . In a generic sense, an ordered categorical 

variable ( )g

mz  is defined with its underlying latent continuous random variable ( )g

my  by:
 

( ) ( )
1, 1, 1

1 1

( ) ( )
, , 1

( ) ( ) ( )
( ) 1
1

( )

( ) ( ) ( ) ( )

g g
z z

g g
s z s zs s

g g g
g

g

g g g g

s s

if

 

 





  
   
       
     

 

y
z

z

z y

   

(5) 
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where 
( ) ( ) ( ) ( )

,1 ,2 ,b ,b 1{ ... }
m m

g g g g

m m m m            is the set of threshold parameters that 

define the categories, and 
mb is the number of categories for the ordered categorical 

variable ( )g

mz . Note that for each ordered categorical variable, the number of thresholds is 

the same for each group. However, the categories can be unequally spaced under this 

formulation. 

 

It has been pointed out by (Lee et al., 1990) that single-sample models with ordered 

categorical variables are not identified without imposing identification conditions. This is 

also the case for multi-sample models. To solve this problem, we use the common 

method (see, for example, Lee et al., 1995; Shi & Lee, 1998( of fixing some thresholds at 

pre-assigned values. For convenience, it is assumed that the positions of the fixed 

elements are the same for each group. 

 

Multiple Group data come from a comparatively smaller number of groups of 

populations. The number of observations within each group is normally large and 

assumed independent. The primary purpose of the multiple group data analysis is to 

investigate the similarities or differences among the models in the different groups. As a 

consequence, the statistical inferences emphasized in analyzing multiple group of the 

SEMs are different from those in analyzing two-level SEMs. Analysis of the multiple 

group is a major issue in structural equation modeling because it is useful for 

investigating the behaviors of different groups for example of employees, cultures, 

treatment groups, and so on. Though, the testing of hypotheses about the different 

invariances among the models with different groups is the focus point. 

 

This issue can be described as a model comparison problem, and also effectively 

addressed by the Bayes factor or DIC in a Bayesian approach. The benefit of the 

Bayesian model comparison over the Bayes factor or DIC is that the hypotheses of 

nonnested models can be compared. Hence, it is not necessary to follow hypotheses 

hierarchy to assess the invariance for the SEMs in different groups (Song & Lee, 2012; 

Wang & Wang, 2012).  

3. Bayesian Analysis of Multiple Group Nonlinear Structural Equation Models 

Allow 
1( ,..., )nZ z z  stand for the matrix of ordered categorical data. Then, allow 

1( ,..., )nY y y  and 
1( ,..., )nw w

 
be the latent continuous measurements and latent 

variables matrices. Such that, the observed data, as represented by [Z] is improved 

according to the latent data [Y, ] through the posterior analysis. Thus in order to define 

the Bayesian approach for the proposed SEM, allow   to act as the vector containing 

unknown parameters. In explanation, the Bayesian approach, would define ( )p   such 

that   is considered a random with prior distribution and prior density function. Thus, the 

the related assumptions can be based on the observed data for Z and ( )p  . So, allow Let 

( , )p Z   represent the joint probability density function of both Z and    with reference 

to different Mk. Based on a well-known identity in probability, 

 

log ( | Z) log (Z | ) log ( )p p p         (6) 
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This yields the posterior density function ( | Z)p  , or unknown parameters. It also 

employs the use of sample information and prior knowledge, via the likelihood function 

(Z | )p  , and the prior density function ( )p  . It should be noted, however, that (Z | )p 

is dependent on sample size, where ( )p   is not. As such, for problems with a large 

sample, ( )p   is less significant and ( | Z)p  , the posterior density function, is more 

relevant, as it is most similar to the likelihood function (Z | )p  . So, both the Bayesian 

approach and ML model are asymptotically equivalent, and thus contain the same 

optimal asymptotical properties. However, continue to note that ( )p   is significant with 

regard to the Bayesian approach when the sample size is reduced or when the information 

derived from Z is ordered categorical data. 

 

In this paper, MCMC methods are applied by letting 
iy  act as an unobserved variable, 

which corresponds with the manifest ordered categorical variables, as they are found in 

iz . Also, one must allow 
1( ,..., )nY y y  and

1( ,..., )nw w . When drawing a 

sufficient, and generally large, body of observations If we can draw a sufficiently large 

number of observations, represented by ( ) ( ) ( ){( , , ); 1,..., }t t tY t T   , from the joint 

posterior distribution, defined by ( , , |Z)p Y  , then the Bayesian estimate for   as 

well as any standard error estimates can be derived from the sample mean and variance 

matrices, respectively. 

1 ( ) 1 ( ) ( )

1 1

, var( | ) ( 1) ( )( ) .
T T

t t t

t t

T Z T       

 

     
  

(7) 

 

This means that it is necessary to specifically identify the prior distribution for the related 

components in  , even if developing the conditional distribution, ( | , , )Y Z  . In 

generally, during Bayesian analysis, the conjugate prior distributions have proven to be 

both malleable and suitable to the purpose (Broemeling, 1985). This kind of prior 

distribution has been widely applied to many Bayesian analysis in structural equation 

models, (see (Lee and Song, 2004; Song and Lee, 2007)).  

 

Hence, the following well-known conjugate prior distributions are used: 

0 0 0 0 0 0

1 1

0 0 0 0

( ) [ , ], ( ) [ , ], ( | ) [ , ],

( ) [ , ], ( ) [ , ]

k k k k k k k k

q k k k

p N H p N H p N H

p W R p Gamma

     



       

    
 

(8) 

 

Given the definition that ( )p   is the probability of ( )p  , and that ( )p   is distributed 

according to, 
k , which is the kth diagonal element of  , k    and, given that k   are 

the kth rows of   and 
  respectively. The following can be derived: 

2 2

0 01 0( ,..., ),pH diag  
 

and 
0 0 0 0 0 0 0 0 0, , , , , , , , ,k k k k k kH H       

 
and 

0R
 

are 

assumed to be known, as prior information. Generally speaking, prior information is 

obtained via causal observance, theoretical consideration, or analysis of past data. As 

established in the work of Kass and Raftery (1995), assumed prior knowledge, as it is 

applied to current models, are typically selected purely for convenience when there is not 

enough accurately collected prior data. This can be done because the effect these 
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assumption have on Bayesian estimations remains small, even when a large sample size 

is used. The results are helpful when working to use computer modeling with the Gibbs 

sampler. More specifically, when using the Bayesian approach, it is necessary to evaluate 

the posterior distribution[ , , ]Z   , but the distribution can become relatively complex. 

So, in order to correctly demonstrate the characteristics, an increased number of 

observations are drawn, so that the related empirical distribution of the resulting 

observations remains consistent with the true distribution. The Gibbs sampler makes an 

excellent candidate for this process, according to (Geman and Geman, 1984), because it 

can simulate ,   and  , all from the conditional distribution. However, as a result of 

the existence of ordered categorical variables in this case, the related conditional 

distributions can be made too complex to easily derive or simulating data from them. 

This encourages the additional escalation of Y, the latent matrix, in the posterior analysis, 

and motivates attention to the joint posterior distribution[ , , , ]Y Z   . To garner 

observations of this posterior distribution, using the Gibbs sampler, it is essential to begin 

with the starting values (0) (0) (0) (0)( , , , )Y   . The following procedure is then 

implemented to simulate (1) (1) (1) (1)( , , , )Y    and so on. More specifically at the mth 

reiteration of the current values ( ) ( ) ( ) ( ), , ,m m m mY   . 

1. Generate ( 1)m  from
( 1) ( ) ( )( , , , Z)
m m mp Y 


  

2. Generate ( 1)m   from 
( 1) ( ) ( )( , , , Z)
m m mp Y 


  

3. Generate ( 1) ( 1)( , )m mY   from  ( 1) ( 1)( ,Y | , , )m mp Z        (9) 

 

The cycle, as previously defined, will give us ( 1) ( 1) ( 1) ( 1)( , , , )m m m mY     , only 

occurring after the mth repetition. So, as m approaches infinity, the joint distribution of 

the value of ( ) ( ) ( ) ( )( , , , )m m m mY   can be proven to move toward the joint posterior 

distribution [ , , , ]Y Z    (see Geman and Geman, (1984); Geyer, (1992((. 

 

The sequences in which the quantities are replicated from the joint posterior distribution 

are then used during the calculation of the Bayesian estimates and other 

similarly related statistics. 

4.   The Normal Distribution 

To indicate that * 2( , ).y N    *y has the pdf: 

  

2
*

* 2 1 1
( | , ) exp

22

y
f y


 



   
   

      

which is plotted in Panel A Figure 1, the cdf is  

  

*

* * *( | , ) ( | , ) Pr( )

y

F y f z dz Y y   


  
   (10) 
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so that  

 
* * *Pr( ) 1 ( | , )Y y F y      

 

( | , )F c   is the shaded region in Panel A Figure 1 and 1 ( | , )F c    is the region to 

the right of c.  

 

When µ=0 and ζ=1, the standard normal distribution is written in the simplified notation: 

          

* *

* *

( ) ( | 0, 1)

( ) ( | 0, 1)

y f y

y F y

  

 

  

     
 

Any normal distribution, regardless of its mean µ and variance ζ
2
, can be written as a 

function of the standard normal distribution. The pdf can be written as  

2
* *

* 1 1 1
( | , ) exp

22

y y
f y

 
  

  

     
      

          (11) 

and the cdf of y
*
 can be written as  

  

*
* *Pr( )

y
Y y





 
   

         (12) 

so that, 

  

*
* *Pr( ) 1

y
Y y





 
   

   

Hidden continuous normal distribution. 

5.   The Truncated Normal Distribution  

In this section, It is significant to discuss the properties of truncation. Trucation is the 

effect of data manipulation that occurs any time a sample is drawn from a larger 

population. In essence the information is altered, or truncated, because only a sample and 

not a whole population of interest is considered. For example, if you study life-style as it 

relates to earnings, and you consider income as it relates to the national average, some 

populations above and below a certain, identified point, may provide insignificant with 

regard to the whole population or the population about whom inferences are drawn.  

 

As such, truncation can most easily be described as the characteristic a numeric 

distribution from which a sample is drawn from a restricted segment of the population. 

Truncated distributions are, thus, simply a segment of an untrucnated distribution which 

fall within a given range of specified values (see Scott Long, (1997); Wooldridge, 

(2010)(. Statistical applications which base their findings on continuous is the part of an 

untruncated distribution that is above or below some specified value. More specifically, 

when values below c are deleted, the variable y|y> c has a truncated normal distribution. 

In terms of Panel A Figure 1, we want to consider the distribution of y
*
 in the unshaded 
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region, while ignoring all cases in the shaded region. The truncated pdf is created by 

dividing the pdf of the original distribution by the region to the right of c. This forces the 

resulting distribution to have an area of 1: (Scott Long, 1997) 

 

*

*

( | , )
( | , , )

Pr( )

f y
f y y c

Y c

 
  


      

(13) 

 

The truncated distribution is shown in Panel B Figure 1 by the solid line. The mass of the 

shaded region has been distributed over the region to the right of c, making the curve 

slightly higher over this region. This is seen by comparing the solid curve for the 

truncated distribution to the dotted line for the normal distribution without truncation. 

Using the results from Equations 12 and 13, we can write the truncated distribution as  
* *1 1

( | , , )

1

y y

f y y c
c c

 
 

   
 

 

 

    
   
   

  
    

    
   

 

 

Given that the left-hand side of the distribution has been truncated, ( | )E y y c  must be 

larger than E(y
*
) = µ. Specifically, if y

*
 is normal  

  

( | )

c

c
E y y c

c





   

 



 
              
      

(14) 

where  
(.)

(.)
(.)


 


 

 

A sampling distribution is truncated if for some reason, we never observe cases above or 

below a specified point, although in the permissible range of observations the data follow 

a standard distribution. It is very important to realise that the I(,) construct is not 

appropriate for truncated distributions with unknown parameters, since the generated 

likelihood term will ignore the truncation and be incorrect. However, the I(,) construct 

can be used when specifying truncated prior distributions with no unknown parameters. 

The indicator I(,) is used for censoring not for truncation because we have unobserved 

dependent variables in the SEMs and we can't use truncation with this type of variables 

(Lunn et al., 2012). 

6.   The Censored Normal Distribution 

A data point is a censored observation when we do not know its exact value, but we do 

know that it lies above or below a point c, say, or within a specified interval. 

 

The relevant distribution theory for censored variables has a lot in common with the 

distribution theory for truncated variables. It begins with normal distributions, because 

much of the work is still based on the assumption of normality. It also assumes that the 

censoring point c exists. Thus, to integrate the distribution to 1, it is scaled according to 
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the probability that a given observation from the untruncated population falls within the 

parameters for a population of interest (Greene, 2003). 

 

When a distribution is censored on the left, observations with values at or below c are set 

to cy: 
* *

*

y

y if y c
y

c if y c

 
  

    

Most often, cy= c, but other values such as zero are also useful. Panel C of Figure 1 plots 

a censored normal variables, where the censored observation is indicated by the spike at 

y= c. From Equation 12, we know that if y
*
 is normal, then the probability of an 

observation being censored is 

 Pr(Censored)= 
*Pr( )

c
y c





 
   

 
 

and the probability of a case not being censored is 

 Pr(Uncensored) = *Pr( )y c = 1
c c 

 

    
    

   
 

Thus, the expected value of a censored variable equals 

E(y) = [Pr(Uncensored) × E (y|y>c)]+ [Pr(Censored) × E (y|y=cy)]                

y

c c c
c

  
 

  

         
          

           

(15) 

where the last equality uses Equation 14 consider how the expected value of the censored 

value depends on c. As c approaches ∞, the probability of being censored approaches 1 

and E(y) approaches the censoring value cy. As  c approaches -∞, the probability of being 

censored approaches 0 and E(y) approaches the uncensored mean µ (Scott Long, 1997). 

 

 

Figure 1.   The Normal Distribution with Truncation and Censoring 
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Figure 2.   Latent, Censored, and Truncation Variables 

7.    Model Comparison 

A model comparison statistic DIC (see  Spiegelhalter et al., 2002) is a generalization of 

the Akaike Information Criterion (AIC; Akaike, (1973). Under a competing model kM  

with a vector of unknown parameters k , the DIC is computed as follows: 

( ) ,k k kDIC D d 
        

(16) 

where ( )kD  measures the goodness of fit of the model, and is defined as 

( ) { 2log ( | , ) | }.
kk k kD p Z M Z   

     
(17) 

Here, kd is the effective number of parameters in kM , and is defined as 

[ 2log ( | , ) | ] 2log ( | ).
kk k kd p Z M Z f Z     

    
(18) 

in which   is the Bayesian estimate of  . Let 
( ){ : 1,..., }t

k t T   be a sample of 

observations simulated from the posterior distribution. The expectations in Equations (17) 

and (18) can be estimated as follows: 

( )

1

2
{ 2log ( | , ) | } log ( | , ).

k

T
t

k k k k

t

p Z M Z p Z M
T

  


    
   

(19) 

In Bayesian SEMs, the model with the smaller DIC value is selected.  

8.   Real Example 

The data used for modeling were two independent samples selected from the natural 

history studies on rural drug use practices in Ohio (n=200) and Kentucky (n=200) in the 

USA between 2003 and 2005 (Booth et al., 2006). Study eligibility included the 

following: (1) having provided informed consent to participate in the study; (2) being 

aged 18 or older; (3) self-reported use of crack-cocaine, powdered cocaine, or 

methamphetamine/amphetamine in the past 30 days; (4) no recent formal substance abuse 

treatment (past 30 days); and (5) residence in one of the targeted counties. Respondent-

driven sampling, which has been increasingly applied to recruit hidden drug user 

populations, was used for sample recruitment in the current project. The project 
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participants were followed up every six months after the baseline interview for three 

consecutive years  ) Wang & Wang, 2012). 

 

Again, the BSI-18 scale was used for model demonstration. The three dimensions of 

psychiatric disorders measured by the BSI-18 are: somatization (SOM), depression 

(DEP), and anxiety (ANX). Each of the three subscales was measured by six items, 

respectively. All the BSI-18 items are measured on a fivepoint Likert scale (1, not at all; 

2, a little bit; 3, moderately; 4, quite a bit; 5, extremely). All subscales of the BSI-18 have 

excellent reliabilities with Cronbach’s alpha greater than 0.80 in the populations under 

study. 

9.   Analysis of Real Data 

A real data study is presented here to give some idea of the empirical performance of the 

proposed Bayesian approach in which 18 manifest variables are related to two basic 

latent variables 1, 2( , )i i  
 
from multiple group nonlinear SEMs defined in Equation 21 

and Equation 22 respectively. Hence, some quadratic and interaction effects of the latent 

variables are considered. To illustrate the Bayesian methods in analysing linear and 

nonlinear structural equation models with ordered categorical variables, we use a 

simulated data set that is related to random vectors with G=1,2, 
( ) ( ) ( ) ( )

1 2 18( , ,..., )g g g g

i i i i
z z z z , let (g) (g) (g) (g)

1 2 18( , ,..., )i i i i
y y y y  be the latent continuous random 

vector which corresponds to the ordinal variables (g) (g) ( )

1 2 18, ,..., g

i i iz z z where
 

(g) , i 1,...,ni z  are 

ordered categorical variables that are related to (3) latent variables
 

(g) (g) (g) (g)

1 2( , , )i i i iw    ,
(g) (g) (g) (g)

1 2 18( , ,..., )i i i i    , with the following values of the parameters in

(g) (g) (g) (g)

1 2 18( , ,..., )     and 
(g) (g) (g) (g)

1 2 15( , ,..., )        

(1) (1) (1) (1) (1) * * * * * ** * * * * * *
21 31 41 51 61

(g) (1) (1) (1) (1) (1) (1)* * * * * * * * * * * *
82 92 102 112 122

* * * * * * * * * * * * (1) (1) (1) (1) (1)
143 153 163 173 183

( 2)

0 0 0 0 0 01 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 1

    

    

    

 
 
 
 
  

 



( 2) ( 2) ( 2) ( 2) ( 2) * * * * * ** * * * * * *
21 31 41 51 61

( 2) ( 2) ( 2) ( 2) ( 2)* * * * * * * * * * * *
82 92 102 112 122

* * * * * * * * * * * * ( 2) ( 2) ( 2) ( 2) ( 2)
143 153 163 173 183

0 0 0 0 0 01 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 .

0 0 0 0 0 0 0 0 0 0 0 0 1

    

    

    

 
 
 
 
  

(1) (2)

(g) (1) (2)11 11

(1) (1) (2) (2)

21 22 21 22

, .
 

   

   
    

   
  

   

(20) 

Where parameters with an asterisk are treated as fixed for identifying the model. 

 

The relationships of the latent variables in 1 , 2i( , )i i iw    are assessed by the nonlinear 

structural equation which described in equation. 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 1 2 2 3 1 2 4 1 1 5 2 2 ,i i i i i i i i i i                   
  

(21) 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

1 1 2 2 3 1 2 4 1 1 5 2 2 .i i i i i i i i i i                   
 

(22) 
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The following accurate prior inputs of the hyperparameter values in the conjugate prior 

distributions of the parameters are considered: 

Prior I. Elements in
0 ,

0k  and 
0 k  in Equations (8) are set equal to 1;  

1

0 8 R 
 0 0,u kH H and 

0 kH are taken to be 0.25 times the identity matrices; 
0 10k   

, 
0 8k   , 0 30  . 

 

Prior II. Elements in
0 ,

0k  and 
0 k  in Equations (8) are set equal to 0.5;  

 1

0 8 R 
 0 0,u kH H and 

0 kH are taken to be 0.25 times the identity matrices; 
0 10k   

, 
0 8k  , 0 30  . 

 

The prior is informative and can have a significant effect on the parameter estimates for a 

small sample size case. 

 

A data set (n1=200, n2=200) was analyzed by WinBUGS. In comparing the Bayesian 

analyses of structural equation models with data, the MCMC procedure for analysing 

data required more iterations to converge. Bayesian estimates were obtained from 

T=10000. Iterations after discarding 4000 burn-in iterations with ordered categorical 

variables. The WinBUGS software (Spiegelhalter et al., 2003) can produce 

Bayesianestimates of the parameters in some two-level nonlinear SEMs. To demonstrate 

this, we apply WinBUGS to analyse the current aids data based on (Model 5) with 

different prior inputs. 

10.   Results and Discussion 

The objective of this section is to present results of a simulation study to reveal the 

empirical performances of the Bayesian estimates and the DIC for model comparison. 

For linear and nonlinear SEMs we have the following proposed models: 

1 1 2 2 3 3 4 1 2

1 1 2 2 3 3 4 1 3

1 1 2 2 3 3 4 2 3

2

1 1 2 2 3 3 4 1 2 5 2

1 1 2 2 3 3 4 1

1: ,

2 : ,

3 : ,

4 : ,

5 :

i i i i i i i

i i i i i i i

i i i i i i i

i i i i i i i i

i i i i i

Model

Model

Model

Model

Model

          

          

          

            

        

    

    

    

     

    2 5 4 1 1 4 2 3 ,i i i i i i          
  

(23) 

 

The Bayesian estimates of the unknown parameters and the Bayesian model selection 

statistic DIC are obtained using recently developed powerful tools in statistical 

computing. All the computational work can be accomplished via the recently developed 

and freely available software WinBUGS. The purpose of this analysis is to use Bayesian 

nonlinear  multiple group SEMs with ordered categorical data. There are some limitations 

of the current analysis. First, due to the design of questionnaires and the nature of the 

problems in behavioural, educational, medical and social sciences, data are often coming 

from ordered categorical variables with observations in discrete form. In analysing 

ordered categorical data, the basic assumption in SEM that the data come from a 

continuous normal distribution is clearly violated, and rigorous analysis that takes into 
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account the ordered categorical nature is necessary. Hence, clearly, routinely treating 

ordered categorical variables as normal may lead to erroneous conclusions (see Lee et al., 

1990; Olsson, 1979).  

 

A better approach for assessing this kind of discrete data is to treat them as observations 

obtained from a hidden continuous normal distribution (censored normal distribution) 

with a threshold specification. Second, the current analysis was conducted under the 

normality assumption of the observed variables in the model. However, this assumption 

is likely to be violated. Developing a linear & nonlinear Bayesian approach with hidden 

continuous normal distribution (right censored normal distribution, left censored normal 

distribution) to relax the normality assumption in SEMs may represent a future research 

topic.  
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Figure 4.  Two chains of observation corresponding to (a) (2)

3 ; (b) 
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5 ; (c) (2)

1 ; (d) (1)
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for Multiple SEMs with ordered categorical variables. 
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Table 1:  Bayesian Estimation of Multiple Group Nonlinear SEM with Ordered 

Categorical Variables of First Group under Prior I 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) 

-2.221 0.13 [-2.481, -1.967] λ 51
(1) 

8.980 8.180 [0.708, 1.127] 

μ2
(1) 

-0.319 0.108 [-0.527, -0.097] λ 61
(1) 

8.7.0 8.807 [8.000,  8.981 ] 

μ3
(1) 

-0.612 0.089 [-0.779, -0.433] λ82 
(1) 

8.901 8.110 [8.777,  1...9 ] 

μ4
(1) 

-1.475 0.112 [-1.702, -1.255] λ 92
(1) 

1.113 8.100 [8.000,  1.000 ] 

μ5
(1) 

-0.499 0.106 [-0.704, -0.283] λ 102
(1) 

1.8.0 8.109 [8.70.,  1.301 ] 

μ6
(1) 

-0.728 0.084 [-0.888, -0.556] λ 112
(1) 

1.108 8.101 [8.9.1,  1.070 ] 

μ7
(1) 

-0.697 0.115 [-0.914, -0.465] λ 122
(1) 

1.730 8...7 [1.3..,  ...89 ] 

μ8
(1) 

-0.779 0.105 [-0.973, -0.564] λ 143
(1) 

8.000 8.180 [8.09.,  8.980 ] 

μ9
(1) 

-1.572 0.138 [-1.845, -1.302] λ153 
(1) 

8.703 8.187 [8.091,  1.81. ] 

μ10
(1) 

-1.859 0.131 [-2.116, -1.597] λ 163
(1) 

8.030 8.118 [8.031,  1.807 ] 

μ11
(1) 

-1.196 0.126 [-1.436, -0.943] λ 173
(1) 

8.003 8.133 [8..00,  8.700 ] 

μ12
(1) 

-2.067 0.182 [-2.419, -1.708] λ 183
(1) 

8.790 8.1.7 [8.009,  1.801 ] 

μ13
(1) 

-1.181 0.161 [-1.489, -0.858] ɸ11
(1) 1.073 8..00 [8.999,  ..800 ] 

μ14
(1) 

-0.896 0.139 [-1.158, -0.618] ɸ12
(1)

 

1..00 8..10 [8.983,  1.700 ] 

μ15
(1) 

-0.53 0.141 [-0.799, -0.253] ɸ22
(1)

 

1.301 8..70 [8.980,  1.97. ] 

μ16
(1) 

-1.115 0.132 [-1.359, -0.845] γ1
(1) 

8.011 8..80 [8.833,  8.010 ] 

μ17
(1) 

-2.305 0.157 [-2.635, -2.022] γ2
(1)

 

8.700 8..10 [8.339,  1..80 ] 

μ18
(1) 

-1.812 0.135 [-2.075, -1.548] γ3
(1)

 

8..70 8.087 [-8.001,  1.837 ] 

λ 21
(1) 

8.979 8.111 [8.770,  1..10 ] γ4
(1)

 

8..90- 8..80 [-8.7.0,  8.131 ] 

λ 31
(1) 

8.789 8.800 [8.000,  8.093 ] γ5
(1)

 

8.100- 8..03 [-8.7.0,  8.391 ] 

λ 41
(1) 

8.701 8.119 [8.000,  1.810 ] ψεδ
(1) 

8.301 8.87. [8..00,  8.001 ] 

*HPD: highest posterior density 
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Table 2:  Bayesian Estimation of  Multiple Group Nonlinear SEM with Ordered 

Categorical Variables of Second Group under Prior I 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(2) 

-2.379 0.139 [-2.642, -2.105] λ 51
(2) 

8.090 8.110 [8.097,  1.108 ] 

μ2
(2) 

-0.158 0.112 [-0.373, 0.066] λ 61
(2) 

8.790 8.890 [8.0.0,  8.990 ] 

μ3
(2) 

-0.552 0.108 [-0.754, -0.331] λ82 
(2) 

1.800 8.117 [8.071,  1.3.0 ] 

μ4
(2) 

-1.520 0.120 [-1.754, -1.280] λ 92
(2) 

1.300 8.177 [1.871,  1.70. ] 

μ5
(2) 

-0.473 0.125 [-0.711, -0.218] λ 102
(2) 

8.0.0 8.138 [8.090,  1.18. ] 

μ6
(2) 

-0.742 0.097 [-0.925, -0.544] λ 112
(2) 

1.000 8.100 [1.103,  1.0.. ] 

μ7
(2) 

-0.853 0.118 [-1.078, -0.615] λ 122
(2) 

1.000 8.107 [1..30,  1.900 ] 

μ8
(2) 

-0.494 0.128 [-0.736, -0.240] λ 143
(2) 

1.890 8.139 [8.000,  1.391 ] 

μ9
(2) 

-1.429 0.157 [-1.752, -1.131] λ153 
(2) 

1.817 8.110 [8.088,  1..0. ] 

μ10
(2) 

-2.047 0.132 [-2.307, -1.792] λ 163
(2) 

8.001 8.809 [8.070,  1.83. ] 

μ11
(2) 

-1.245 0.149 [-1.526, -0.940] λ 173
(2) 

8.00. 8.100 [8.003,  1.197 ] 

μ12
(2) 

-2.229 0.169 [-2.561, -1.894] λ 183
(2) 

8.009 8.1.7 [8.030,  1.101 ] 

μ13
(2) 

-1.174 0.172 [-1.506, -0.832] ɸ11
(2) ..810 8.083 [1.319,  ..079 ] 

μ14
(2) 

-0.726 0.197 [-1.109, -0.331] ɸ12
(2)

 

1.70. 8..70 [1..08,  ..300 ] 

μ15
(2) 

-0.710 0.168 [-1.034, -0.377] ɸ22
(2)

 

1.703 8..07 [1..30,  ..30. ] 

μ16
(2) 

-1.006 0.137 [-1.263, -0.725] γ1
(2) 

1.170 8.100 [8.9.9,  1.011 ] 

μ17
(2) 

-2.409 0.206 [-2.825, -2.009] γ2
(2)

 

8.10. 8.870 [-0.010,  8..90 ] 

μ18
(2) 

-1.817 0.149 [-2.105, -1.512] γ3
(2)

 

8.893 8.3.0 [-0.663,  8.703 ] 

λ 21
(2) 

8.901 8.11. [8.700,  1..19 ] γ4
(2)

 

8.880 8..08 [-0.419,  8.0.9 ] 

λ 31
(2) 

8.9.. 8.187 [8.730,  1.100 ] γ5
(2)

 

-8.171 8.100 [-0.577,  8.100 ] 

λ 41
(2) 

8.708 8.1.8 [8.0.9,  8.990 ] ψεδ
(2) 

8.300 8.878 [8..71,  8.000 ] 
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Table 3: Bayesian Estimation of Multiple Group Nonlinear SEM with Ordered 

Categorical Variables of First Group under Prior II 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) 

-2.234 0.128 [-2.487, -1.981] λ 51
(1) 

8.9.0 8.117 [8.710,  1.170 ] 

μ2
(1) 

-0.334 0.107 [-0.532, -0.113] λ 61
(1) 

8.701 8.890 [8.007,  8.903 ] 

μ3
(1) 

-0.620 0.089 [-0.790, -0.437] λ82 
(1) 

1.880 8.111 [8.01.,  1..0. ] 

μ4
(1) 

-1.486 0.117 [-1.717, -1.258] λ 92
(1) 

1.108 8.100 [8.000,  1.000 ] 

μ5
(1) 

-0.513 0.107 [-0.716, -0.293] λ 102
(1) 

1.800 8.108 [8.770,  1.300 ] 

μ6
(1) 

-0.737 0.082 [-0.887, -0.565] λ 112
(1) 

1..80 8.107 [8.933,  1.0.8 ] 

μ7
(1) 

-0.720 0.111 [-0.931, -0.500] λ 122
(1) 

1.703 8..89 [1.300,  ...80 ] 

μ8
(1) 

-0.794 0.105 [-0.992, -0.576] λ 143
(1) 

8.789 8.118 [8.080,  8.939 ] 

μ9
(1) 

-1.585 0.140 [-1.863, -1.308] λ153 
(1) 

8.080 8.113 [8.090,  1.808 ] 

μ10
(1) 

-1.873 0.130 [-2.134, -1.614] λ 163
(1) 

8.001 8.189 [8.008,  1.891 ] 

μ11
(1) 

-1.211 0.125 [-1.446, -0.947] λ 173
(1) 

8.070 8.130 [8..00,  8.700 ] 

μ12
(1) 

-2.097 0.186 [-2.463, -1.717] λ 183
(1) 

8.089 8.1.9 [8.070,  1.870 ] 

μ13
(1) 

-1.216 0.155 [-1.516, -0.907] ɸ11
(1) 1.080 8..79 [8.980,  1.903 ] 

μ14
(1) 

-0.910 0.137 [-1.173, -0.638] ɸ12
(1)

 

1..80 8..10 [8.0.9,  1.003 ] 

μ15
(1) 

-0.550 0.139 [-0.813, -0.273] ɸ22
(1)

 

1..03 8..3. [8.008,  1.708 ] 

μ16
(1) 

-1.139 0.130 [-1.385, -0.888] γ1
(1) 

0.420 0.192 [0.056, 0.812] 

μ17
(1) 

-2.310 0.155 [-2.641, -2.024] γ2
(1)

 

0.782 0.216 [0.357, 1.206] 

μ18
(1) 

-1.838 0.133 [-2.096, -1.577] γ3
(1)

 

0.140 0.303 [-0.542, 0.753] 

λ 21
(1) 

0.997 0.119 [0.784, 1.253] γ4
(1)

 

-0.235 0.185 [-0.606, 0.130] 

λ 31
(1) 

0.724 0.094 [0.556, 0.922] γ5
(1)

 

-0.113 0.190 [-0.509, 0.275] 

λ 41
(1) 

0.787 0.129 [0.561, 1.061] ψεδ
(1) 

8.370 8.871 [8..01,  8.039 ] 
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Table 4:  Bayesian Estimation of  Multiple Group Nonlinear SEM with Ordered 

Categorical Variables of Second Group under Prior II 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) 

-2.370 0.146 [-2.673, -2.097] λ 51
(1) 

0.921 0.111 [0.716, 1.153] 

μ2
(1) 

-0.139 0.126 [-0.384, 0.107] λ 61
(1) 

0.814 0.092 [0.652, 1.010] 

μ3
(1) 

-0.536 0.114 [-0.766, -0.320] λ82 
(1) 

1.089 0.115 [0.872, 1.323] 

μ4
(1) 

-1.511 0.119 [-1.755, -1.286] λ 92
(1) 

1.362 0.166 [1.062, 1.718] 

μ5
(1) 

-0.452 0.133 [-0.708, -0.187] λ 102
(1) 

0.826 0.131 [0.588, 1.106] 

μ6
(1) 

-0.723 0.108 [-0.939, -0.511] λ 112
(1) 

1.460 0.152 [1.180, 1.767] 

μ7
(1) 

-0.829 0.135 [-1.102, -0.579] λ 122
(1) 

1.581 0.185 [1.254, 1.975] 

μ8
(1) 

-0.474 0.140 [-0.752, -0.205] λ 143
(1) 

1.100 0.133 [0.860, 1.378] 

μ9
(1) 

-1.400 0.173 [-1.751, -1.073] λ153 
(1) 

1.035 0.116 [0.834, 1.291] 

μ10
(1) 

-2.038 0.143 [-2.335, -1.768] λ 163
(1) 

0.845 0.094 [0.673, 1.049] 

μ11
(1) 

-1.219 0.172 [-1.563, -0.892] λ 173
(1) 

0.851 0.167 [0.553, 1.211] 

μ12
(1) 

-2.203 0.186 [-2.574, -1.862] λ 183
(1) 

0.856 0.118 [0.648, 1.111] 

μ13
(1) 

-1.167 0.168 [-1.490, -0.832] ɸ11
(1) 1.972 0.415 [1.321, 2.919] 

μ14
(1) 

-0.713 0.203 [-1.102, -0.292] ɸ12
(1)

 

1.757 0.322 [1.217, 2.498] 

μ15
(1) 

-0.686 0.178 [-1.020, -0.322] ɸ22
(1)

 

1.794 0.347 [1.213, 2.551] 

μ16
(1) 

-0.995 0.141 [-1.267, -0.712] γ1
(1) 

1.194 0.145 [0.915, 1.484] 

μ17
(1) 

-2.389 0.204 [-2.812, -2.023] γ2
(1)

 

0.139 0.078 [-0.012, 0.299] 

μ18
(1) 

-1.799 0.154 [-2.102, -1.499] γ3
(1)

 

0.096 0.346 [-0.566, 0.642] 

λ 21
(1) 

1.880 8.180 [8.08.,  1..10 ] γ4
(1)

 

0.004 0.230 [-0.417, 0.465] 

λ 31
(1) 

8.90. 8.183 [8.70.,  1.107 ] γ5
(1)

 

-0.166 0.242 [-0.584, 0.297] 

λ 41
(1) 

8.703 8.111 [8.003,  8.901 ] ψεδ
(1) 

0.383 0.071 [0.266, 0.541] 
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Table 5:  Bayesian Estimation of Multiple Group Nonlinear SEM with Ordered 

Categorical Variables Treated as a Continuous Normal of First Group 

under Prior I 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) 

1.468 0.073 [1.326, 1.614] λ 51
(1) 

1.3.0 8.1.0 [1.80.,  1.001 ] 

μ2
(1) 

2.068 0.090 [1.890, 2.246] λ 61
(1) 

1..00 8.1.7 [1.801,  1.000 ] 

μ3
(1) 

2.232 0.085 [2.064, 2.396] λ82 
(1) 

1.89. 8.187 [8.090,  1.310 ] 

μ4
(1) 

1.624 0.079 [1.469, 1.780] λ 92
(1) 

8.700 8.890 [8.009,  8.900 ] 

μ5
(1) 

2.183 0.094 [1.996, 2.366] λ 102
(1) 

8.700 8.890 [8.003,  8.930 ] 

μ6
(1) 

2.319 0.091 [2.137, 2.498] λ 112
(1) 

1.809 8.111 [8.001,  1..01 ] 

μ7
(1) 

1.929 0.088 [1.754, 2.103] λ 122
(1) 

8.090 8.18. [8.787,  1.118 ] 

μ8
(1) 

2.053 0.083 [1.893, 2.220] λ 143
(1) 

8.710 8.899 [8.0.0,  8.910 ] 

μ9
(1) 

1.457 0.072 [1.314, 1.600] λ153 
(1) 

8.091 8.188 [8.788,  1.890 ] 

μ10
(1) 

1.514 0.072 [1.375, 1.659] λ 163
(1) 

8.900 8.890 [8.080,  1.101 ] 

μ11
(1) 

1.820 0.084 [1.656, 1.988] λ 173
(1) 

8.108 8.809 [8.800,  8..79 ] 

μ12
(1) 

1.471 0.078 [1.318, 1.622] λ 183
(1) 

8.78. 8.800 [8.003,  8.070 ] 

μ13
(1) 

1.815 0.103 [1.610, 2.024] ɸ11
(1) 8.073 8.878 [8.300,  8.0.0 ] 

μ14
(1) 

2.011 0.094 [1.826, 2.197] ɸ12
(1)

 

8.000 8.807 [8.3.7,  8.000 ] 

μ15
(1) 

2.279 0.099 [2.080, 2.472] ɸ22
(1)

 

8.0.8 8.897 [8.000,  8.0.7 ] 

μ16
(1) 

1.942 0.099 [1.746, 2.142] γ1
(1) 

0.572 0.186 [0.203, 0.933] 

μ17
(1) 

1.122 0.044 [1.036, 1.209] γ2
(1)

 

0.537 0.179 [0.205, 0.913] 

μ18
(1) 

1.517 0.082 [1.353, 1.677] γ3
(1)

 

-0.177 0.305 [-0.782, 0.392] 

λ 21
(1) 

1.365 0.121 [1.136, 1.606] γ4
(1)

 

0.033 0.225 [-0.398, 0.470] 

λ 31
(1) 

1.155 0.117 [0.934, 1.394] γ5
(1)

 

0.133 0.171 [-0.180, 0.484] 

λ 41
(1) 

0.808 0.113 [0.594, 1.036] ψεδ
(1) 

8..03 8.830 [8.190,  8.309 ] 
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Table 6:  Bayesian Estimation of Multiple Group Nonlinear SEM with Ordered 

Categorical Variables Treated as a Continuous Normal of Second Group 

under Prior I 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(2) 

1.3.1 8.801 [1..83,  1.00. ] λ 51
(2) 

1.372 0.139 [1.104, 1.653] 

μ2
(2) 

..8.0 8.808 [1.078,  ..101 ] λ 61
(2) 

1.480 0.131 [1.234, 1.748] 

μ3
(2) 

1.999 8.80. [1.030,  ..107 ] λ82 
(2) 

1.168 0.118 [0.945, 1.415] 

μ4
(2) 

1.000 8.800 [1.300,  1.017 ] λ 92
(2) 

0.937 0.094 [0.761, 1.127] 

μ5
(2) 

..803 8.807 [1.911,  ...03 ] λ 102
(2) 

0.594 0.081 [0.441, 0.757] 

μ6
(2) 

..80. 8.803 [1.98.,  ..... ] λ 112
(2) 

1.182 0.107 [0.981, 1.400] 

μ7
(2) 

1.719 8.877 [1.07.,  1.071 ] λ 122
(2) 

0.798 0.083 [0.643, 0.974] 

μ8
(2) 

..1.0 8.800 [1.900,  ...91 ] λ 143
(2) 

0.876 0.089 [0.710, 1.054] 

μ9
(2) 

1.011 8.878 [1..71,  1.000 ] λ153 
(2) 

0.931 0.084 [0.772, 1.099] 

μ10
(2) 

1.370 8.808 [1..00,  1.090 ] λ 163
(2) 

0.972 0.078 [0.827, 1.131] 

μ11
(2) 

1.0.0 8.870 [1.073,  1.770 ] λ 173
(2) 

0.276 0.052 [0.176, 0.380] 

μ12
(2) 

1.380 8.808 [1.109,  1.0.0 ] λ 183
(2) 

0.683 0.069 [0.551, 0.823] 

μ13
(2) 

1.000 8.800 [1.307,  1.7.1 ] ɸ11
(2) 0.412 0.061 [0.307, 0.546] 

μ14
(2) 

1.7.1 8.89. [1.00.,  1.98. ] ɸ12
(2)

 

0.416 0.060 [0.311, 0.544] 

μ15
(2) 

1.707 8.800 [1.010,  1.900 ] ɸ22
(2)

 

0.617 0.096 [0.446, 0.827] 

μ16
(2) 

1.70. 8.803 [1.009,  1.913 ] γ1
(2) 

1.021 0.129 [0.782, 1.296] 

μ17
(2) 

1.809 8.808 [8.971,  1.107 ] γ2
(2)

 

0.013 0.062 [-0.110, 0.135] 

μ18
(2) 

1.33. 8.871 [1.190,  1.073 ] γ3
(2)

 

-0.192 0.331 [-0.767, 0.444] 

λ 21
(2) 

1.017 8.1.0 [1..79,  1.701 ] γ4
(2)

 

0.242 0.262 [-0.283, 0.742] 

λ 31
(2) 

1.0.0 8.1.9 [1..70,  1.700 ] γ5
(2)

 

0.257 0.184 [-0.100, 0.578] 

λ 41
(2) 

8.9.. 8.189 [8.710,  1.101 ] ψεδ
(2) 

0.236 0.032 [0.180, 0.305] 
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Table 7:  Bayesian Estimation of Multiple Group Nonlinear SEM with Ordered 

Categorical Variables Treated as a Continuous Normal of First Group 

under Prior II 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) 

1.470 0.072 [1.329, 1.611] λ 51
(1) 

1.332 0.129 [1.090, 1.595] 

μ2
(1) 

2.070 0.088 [1.897, 2.247] λ 61
(1) 

1.293 0.127 [1.058, 1.557] 

μ3
(1) 

2.234 0.085 [2.066, 2.400] λ82 
(1) 

1.097 0.107 [0.898, 1.311] 

μ4
(1) 

1.626 0.079 [1.470, 1.780] λ 92
(1) 

0.768 0.094 [0.591, 0.959] 

μ5
(1) 

2.185 0.094 [1.997, 2.370] λ 102
(1) 

0.745 0.096 [0.568, 0.944] 

μ6
(1) 

2.321 0.090 [2.138, 2.497] λ 112
(1) 

1.066 0.113 [0.857, 1.297] 

μ7
(1) 

1.931 0.088 [1.760, 2.106] λ 122
(1) 

0.900 0.101 [0.712, 1.107] 

μ8
(1) 

2.055 0.082 [1.897, 2.219] λ 143
(1) 

0.716 0.099 [0.529, 0.919] 

μ9
(1) 

1.459 0.071 [1.319, 1.602] λ153 
(1) 

0.892 0.100 [0.703, 1.093] 

μ10
(1) 

1.516 0.071 [1.379, 1.655] λ 163
(1) 

0.987 0.096 [0.809, 1.180] 

μ11
(1) 

1.822 0.083 [1.662, 1.984] λ 173
(1) 

0.180 0.050 [0.086, 0.279] 

μ12
(1) 

1.473 0.077 [1.321, 1.625] λ 183
(1) 

0.703 0.085 [0.543, 0.875] 

μ13
(1) 

1.815 0.102 [1.617, 2.021] ɸ11
(1) 0.468 0.069 [0.347, 0.611] 

μ14
(1) 

2.011 0.093 [1.826, 2.195] ɸ12
(1)

 

0.442 0.066 [0.324, 0.583] 

μ15
(1) 

2.280 0.098 [2.090, 2.472] ɸ22
(1)

 

0.615 0.099 [0.443, 0.825] 

μ16
(1) 

1.943 0.098 [1.755, 2.141] γ1
(1) 

0.573 0.187 [0.207, 0.951] 

μ17
(1) 

1.122 0.044 [1.035, 1.209] γ2
(1)

 

0.539 0.182 [0.209, 0.933] 

μ18
(1) 

1.517 0.081 [1.358, 1.678] γ3
(1)

 

-0.179 0.308 [-0.795, 0.391] 

λ 21
(1) 

1.374 0.122 [1.146, 1.622] γ4
(1)

 

0.038 0.229 [-0.406, 0.491] 

λ 31
(1) 

1.159 0.117 [0.935, 1.399] γ5
(1)

 

0.133 0.174 [-0.180, 0.484] 

λ 41
(1) 

0.812 0.113 [0.596, 1.040] ψεδ
(1) 

8..03 8.839 [8.190,  8.309 ] 
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Table 8:  Bayesian Estimation of Multiple Group Nonlinear SEM with Ordered 

Categorical Treated as a Continuous Normal Variables of Second Group 

under Prior II 

Para Est. SE HPD Interval Para Est. SE HPD Interval 

μ1
(1) 

1.319 0.061 [1.200, 1.436] λ 51
(1) 

1.368 0.137 [1.105, 1.645] 

μ2
(1) 

2.023 0.079 [1.871, 2.179] λ 61
(1) 

1.475 0.129 [1.235, 1.749] 

μ3
(1) 

1.996 0.079 [1.842, 2.152] λ82 
(1) 

1.165 0.120 [0.939, 1.411] 

μ4
(1) 

1.484 0.067 [1.353, 1.614] λ 92
(1) 

0.935 0.096 [0.753, 1.130] 

μ5
(1) 

2.080 0.086 [1.913, 2.248] λ 102
(1) 

0.594 0.081 [0.439, 0.759] 

μ6
(1) 

2.060 0.081 [1.901, 2.217] λ 112
(1) 

1.177 0.109 [0.976, 1.408] 

μ7
(1) 

1.716 0.078 [1.561, 1.869] λ 122
(1) 

0.797 0.083 [0.644, 0.972] 

μ8
(1) 

2.122 0.085 [1.951, 2.288] λ 143
(1) 

0.876 0.089 [0.706, 1.053] 

μ9
(1) 

1.409 0.070 [1.271, 1.547] λ153 
(1) 

0.931 0.084 [0.770, 1.100] 

μ10
(1) 

1.376 0.060 [1.257, 1.494] λ 163
(1) 

0.973 0.078 [0.828, 1.134] 

μ11
(1) 

1.622 0.078 [1.475, 1.775] λ 173
(1) 

0.276 0.052 [0.175, 0.380] 

μ12
(1) 

1.306 0.060 [1.190, 1.423] λ 183
(1) 

0.683 0.070 [0.552, 0.824] 

μ13
(1) 

1.553 0.086 [1.385, 1.723] ɸ11
(1) 0.414 0.061 [0.306, 0.544] 

μ14
(1) 

1.720 0.092 [1.542, 1.900] ɸ12
(1)

 

0.419 0.063 [0.311, 0.556] 

μ15
(1) 

1.786 0.086 [1.620, 1.957] ɸ22
(1)

 

0.621 0.099 [0.446, 0.838] 

μ16
(1) 

1.751 0.083 [1.590, 1.916] γ1
(1) 

1.016 0.130 [0.776, 1.290] 

μ17
(1) 

1.068 0.051 [0.969, 1.167] γ2
(1)

 

0.012 0.063 [-0.114, 0.136] 

μ18
(1) 

1.332 0.071 [1.192, 1.471] γ3
(1)

 

-0.203 0.330 [-0.760, 0.463] 

λ 21
(1) 

1.513 0.125 [1.279, 1.770] γ4
(1)

 

0.234 0.260 [-0.271, 0.746] 

λ 31
(1) 

1.519 0.128 [1.278, 1.784] γ5
(1)

 

0.268 0.190 [-0.104, 0.596] 

λ 41
(1) 

0.921 0.108 [0.718, 1.140] ψεδ
(1) 

0.236 0.032 [0.182, 0.306] 

 

 



Thanoon Y. Thanoon, Robiah Adnan 

Pak.j.stat.oper.res.  Vol.XIII  No.1 2017  pp17-45 40 

Table 9: Performance of Deviance Information Criterion DIC for Multiple Group 

SEMs under Prior I 

 

 Ordered 

Categorical 
Normal 

Group 1, n=200 7815.310 9581.190 

Group 2, n=200 6755.430 8969.070 

Total 14570.700 18550.300 

 

Table 10: Performance of Deviance Information Criterion DIC for Multiple 

Group SEMs under Prior II 
 

 Ordered 

Categorical 
Normal 

Group 1, n=200 7820.740 9575.550 

Group 2, n=200 6756.540 8964.210 

Total 14577.300 18539.800 

 

The estimated multiple group nonlinear structural equation in prior I is given by 

(1) (1) (1) (1) (1) (1) (1) (1) (1)

1 2 1 2 1 1 2 20.411 0.788 0.287 0.295 0.186 ,i i i i i i i i i            
 

(24) 

(2) (2) (2) (2) (2) (2) (2) (2) (2)

1 2 1 2 1 1 2 21.178 0.142 0.093 0.005 0.171 .i i i i i i i i i            
 

(25) 

 

The estimated multiple group nonlinear structural equation in prior II is given by 

(1) (1) (1) (1) (1) (1) (1) (1) (1)

1 2 1 2 1 1 2 20.420 0.782 0.140 0.235 0.113 ,i i i i i i i i i            
 

(26) 

(2) (2) (2) (2) (2) (2) (2) (2) (2)

1 2 1 2 1 1 2 21.194 0.139 0.096 0.004 0.166 .i i i i i i i i i            
 
(27) 

 

The results corresponding to the first and second groups under Type I inputs, and ordered 

categorical variables are reported in Tables (1:2). We observed that the SE values in the 

first group are smaller than the SE values for the second group. However, it is expected 

that the empirical performance would be worse with the second group. 

 

The results corresponding to the first and second groups under Type II inputs, and 

ordered categorical variables are reported in Tables (3:4). We observed that SE values in 

the first group are smaller than the SE values for the second group. However, it is 

expected that the empirical performance would be worse with the second group. 

 

The results corresponding to the first and second groups under Type I inputs, and ordered 

categorical variables when treated as a continuous normal distribution are reported in 

Table (5:6). We observed that SE values in the first group are smaller than the SE values 

for the second group. However, it is expected that the empirical performance would be 

worse with the second group. 
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The results corresponding to the first and second groups under Type II inputs, and 

ordered categorical variables when treated as a continuous normal distribution are 

reported in Tables (7:8). We observed that the SE values in the second group are smaller 

than the SE values for the first group. However, it is expected that the empirical 

performance would be worse with the first group. We noted that most of the SE values in 

ordered categorical variables whan treated as a continuous normal variables are less than 

the SE values when treated as a ordered categorical variables. 

 

The HPD intervals of all the parameters were computed. We observed that the 

performances of the HPD intervals are satisfactory for ordered categorical variables when 

treated as a continuous normal variables. 

 

To reveal the performance of DIC for model comparison, we reanalysed the data sets via 

a nonlinear structural equation model with interaction term in the structural equation 

(model 5). The DIC values obtained were compared to those obtained under the correct 

model. Results are presented in Table 9 and Table 10.  

 

The DIC values are very close in prior I and prior II when using ordered categorical 

variables. In addition, the DIC values are very close in prior I and prior II when using 

continuous normal distribution. The model fitting DIC in Group 2 is less than the DIC 

value in Group 1 in prior I and II and in the ordered categorical variables; when treated as 

a continuous normal distribution so the model fitting is better in Group 2. As a result, we 

observed the performance of DIC is not satisfactory and would be worse under ordered 

categorical variables when trated as a continuous normal distribution However, it 

performs very well for the ordered categorical variables. However, routinely treating 

ordered categorical variables as normal may lead to erroneous conclusions (see Lee et al., 

1990; Olsson, 1979). 

 

Convergence of the Gibbs sampler are monitored by the plots of several simulated 

sequences of the individual parameters with different starting values and are presented in 

Figures 4 and 5 respectively. Bayesian estimates were obtained from T=10000 iterations 

after discarding 4000 burn-in iterations in linear and nonlinear SEMs. 

11.   Conclusions and Recommendations 

Models involving multiple group nonlinear effects are very common in social and 

behavioural sciences. The purpose of this analysis was to use multiple group NSEMs to 

obtain all the estimated parameters and to solve the problem of ordered categorical 

variables by using hidden continuous normal distribution. However, this assumption is 

likely to be violated in many practical applications. Developing a non-parametric 

Bayesian approach to relax the normality assumption in multiple group NSEMs may 

represent a future research topic. 

 
In SEMs, examples that incorporate nonlinear terms of latent variables in equations exist. 

As pointed out by Bollen & Paxton,(1998) and Schumacker & Marcoulides, (1998( 

among others, the lack of applications is not due to the failure of substantive arguments 

that suggest the presence of nonlinearity, rather the existing statistical methods are 
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technically demanding and not well understood. In this paper, a Bayesian approach is 

proposed for analysing multiple group nonlinear models with ordered categorical 

variables. In addition to point estimation, we provide statistical methods to obtain 

standard deviations estimates, and model comparison using the Deviance Information 

Criterion (DIC). Owing to the complexity of the proposed model. As we have seen, 

difficulties arising from the nonlinear causal relationships among the latent variables and 

the discrete nature of ordered categorical data manifest variables are alleviated by data 

augmentation with some MCMC methods. More specifically, the basic idea of our 

development was inspired by following the common strategy from recent work in 

statistical computing (see Rubin, 1991) that formulated the underlying complicated 

problem, so that when augmenting the real observed data with the hypothetical missing 

data the analysis would be relatively easy with the complete data. This strategy is very 

powerful and can be applied to other more complex models. The incorrectly treating 

indicator I as a truncated normal distribution see  ( Spiegelhalter et al., 2003) and (Lunn 

et al., 2009). 

 

real example studies is conducted, not only to reveal the empirical performance of the 

Bayesian approach, but also to show that incorrectly treating ordered categorical as a 

continuous normal distribution, and vice versa, would produce misleading results. 
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