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Abstract 

An active set algorithm is introduced for positive definite and positive semi definite linear complementarity 

problems. The proposed algorithm is composed of two phases. Phase 1, the feasibility phase and phase 2, 

the optimality phase. In phase 1, the ellipsoid method is employed to test for feasibility and provide an 

advanced starting point if the problem is feasible. Providing such a warm start permits a good estimate of 

the active set. In phase 2, a criterion based on the complementarity condition is used to detect the working 

set per iteration until optimality is reached. This criterion leads to a valuable reduction in the size of the 

problem solved per iteration to obtain a search direction. Numerical examples are solved to illustrate the 

performance of the algorithm and a practical example in rigid body dynamics is solved to demonstrate the 

usage of the algorithm to solve such problems. 

Keywords:   Mathematical programming; Linear complementarity problems; Convex 

quadratic programming; Active set methods; Rigid body dynamics. 

1. Introduction 

The linear complementarity problem (LCP) is one of the widely studied problems in 

optimization. The LCP first emerged as the Karush-Kuhen-Tucker (KKT) optimality 

conditions for linear programming (LP) and quadratic programming (QP); it has often 

been described as a fundamental problem Billups and Murty (2000). Besides covering 

several important classes of mathematical programming problems such as LP, convex 

quadratic programming (CQP), Nash equilibrium points for nonzero sum games, several 

economic equilibrium problems and the knapsack problem, the LCP is also used to model 

many applications such as the contact problem, the obstacle problem, the porous flow 

problem, the journal bearing problem and many other free boundary problems Wang 

(2010).   

 

For a given real vector      and a given real matrix M       the LCP (q, M) finds 

the vector        which satisfy the constraints  

          , 

            

or show that no such vector exists, where “T” denotes the matrix transpose.  A LCP is 

said to be feasible if the feasible set    

       {            }     

and is said to be solvable if the solution set  

       {                      }     
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Alternatively, the LCP finds the pair of vectors       by setting        in the 

previous constraints.  

 

There is a close connection between the LCP and the QP 

                                  

                                       (1) 

 

The feasible set of (1) is exactly       . To compensate for the fact that the matrix M 

may be asymmetric, it is customary to use the following equivalent representation of the 

objective function  

           

 
            

 

Any solution of the LCP is an optimal solution of (1). However the converse is not valid 

unless the optimal objective function value of (1) is zero (Cottle et al. 1989).     

 

The class of the matrix M has always played a prominent role in the LCP theory since 

much depends on knowing the matrix through which the particular LCP is defined.  The 

key properties of feasibility, solvability, uniqueness, convexity and the applicability of a 

certain method are related to the matrix class. For example, the LCP has a unique 

solution if and only if M belongs to the class P of matrices with positive principal 

minors, a LCP with a positive semi definite matrix has a nonempty convex polyhedral 

solution set Cottle et al. (1989). As the LCP belongs to the class of NP-complete 

problems; therefore it is not expected to find an efficient solution method for the problem 

without a special property of the matrix M Illes and Nagy (2007). In general, some 

algorithms relay on a certain matrix class, other algorithms perform well under a broad 

range of matrix classes Kostreva and Yang (2004). Nowadays, there are more than 50 

matrix classes discussed in the LCP literature Cottle (2010).  

 

Several methods have been developed to solve the LCP. Pivotal methods are the early 

methods for solving the LCP. These methods utilize different pivot rules. Despite their 

efficiency in solving small problems, they do not exploit sparsity effectively and are 

unsuitable for large applications Morales et al. (2007). The most salient pivoting 

algorithms are Lemke’s algorithm and the principal pivoting algorithm introduced by 

Cottle and Dantzig Rüst (2007). Interior point methods have been inspired by the 

algorithms that have been used for solving linear programs in polynomial time developed 

originally by Karmarker. These methods produce a sequence of points that follow the so-

called central path, a nonlinear path from a strictly feasible point towards the solution. 

They are effective for solving large and ill-conditioned LCPs; their main drawbacks are 

the high cost per iteration and that they may not yield a good estimate of the solution 

when terminated early Morales et al. (2007). Several algorithms have been proposed to 

lessen the required computations per step Lešaja et al. (2012), Zangiabadi and Mansouri 

(2012). Yet, interior point algorithms remain computationally more expensive than active 

set algorithms Ferreau et al. (2014).  

 

Much attention has recently been paid to iterative methods, since these methods exploit 

particular features of matrices such as sparsity and the block structure Najafi and 
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Edalapanah (2013), Popa et al. (2015), Zhang (2015). They also have a low 

computational cost per iteration and have been shown to be convergent under certain 

conditions Morales et al. (2007). Yet, they can be very slow for medium to large scale 

and ill-conditioned problems Archavaleta et al. (2009). The last class of methods is the 

conventional algorithms for solving QPs such as the gradient projection methods and the 

active set methods. Extensive coverage of LCP theory is available in Cottle, Pang and 

Stone (1992) and Murty (1988).  

 

The goal of active-set methods is to predict the active set, the set of constraints that are 

satisfied with equality, at the solution of the problem. A working set is chosen and is then 

updated in each step until optimality is reached. The search directions are taken as the 

solution of a KKT-system formed from the QP Hessian and the working-set constraint 

gradients. The conventional active-set methods are divided into two phases; the 

feasibility phase and the optimality phase. An advantage of active-set methods is that 

they are well-suited for warm starts.  

 

In this article an active set algorithm is proposed that uses different approaches than that 

used by the conventional active set algorithms in both phases. In phase 1, the ellipsoid 

method is employed to test for the problem feasibility and to provide a warm-start if the 

problem is feasible Hassan et al. (2007). In phase 2, a criterion based on the 

complementarity condition is used to detect the working set per iteration until optimality 

is reached. This criterion leads to a reduction in the size of the linear system solved each 

step to get a search direction.  

 

The article is organized as follows. Section 2 presents the properties of PD and PSD 

matrices. A brief account on active set methods and the ellipsoid method is given in 

sections 3 and 4. The proposed algorithm is introduced in section 5. In section 6 a 

numerical example and a practical example are solved. Finally, the conclusion is given in 

section 7. 

2. PD and PSD matrices and the LCP 

The mathematical structure of the LCP has inspired several researchers to study the 

matrix properties and its implication regarding the existence and uniqueness of solution 

and the formulation of a suitable method of solution (Li et al. 2010). In fact, much of the 

LCP theory and algorithms are based on the assumption that the matrix   belongs to a 

particular class of matrices (Das 2005). The class of PD and PSD matrices arises in 

numerous applications in Mathematical Programming, Statistics, Complementarity 

Modeling, Engineering and Management Sciences Neogy and Das (2013), 

Bhimashankaram et al. (2013).  

 

A matrix   is said to be positive definite if the quadratic form      is positive for every 

nonzero vector     . For a PDLCP the feasible set        is a non-empty convex set. 

The inequality            in this case represents an ellipsoid, which is denoted as 

the complementarity ellipsoid    with boundary    .  
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The feasible set        and the complementarity ellipsoid    intersects in only one 

point that lies on the boundary     which is the unique solution of the problem Murty, 

(1988). 

 

While a matrix   is said to be positive semi definite if the quadratic form      is 

nonnegative for every nonzero vector     . For a PSDLCP the feasible set        

may be empty. Else, if         , the solution set        is a convex polyhedral and 

the LCP in this case may have a unique solution or it may have multiple solutions Chen 

and Xiang (2014). These solutions lie in the convex set                       

Murty (1988).  

3. Active-set methods 

A variety of methods have been proposed to solve QP. Two major successful approaches 

are active-set methods and interior point methods. These methods have proven to be quite 

effective at solving problems with thousands of variables and constraints Byrd et al. 

(2004). While active set methods need on average substantially more iterations than 

interior point methods, an active set iteration is computationally much cheaper Ferreau et 

al. (2014). In addition, active set methods are more robust and better suited for warm 

starts (where a good estimate of the optimal active set is used to start the algorithm); 

therefore there is a renewed interest in new active-set approaches (Leyffer 2005).   

 

Active-set methods originated as extensions of the simplex method for solving LPs. The 

basic idea of active-set methods is to fix a working set, a maximal linearly independent 

subset of the active constraints, and to solve the resulting constrained QP problem. The 

working set is then updated in each step until optimality is reached. The search directions 

are taken as the solution of a KKT-system formed from the QP Hessian and the working-

set constraint gradients. There are two main approaches used, the binding-direction 

methods and the nonbinding- direction methods. In the binding-direction methods, every 

direction lies in the null space of the working set matrix, so that all working-set 

constraints are active, while in the nonbinding-direction methods directions are inactive 

with respect to one of the constraints in the working set (Wong 2011).        

 

Active set methods can be divided into primal, dual and parametric (Ferreau et al. 2014). 

When finding a feasible starting point primal active-set methods generate a sequence of 

primal feasible iterates until dual feasibility is achieved, hence an optimal solution is 

obtained. Dual active-set methods for CQP generate a sequence of dual feasible iterate 

until primal feasibility is achieved, hence an optimal solution is obtained. In primal active 

set methods if no feasible starting point is known an identification phase,  named phase 

one, is used to generate a feasible point or detect infeasibility, while dual active-set 

methods do not require the usage of phase one. One relatively recent approach to solve 

QP problems are parametric active-set methods that are based on tracing the solution 

among the solution along a linear homotopy between a QP problem with known solution 

and the QP problem to be solved (Ferreau et al. 2014).   

 

Several active-set methods for nonlinear programming based on QP have been proposed, 

e.g. the sequential quadratic programming (SQP) and the sequential linear quadratic 

programming (SLQP). The SLQP follow a so-called equality constrained quadratic 
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program (EQP) approach in which the active set identification and optimization 

computations are performed in two separate phases. In the identification phase a linear 

program is solved to estimate the active set. In the second phase, an EQP is solved 

involving only the constraints that are active at the solution of the linear program. In 

contrast, SQP methods follow a so-called inequality constrained quadratic program (IQP) 

approach in which the new iterate and the new estimate of the active set are computed 

simultaneously by solving an inequality sub problem (Hei et al. 2008).  

4. The ellipsoid method 

The ellipsoid method was first introduced by Yudin and Nemirovskii (1976), then 

clarified by Shor (1977); they were interested in applying the method to convex, not 

necessarily differentiable, optimization. Later Khachiyan (1979) modified the method to 

derive the first polynomial time algorithm for LP. Although the algorithm is better 

theoretically than the Simplex method, which is an exponential time algorithm, 

practically it is slower and not competitive with the Simplex method (Bland et al. 1981). 

Yet, it remains as an important theoretical tool to develop polynomial time algorithms for 

a large class of convex optimization problems (Beck and Sabach 2012)   

 

The ellipsoid method is designed to solve decision problems rather than optimization 

problems (Rebennack 2008). Therefore the decision problem of finding a feasible point 

to the system of linear inequalities     , where        and     , is solved in an 

innovative way. The goal is to find the vector      satisfying the system of linear 

inequalities or to prove that such vector does not exist.  

 

The algorithm starts with an initial ellipsoid containing the solution set of      . The 

center of the ellipsoid is a candidate for a feasible point of the problem in each step. After 

checking whether this point satisfies all the linear inequalities, either the point is feasible 

and the algorithm terminates, or this point violates one or more of the given inequalities. 

One of the violated constraints is used to construct a new ellipsoid of smaller volume 

having a different center. The procedure is repeated until either a feasible point is attained 

or maximum number of iterations is reached which implies that the system is infeasible.   

5. The proposed algorithm 

The algorithm is a two phase iterative method that provides an estimate of the active set 

at the solution. In the first phase (the feasibility phase) the ellipsoid method is employed 

to compute an initial point for phase 2 or detect infeasibility. In the second phase (the 

optimality phase) a criterion based on the complementarity condition is used to define the 

working set until optimality is reached.    

5.1. Phase 1  

An n- dimensional ellipsoid with center    is formulated algebraically as the set  

        {        
            } 

with symmetric, positive definite, real valued     matrix B. The initial ellipsoid 

          is centered at the origin with a B matrix multiple of the unit matrix.  
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For each iteration  , it is checked whether the current ellipsoid center   
  satisfies the 

linear inequality system      , where   [    ]  and   [  ] . If all the 

inequalities are satisfied,    
  is a feasible point set    

 
   

  and the algorithm terminates. 

Otherwise, there is at least an inequality        which is violated by   
 . One of the 

violated constraints is used to cut the ellipsoid into two parts. A new ellipsoid     , 

which is smaller in volume than    is generated to enclose the part that contains the 

optimal solution. The updating formulas are as follows (Bland et al. 1981): 

    
      

   
    

 

√(      
 )

         (2) 

       (    
(    

 )(    
 )

 

(      
 )

)           (3) 

where           are the step, dilation and expansion parameters. 

 

Several simple modifications to these parameters were introduced to improve the 

convergence of the algorithm. One of these modifications is to use the deepest cut to 

generate smaller ellipsoids in which the parameters are given by  

  
    

   
    

     

          
    

        

      
          

    
    

√  
     

   

By computing   for each violated inequality the deepest possible cut is chosen; i.e. the 

cut corresponding to the largest  , where  
 

 
    . If the parameter   in the      step 

satisfies     , then             and the problem is infeasible. 

 

Clearly, if the number of iterations exceeds an upper limit    given by 

                   

where L is the length of the binary encoding of data,  

  ⌈        ∑(      (|   |   ))  ∑        |  |     

    

⌉ 

this also indicates that        is empty and the problem is infeasible.  

 

Having obtained a feasible interior point, a feasible boundary point   
  can be obtained by 

taking a step in the direction of the steepest descent           .  

 

Therefore, the initial point   
  is given by   

    
 
   , where   is the step size. It is 

required to take the maximum step   in the direction   such that the i
th

 constraint is active 

and none of the other constraints is violated. The step length taken is computed as:   

     
 
         ⇒    
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To avoid the constraints violation, the step length must be taken as: 

                       

 

This ends phase 1 and the boundary point   
  is taken as an initial point for phase 2. 

5.2. Phase 2  

This is the optimality phase in which complementarity is satisfied, the complementarity 

function        , while feasibility is maintained. The value of               is 

calculated at the point   
 . If      

    , a pre-specified convergence tolerance, then this 

point is the solution of the problem and the algorithm terminates. Else, phase 2 of the 

algorithm proceeds as follows.  

 

Since the complementarity condition            requires that either the variable 

     or the i
th

 constraint  is active, i.e.         , some of the constraints will be 

assumed to be active. The constraint function whose value at a current boundary point   
  

is less than a certain value           , which will be referred to as the threshold 

value    , will be considered active. While the constraint function whose value is more 

than this value will be considered inactive. Accordingly, for the constraints satisfying 

           the corresponding    is set equal to zero. Meanwhile, any      is kept 

fixed. The threshold value will be taken as         
        ⁄  where   is the 

reduction factor. Throughout the article this factor is initially set to zero. If the working 

set is empty, it is incremented by one until at least one constraint lies in the working set.  

 

After choosing the working set a reduced system of linear equations, which will be 

denoted as       , is solved to obtain the nonzero variables. This reduced system 

is obtained from the system of linear equations        after omitting the inactive 

constraints from the system and the columns corresponding to the zero variables from the 

matrix  . This leads to a valuable reduction in the size of the problem solved in contrast 

to most of the active set methods that solves in each step a Karush-Kuhn-Tuker (KKT) 

system formed from the QP Hessian and the working – set constraint gradients (Wong 

2011). The solution of the system together with the zero variables gives a complementary 

solution   . If the point    is feasible, then this point is a solution of the problem. Else, a 

step is taken from   
  in the direction         

  , which is a descent direction since 

        and     
    , without violating any of the constraints to get a new boundary 

point    
      

      with     
         

  , where  

      
    

      
       

 

    
                 

 

The previous steps are repeated until a point is attained with     
    , or no further 

improvements could be made.  

 

The convergence of the algorithm follows from the convergence of the methods of 

feasible directions. The sequence generated by such methods converges to an optimal 
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solution under the hypothesis of existence of minimizers (Rao, 2009). In the proposed 

algorithm, the used direction    is a usable feasible direction, i.e. one that reduces the 

objective function without violating the feasibility conditions, since the step taken in this 

direction violates no constraint and reduces the complementarity function.  

 

The algorithm can be summarized as follows 

The algorithm  

Input n = number of variables. 

    
     = starting ellipsoid, the matrix   and the vector  . 

Set    ,    . 

Output   A point         or detect that         . 

Step 1. Finding a feasible point. 

Check whether           . 

If            , set   
 
   , go to step 2. 

Else if            , compute   for the violated constraints by   .  

If     , return           , terminate.   

Else, select the constraint with the largest  , calculate          .    

Update the ellipsoid using formulas (2) and (3). 

     , if      , return         , terminate. 

Else, repeat step 1. 

Step 2. Finding an initial boundary point. 

Find    
    

 
   , where              

       
 

   
                 

Step 3. Choosing the working set. 

Calculate     
    

If      
    , terminate. 

Else, Set     . 

While the working set =   

    Compute         
         ⁄  

    If              for all i,      . 

    Else, the constraints satisfying             are added to the working set. 

    For                       , set      . 

End.  

Step 4. Solve the reduced system for   . 

If            then          , terminate. 

Else, compute         
    

Find    
      

     , where                  
       

 

    
                 

Go to Step3. 
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6.   Examples 

6.1.  Numerical Examples 

Example 1 

Consider the LCP 

  (
   
   
   

)    (
  
   
   

). 

 

A starting ellipsoid             is used. Applying the proposed algorithm, Phase 1 

gives a starting boundary point   
                   in 2 iterations. The 

complementarity function at this point     
           and         

        ⁄  . 

The value of the constraints function is    
                           the 

first constraint is assumed to be active, while      and      . Solving the reduced 

system        , where              gives     . Thus phase 2 gives the 

exact solution          in 1 iteration. When applying Lemke’s algorithm to solve 

this problem (Murty 1988), the solution is achieved after 8 iterations. In fact, the primary 

computational step in phase 2 is the same as that of Lemke’s algorithm (the elementary 

row operation). Yet, the number of variables used by phase 2 of the proposed algorithm is 

less than the variables used by Lemke’s algorithm by more than half.  

Example 2 

Consider the LCP 

  

(

 
 

   
   
   

  
  
  

   
   

  
  )

 
 

   

(

 
 

   
   
  
  
  )

 
 

. 

 

A starting point   
                                    is found in one 

iteration. The complementarity function at this point     
          , accordingly 

        
           ⁄ . Computing the values of the constraints function    

    
                                  . Then the leading three constraints 

are assumed to be active while            is assumed to be zeros. Solving the reduced 

system with     (
   
   
   

)    (
   
   
  

) gives    

(

 
 

      
      

        
 
 )

 
 
   Since    is 

infeasible, the descent direction is computed, and 

  
                                with  (  

 )        ,            

and    
                                      . Since      it is 

kept fixed and the leading two constraints are assumed to be active while            is 
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assumed to be zeros. Solving the reduced system with    (
  
  

)    (
   
   

) gives 

                      which is the solution. 

6.2. A practical example 

Computing the reaction forces arising between rigid bodies in contact is useful in a wide 

variety of applications including robotics, computer graphics, animation, haptics and 

mechanical simulation (Lloyd 2005). The typical model of contacting rigid bodies is 

composed of the Newton-Euler dynamics equations, non-penetration constraints, 

unilateral-force constraints and frictional constraints. Choosing the suitable coordinates, 

the equations and constraints rigid body contacts can be formulated as a linear 

complementarity problem (Chakraborty et al. 2014, Elkahoui et al. 2001, Yamane and 

Nakamura 2008).  

 

A common problem in rigid body physics engines is jitter, which affect piles of objects in 

particular. Bodies close to rest can visibly jitter, it is required to avoid jitter. Piles require 

stable simulation of static friction, dynamic friction and resting contact (Tonge et al. 

2012). The following LCP model of jitter free stacking is according to Kenwright and 

Morgan (2012), and Tonge, Benevolenski, and Voroshilov (2012). 

 

Consider a scene having   rigid bodies with positions     , external forces        , 

forces applied at the contact points      and masses       . Collision detection 

identifies   contacts between the rigid bodies, represented by the constraints     with 

Jacobian     ⁄        . Constraints stabilization and friction are omitted for 

simplicity of modeling. Contacts must satisfy the velocity Signorini condition: forces 

must not be attractive (      velocities must move the system out of penetration 

(     , and a force should be applied at a contact only if the contact is not separating 

(      . The resulting continuous model is the following differential variational 

inequality: 

  ̈            ̇              
 

The model is discretized using a semi-implicit stepping scheme with time step h, and 

introduce the constraint impulse     .  

                                 
 

Multiplying both sides by      yields 

(                                              
 

This discretized model is a LCP rather than a linear system due to the Signorini 

condition. The matrix   and the vector   of the LCP (q, M) are given by: 

             and                     

where   is the effect mass matrix,   is the Jacobian relating the motion of the bodies in 

generalized coordinates to the motion of the contact points,      is the vector of external 

forces, and   is the velocity vector. The matrix   is symmetric positive definite. A 
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complementary feasible solution to this LCP is a pair of vectors      , where the 

vector       is the vector of relative accelerations at the contact points and the vector   

is the vector of forces applied at the contact points. 

 

Consider the example given by Kenwright and Morgan (2012). The configuration 

consists of three objects equal in mass (one unit each) stacked upon one another on an 

immovable surface. When an external force is applied downward due to gravity, it is 

required to calculate the modified force to stop the objects from moving downwards. The 

configuration is shown in Figure 1.  

 

Figure 1.   Numerical Example (Kenwright and Morgan 2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mass matrix and Jacobian are as follows: 

     

(

 
 
 
 

 

  
   

 
 

  
  

  
 

  
 

   
 

  )

 
 
 
 

 (

    
    
    
    

)    (
    
    
    

), 

where the number of columns represents the number of rigid bodies (4) and the number 

of rows represent the number of constraints (3 contact positions). 

 

The velocity and external force vectors are as follows:   

  (

 
  
 
 

)            (

  
  
  
  

), 
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all the objects have zero initial velocities, except the second to top one which is set to 

have an internal downward velocity.  

 

Thus the matrix   (
   
   
   

) and the vector   (
  
  
  

)    

 

The proposed algorithm is used to solve the problem. A boundary point is obtained in one 

step, then the solution          after two steps solving a reduced system with  

        in each step. This value is then put back into the system to get the constraint 

force required to prevent the movement of the objects downwards     
            . 

7.   Conclusion 

In this article an active set algorithm is proposed. It solves the LCP for the vector z only 

in contrast to most of the LCP algorithms, e.g. pivoting algorithms and interior point 

algorithms, which solve the problem for the pair of vectors (w, z) thus reducing the 

number of variables. In addition pivoting algorithms as Lemke’s algorithm is numerically 

sensitive, especially in the presence of redundant contacts, and requires working with 

large matrices; e.g. the LCP matrix for a problem with 16 contacts and an 8 sided friction 

cone approximation has a size of 160 (Lloyd 2005); interior point algorithms are 

computationally more expensive than active set algorithms (Ferreau et al. 2014).  

 

The algorithm is composed of two phases. In phase 1, the ellipsoid method is employed 

to test for the problem feasibility and to provide a starting point for phase 2 in case of 

feasibility. This starting point is an advanced point, this warm start allows a good 

estimate of the active set, accordingly the iterations required to reach optimality is 

reduced. In phase 2, a criterion based on the complementarity condition is used to detect 

the working set per iteration until optimality is reached. This criterion leads to a reduction 

in the size of the linear system solved each step to get a search direction. Numerical 

examples were solved to test the algorithm. A simple practical example was given to 

illustrate the applicability of the algorithm to solve such problems. 
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