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Abstract 

Chambers and Dorfman (2002) constructed bootstrap confidence intervals in model based 
estimation for finite population totals assuming that auxiliary values are available throughout a 
target population and that the auxiliary values are independent. They also assumed that the 
cluster sizes are known throughout the target population. We now extend to two stage sampling 
in which the cluster sizes are known only for the sampled clusters, and we therefore predict the 
unobserved part of the population total. Jan and Elinor (2008) have done similar work, but unlike 

them, we use a general model, in which the auxiliary values iX  are not necessarily independent. 

We demonstrate that the asymptotic properties of our proposed estimator and its coverage rates 
are better than those constructed under the model assisted local polynomial regression model. 
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1.   Introduction 

1.1 Background 

In specifying a sampling strategy in survey sampling, there exist different 
approaches: the design based approach, the model assisted approach, the 
model-based approach and randomization-assisted model based approach. For 
a detailed review of these approaches, see Smith (1976), Smith (1994). Our 
concern is the model based approach. Ouma and Wafula (2005) reviewed the 
work of Chambers and Dorfman (2002) and modified the conditions. However, 
they limited their work to simple random sampling. Suppose that P is a finite 
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population of N identifiable units, Y denotes a survey variable having population 

values , (  1,2,3,..., )iY i N=  and X to denote an auxiliary variable with 

corresponding population values , (  1,2,3,..., )iX i N= . If the values 

, (  1,2,3,..., )iX i N=  are all known but the characteristic values , (  1,2,3,..., )iY i N=  

are known only for a  Sample, say s , of n N≤ of the population elements, one 
way of characterizing the sample selection of the survey variable is to assume 

that for every unit on the sampling frame, a new variable, say iS  takes a value 

equivalent to the number of times which that particular population unit’s value is 
observed. The distribution of these values defines the design of the sample 
survey. 
 

Once the sample has been chosen, the values ( , )iY i s∈  are known. Now, let the 

distribution of iS  depend on the known population values of X  and suppose that 

one wishes to use the sample values together with the known values of X  to 

make an inference about the unknown but finite population total 
1

N

i
i

T Y
=

= ∑  ofY . A 

major concern in model based approach to statistical survey inference has been 
finding robust estimators for the population parameters under model 
misspecifications. 

1.2 Outline of the paper 

This paper is organised as follows. In Subsections 1.3, 1.4, 1.5, 1.6, we give a 

brief highlight on model based estimation, the local polynomial estimation, 

confidence intervals, and two stage cluster sampling respectively, in each case, 
pointing out some gaps that our proposed estimator attempts to fill. In Section 2, 

we propose an estimator for the finite population total and suggest a bootstrap 
confidence interval for it in Section 3. In Section 4, we derive the properties of our 

proposed estimator. We conclude this paper in Section 5 with a simulation 

experiment and some discussions. 

1.3 Review of model based estimation 

The model based approach to statistical survey sampling has been developed to 

detailed extents. In particular, we build up on the work of Dorfman (1992) who 

proposed a non-parametric regression estimator for the population total under a 

model based approach. He illustrated that the developed estimator of the 
population total performs better when compared to the corresponding design 

based estimators and linear regression estimators. The model due to Dorfman 
(1992) relies on the assumption that the regression line passes through the origin 

and that the auxiliary values iX  are independent. Suppose one or all these 

assumptions are incorrect. Will the prediction intervals still occupy the same 

nominal properties? and will the estimator of the population total still be design 

unbiased? 
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1.4 Review of the local polynomial estimation 

Dorfman (1992) considered a non-parametric regression model for estimating 
population totals in finite populations. He proposed a non-parametric regression 
based estimator for the population total. To develop the estimator, he assumed 
that the population values were generated by a model defined as 

( )i i iY m x e= +         (1.1) 

where 1, 2,3,...,i N=  , ( ).m  is a smooth function and ie  is an independent random 

variable with mean zero and constant variance. The non-parametric population 
total estimator due to Dorfman (1992) is defined as 

 ( )D i i
i s i s

T Y m x
∧∧

∈ ∈

= +∑ ∑         (1.2) 

where ( )i i i i
i s

m x w x y
∧

∈

= ∑  and ( ) ( )i i b i b i
s

w x k x x k x x= − −∑ is the weight associated 

with the ith unit of the sample. Further, ( )k u  is a symmetric density function, b  a 

scaling factor and ( ) ( )1 /bk u b k u b−= . In his empirical study, Dorfman (1992) 

illustrated that the estimator  DT
∧

 performs better when compared to the 
corresponding design based and linear regression estimators. These results 
were also confirmed by Cheng (1994) who applied non-parametric regression in 
estimating population parameters under conditions of missing data. Breidt and 
Opsomer (2000), also assumed model 1.1 and developed a new class of model-
assisted non parametric regression estimators for the population total, based on 
local polynomial smoothing, a kernel method. Their estimator is defined as 

 
ii

OB i

i s i si

y m
T m

π

∧
∧ ∧

∈ ∈

−
= +∑ ∑                (1.3)   

where 

 1, 2,3,...,i N= , ( )i pr i sπ = ∈ , i si sm w y
∧

=   

and 
1

,
i j

si

j

x xk
w diag j s

h h bπ

 − 
= ∈  

   
 with h  denoting the bandwidth. In their 

simulation study, OBT
∧

 performs better than the Horvitz-Thompson estimator 
defined as 

 i
HT

i s i

Y
T

π

∧

∈

= ∑                      (1.4) 

However, the theory developed in Breidt and Opsomer (2000) for the local 
polynomial regression estimator applies only to direct element sampling designs 
with auxiliary information available for all elements of the population. 
Consequently, we offer more insight on the consistency of the coverage rates 
using a general super population model in two stage sampling.  Ji-Yeon et al. 
(2009) recently extended the work of Breidt and Opsomer (2000) to two stage 
cluster sampling where the estimators are linear combinations of estimators of 
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cluster totals with weights that are calibrated to known control totals. They 
indicated that the local polynomial regression estimators are constructed by 

modeling the M points ( ),i ix t  as a realization from an infinite super population 

model ζ in which 

( )i i it x eµ= +          (1.5) 

where ( )( ),var,0~ xNei  ( )xµ  is a smooth function of x  and ( )var x  is also 

smooth and strictly positive. Their estimator is defined as 

i i
y i

i s i s i

t
t

µ
µ

π

∧ ∧
∧ ∧

∈ ∈

−
= +∑ ∑        (1.6) 

where 

 ( )
1' ' '

si i si si si si sie X W X X W tµ
∧ ∧−  =  

 
      (1.7) 

In the equation 1.7,  

1i j

si

m m j

x xk
w diag

h h bπ

 − 
=   

   
, ( ) ( )1, ,...,

q

si j i j i
j s

X x x x x
∈

 = − −  
 

and ie represents the first column of the identity matrix siX . In their simulation 

results they concluded that the estimator 1.6 is more efficient than the Horvitz-
Thompson and the linear regression estimators when the mean function of the 
super population model is non linear while being nearly as efficient when the 
model is linear.  
 
Recently, Jan and Elinor (2008) considered the problem of estimating the 
population total in two-stage cluster sampling when cluster sizes are known only 
for the sampled clusters, making use of a population model arising from a 
variance component model. They considered the application of predictive 
likelihood technique in estimation of the unknown part of the population total 

∑∑
= =

=
N

i

m

j
ij

i

yT
1 1

         (1.8) 

where N is the number of primary sampling units or clusters and each cluster 

consists of im  units which are only known for the sampled clusters, ijy  is the 

value of the variable of interest for unit j of the ith cluster. They assumed the 

population model defined by the equations 

 ( ) ( ) ( ) ( )2, var var , cov 0i i i i i jE M x M x M Mβ σ= = =    (1.9) 

( ) ( ) ( )2 2, var , covij ij ij ikE Y Y Y Yµ τ ρτ= = =      (1.10) 

in cases where j k≠  and 0ρ ≥ . To predict the unobserved value of Z  in the 

estimate of the population total T  given by 

1 1

iMN

ij
i j

T Y Z
∧ ∧

= =

= +∑∑         (1.11) 
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they developed a partial likelihood for Z , ( ),L z y from the generalized joint 

likelihood for the unknown quantities z and θ given by  

( ) ( ), ,L z y f z yθ=         (1.12) 

They applied the design based Horvitz-Thompson estimator of population total, 

i i
HT

i so i

m yx
T

n x

∧

∈

= ∑         (1.13) 

where 0n , represents the number of the primary sampling units selected in first 

stages and the model. In their simulation, they considered three coverage 
measures of Z ; the model based over the joint distribution of Y and Z , the design 
based over the sampling design, and regarding the total sample as a stochastic 
variable. They concluded that for a small number and the unconditional coverage 
no of sampled clusters, the three intervals differ significantly, but for large n0, the 
three intervals are practically identical. 
 
Further, a comprehensive simulation study of the model based and the design 
coverage properties of the prediction intervals indicate that for large sample 
sizes, the coverage measures achieve approximately the nominal level 1 α−  and 
are slightly less than 1 α− for moderately large samples and for small sample 
sizes, the coverage measures are about1 2α− , being raised to 1 α−  for a 

modified interval based on 
0 2nt −  distribution. We note that the models 1.9 and 

1.10 assume that the regression line passes through the origin and that the 

auxiliary values iX  are considered independent. The questions raised in 

subsection 1.3 therefore remain unanswered. 

1.5  Review of confidence intervals in survey sampling 

Confidence intervals are usually constructed around point estimators in order to 
provide a properly scaled measure of uncertainty associated with the estimator. 
The conventional method is based on the assumption that the sample size is 
large enough for the Central Limit Theorem to hold. This is however not always 
true in practice.  
 
As a consequence Do and Kokic (2001), Chambers and Dorfman (2002) applied 
the bootstrap method to develop model based confidence intervals to address 
situations where the sample sizes are not large. They also proposed 
modifications of the procedure to account for misspecifications in a working 
model. They further noted that there is greater efficiency in using of successive 
model refinements and estimators obtained using the bootstrap approach as 
opposed to their competing estimators. However, the evidence of the extended 
simulation study on the beef population showed that the achievement of the 
research did not precisely attain its goal. They therefore recommended the 
construction of sounder confidence intervals using the bootstrap approach. 
Ouma and Wafula (2005) suggested the use of a general super population model  

( )i i iY m x e
∧ ∧

= +          (1.14) 
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where 1, 2,3,...,i N= , ( ).m  is a smooth function, ie  is an independent random 

variable with mean zero and constant variance. They used a bandwidth of 1.5 

and simple random sampling with replacement to generate the values of survey 

variableY . In their empirical study, they established that their coverage rates 

were higher compared to that of Chambers and Dorfman (2002). We now extend 
this to two stage cluster sampling. 

1.6  Review of two stage cluster sampling  

Let U  be a finite population of N  primary sampling units spsu  or clusters 

labeled N,..,2,1 , 1,2,...,U N=  where N  is a known number, iM , Ni ,..,2,1=  be the 

number of secondary sampling units sssu  in the thi psu . Let ijy Ni ,..,2,1= , 

iMj ,..,2,1=  be the value of the response variable Y  for the ssu j  belonging to 

the psu  i . In the previous works, an assumption has been made that the element 

specific auxiliary data ',ijx Ni ,..,2,1= , iMj ,..,2,1=  are known for all clusters and 

population elements, respectively.  

 

For our case, we assume that the cluster sizes are known only for the sampled 

clusters and therefore the survey values ijy , Ni ,..,2,1= , iMj ,..,2,1=  are 

generated using the model  

ijijij exmY
^^^

)( +=         (1.15) 

with Ni ,..,2,1= iMj ,..,2,1= . 

2. Proposed Estimator for population total. 

Jan and Elinor [6] used the model 1.15 to define the population total as   

∑∑
= =

=
N

i

m

j
ij

i

yT
1 1

         (2.1) 

where N  is the number of primary sampling units or clusters and each cluster 

consists of im  units which are only known for the sampled clusters, ijy  is the 

value of the variable of interest for unit j  of the thi cluster. Referring to the same 

model 1.15 we may write that   

∑ ∑∑∑
= +== =

+=
N

i

M

mj
ij

N

i

m

j
ij

ii

yyT
1 1

^

1 1

^ ^

ZY
si sj

ij

i

+= ∑∑
∈ ∈

              (2.2)((( 

and it follows that the problem is now reduced to the that of predicting the 

unobserved values z  of the random variable Z . To do this, we apply the general 
model 1.15 to predict the values of the unobserved survey variables 
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ijy , Ni ,..,2,1= , iMj ,..,2,1= . Therefore the estimate of the population total is 

given by  

( )∑ ∑∑∑
= +== =







++=

N

i

M

mj

ijij

N

i

m

j
ij

i

i

i

exmyT
1 1

^^

1 1

^

      (2.3) 

3. Proposed Bootstrap Confidence Interval 

Under the model based approach, the sampling distribution of the estimator 
corresponds to the distribution of possible alternative point estimates that could 
arise given the selection of the same sample S from populations similar to the 
actual underlying population of the observed data. To construct a confidence 
interval for T that reflects the actual finite sample and finite population 

characteristics of the distribution of 
^

T  we estimate such a distribution from the 
sample data.  For our case, we make use the sample data and the working 
model 1.15 to generate a sequence of alternative realizations of Y using non 

parametric estimates of )( ijxm . Let *
ijY  be an estimator of the values of Y , where  

^
* ( )ij ij ijY m x e

∧

= +         (3.1) 

 

In equation 3.1, ije  is selected via two stage cluster sampling with replacement 

from : 1, 2... , 1, 2,..ij ie i n j m= = .  

Having obtained the bootstrap population, the bootstrap version *
1

^

T of 1

^

T , using 
the same sample as the parent sample, is calculated.  The process is then 

repeated a large number, B , of times to obtain *
^

*
2

^
*

1

^

,...., iBii TTT . Then the 

bootstrap confidence interval is obtained using  

( ) 














 −

2

1
,

2
** αα QQ  

where )(* pQ  is the thp  – quantile of bootstrap distribution. 

4.   Properties of the proposed estimator and resulting confidence interval 

4.1 Unbiasedness of the model 

Considering the model 1.15 we may write that 

)(
^

ijijij xmYe −=         (4.1) 

and 

=)(*
ijxW


































−
+


























−
− iij r

m

n

n

m

n

m
W

2

1

2

1

2

1

11
1     (4.2) 
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where m  is the bootstrap sample size, ir  is the number of times the 
thi  primary 

sampling unit is selected, ijx  is the thj  observation made from the thi  cluster, and 

)( ijxW  is the initial sampling weight of secondary sampling unit equal to the 

inverse of its selection probability, that is;  

)( ijxW =
ijπ

1
         (4.3) 

with  ni ,..,2,1= ;  inj ,..,2,1= . 

 

However there is considerable benefit and little loss in choosing 1−= nm . Rao 
and Wu (1998) 

 

Therefore, 

=)(*
ijxW

1

21

1
i

ij

n
r

nπ

 
 − 

       (4.4) 

ni ,..,2,1= ; imj ,..,2,1= , and  

( )
^^

)( ijijij xmYEeE −=







       (4.5) 

So 

∑
∈

=
sji

ijijij YxWxm
,

^

)(*)(        (4.6) 

( ni ,..,2,1= , inj ,..,2,1= ) yielding 









)(

^

ijxmE  =

1

2

1

ij

i
i j ij

Yn
E r

n π≠

  
  −    

∑       (4.7) 

Now, let the initial sampling weight of secondary sampling units 
ij

ijxW
π

1
)( = be 

the kernel based weights. Then we have  

( )
( )∑ −

−
=

ikijb

ikijb

ij
xxK

xxK
xW )(        (4.8) 

with 1)( =∑
∈sij

ijxw , further, b being a scaling factor, ( )buKbuKb /)( 1−=  and )(uk  is 

a symmetric density function which is such that ℜ∈∀u with the symbols bearing 
their usual meanings, then 

(a) ( ) 1=∂∫
∞

∞−

uuk ,(b) ( ) ∞<∂∫
∞

∞−

uuk 2 , (c) ( ) ∞<∂∫
∞

∞−

uuku 23
and (d) ( ) ( )ukuk −=  

Therefore, 
^

( ) ( ) [ ( )]ij ij ijE e m x E m x
∧

= −        (4.9)  
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But as 0→b  and ∞→nb , )()(
^

ijij xmxm →  meaning that 0ijE e
∧ 

= 
 

 which is the 

mean of 
ije

∧

in model 1.15, completing the proof that the proposed model is 

unbiased. 

4.2  Asymptotic variance of the error term 

From subsection 4.1, it follows that 
2^ ^

ij ijVar e E e   =      
        (4.10) 

Therefore  

2^^







=





ijij eEeVar  = 

2^

)( 





− ijij xmYE =

2^^
2

)()(2 





+− ijijijij xmExmEYEY  (4.11) 

which leads to 

2)( ijeE = )()(
^

2
ijij xmVarx +σ       (4.12) 

But 







)(

^

ijxmVar =

1

2
1 1( 1)

1

ij ik

ij
i s

x xn
Var n b k Y

n b
− −

∈

 −   −    −   
 

∑
1

^

)(
−









ijs xd  (4.13) 

where ( )
( )

1

1
s ij

b ij ik

d x
k x x

−∧

  =  −∑
 







)(

^

ijxmVar =

2

2 2( 1) ( )
1

ij ik

ij
i s

x xn
n b k x

n b
σ− −

∈

−  
−   

−   
∑

2
^

)(
−









ijs xd   (4.14)  

But 

 

2
^

)(
−







ijs xd =

2

)(

−









ijs xd



























−++−

−−

2

1

2

1
3//

2

2

)1()(
)(

1 bnbOxdk
xd

b
ijs

ijs

 (4.15) 

and 

)( ij

ikij
x

b

xx
k σ







 −
= )()()( 2

1
3 bbOxdxb ijsij ++σ     (4.16) 

So using equations 4.15 and 4.16 in equation 4.14 we have that 

^

( )ijvar m x = ∑
≠
∈

−−








 −
−









−
ki
si

ij

ikij
x

b

xx
kbn

n

n
)()1(

1

2

22

2

σ
2

^

)(
−









ijs xd    (4.17) 
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Next we obtain the asymptotic expansion of 
^

( )ijvar m x  using the following 

theorem as a basis.  

Theorem 

Let )(uk  be a symmetric density function with 

0)( =∫ duuku and k u k u du2
2 0= >∫ ( ) . Assume that n and N increase together such 

that π→
N

n
 with 10 << π . If further the sampled and non sampled values of x  

are in the interval [ ]dc,  and are generated by densities sd  and spd −  respectively, 

both bounded away from zero on [ ]dc,  and with continuous second derivatives,  

and if for any expression of Z , it can be shown explicitly that 

[ ] )()(/ BOUAUZE +=  and [ ] )(/ COUZVar = , then 









++= 2

1

)( CBOUAZ p .  

 
Using this theorem, we may write equation 4.17 as   

^

( )ijvar m x = ( )
11

1 2 22( 1) ( ) 1
1

ij

n
n x O n b

n
σ

−−
−

    
− + −   

−    
  (4.18) 

which reduces to 

^

( )ijvar m x =
( )

( )
11

2 22
2

( ) 1
1

ij

n
x O n b

n
σ

−−   
+ −  
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and noting that as the number, nmi =  of the second stage samples tends to be 

large, nn ≅−1  so that we have 
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again as ∞→nb ,  
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hence  
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which as ∞→n , reduces to 
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4.3 Conditional relative bias  of the estimator for the population total 

From its definition, the conditional relative bias of using T
∧

 as an estimator of T  is  
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In this case, 
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meaning that 
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Using equation 4.9 in equation 4.26, it can be seen that as ∞→n  this bias, 
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asymptotically tends to zero. 

5.   Empirical Study 

5.1  Description of the simulation experiment 

Simulation experiments were performed in order to compare the performance of 
the model based regression estimator with that of the model assisted local 
polynomial regression estimator in two-stage element sampling due to Ji-Yeon et 
al. (2009).  
 

To obtain the model based estimator for the population total, iX  are generated as 

independent and identically distributed on uniform (0, 1) random variables. The 
population consists of 100 clusters. In stage one a sample of =in 20 clusters is 

taken which forms the primary sampling units from the total cluster size =iN 100 

using simple random sampling with replacement. 
 
In stage two, from each selected clusters, say ( )inii ,...2,1, =  we select 

sample ijm , 50,...2,1=j , from 000,1,...,...,2,1 kmj =  that is the thj  sample from a 

fixed selected thi cluster using simple random sampling with replacement from 

total kM =1000 elements. We consider the variable of interest ijY , 

kk Mmj ,...,,...,2,1=   which are known only for the sample and using the known 

auxiliary variables ,ijx kMj ,...,2,1=  we generate the non sample values using the 

model given in 1.14. 
 

To simulate bootstrap values of kM  independent samples of size km  we use 

simple random sampling with replacement within cluster i  in order to obtain the 
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bootstrap population values and the model ijijij exmY
^^

*
)( +=  to 

obtain kiMiii yyyy *
3

*
2

*
1

* ,...,, . Further, we let ]1,0[~)( UuK  so that the model based 

regression estimator for the population total is given by equation 2.3 

where ( )ijxm
^

 is defined by equation 1.14 and ( )
^

2~ 0,ij ije xσ 
  .   

 

This procedure is repeated a large number 1000 of times such that we 

have
*

1

^

iT ,
*

2

^

iT ,
*

3

^

iT ,…,
*

1000

^

iT .We then construct the 95% confidence intervals for 

population total NiT i ,...2,1,
^

* = . Similarly, we compute the local polynomial 

estimator for the population total suggested by Ji-Yeon et al. (2009) given in 
equation 1.6.  For each mean function values of ijx , each study 

variable ijy ( ).2,1=j  for km  values from kM  elements are generated as  

( )
2

1

k

jk

k

ijj

jk
M

e

M

x
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µ
        (5.1) 

where, jky is the thk observation made from the thj  cluster, and  

( )( )ijij xNe 2,0~ σ . 

 

Using above bootstrap procedure, the bootstrap estimate of the population total  
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is calculated, where { }sii ∈= Prπ , sji
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∧

 is 

as defined in equation 1.4. Similarly, we construct the confidence interval for the 
population total T and compare performance of the developed model on 
estimation of T with that due to Ji-Yeon et al. (2009) on Local Polynomial 
regression estimation in two-stage sampling. 

 

In computation of the model assisted local polynomial regression estimators, we 
again adopt a method due to Ji-Yeon et al. (2009). This we do as a means to 
having a realistic comparative study. We therefore apply the Epanechnikov 

kernel ( ) ( ) { }1

21
4

3
≤

Ι−=
u

uuk  and different bandwidths for computation of the Local 

polynomial regression estimator of population totals. This helps to compare the 
bias, mean squared errors and confidence interval lengths of the estimators 
using both the model based and model assisted local polynomial regression 
approaches.   
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5.2 Simulation Results 

Table 1 gives the results of Mean Squared Error of the model based MSEmb and 

the Local Linear Polynomial regression estimator of the population total in two 

stage cluster sampling. 

Table 1:   Mean Squared Error (MSE) 

Band width LP  MB 
0.005 0.7845631 1.2684580 
0.006 0.7961103 1.7980100 
0.007 0.7528211 1.4856560 
0.008 0.7523094 1.4641440 
0.009 0.7909287 1.3896480 
0.010 0.7740691 0.1187740 
0.020 0.7615400 0.0846216 
0.030 0.7653660 0.0752471 
0.040 0.7639690 0.0720307 
0.050 0.7621990 0.0672295 
0.060 0.7740690 1.1703404 
0.070 0.7615400 0.7534386 
0.080 0.7551610 0.7534386 

 

It can be seen that at lower bandwidths the MSE for the model based estimators 
is higher compared to that of the Local Polynomial regression estimator. As the 
bandwidth increases, the MSEmb drastically reduces and approximately remains 
low. It is important to note that an increase in the bandwidth does not significantly 
change the MSE for the Local Polynomial Regression Estimators LPRE. 
Generally, the Model based estimator is more efficient than the Local polynomial 
estimators of the totals. Table 2 is a summary of bias for the model based 
estimator of the population total and the Local Polynomial regression estimator. 

Table 2:   Summary Results of Bias 

Band width LP  MB 
0.005 -0.0443350 0.00399122 
0.006 -0.0381211 0.00200561 
0.007 -0.0380143 -0.0004676 
0.008 -0.0384639 -0.0036316 
0.009 -0.0404816 -0.0001817 
0.010 -0.0985294 -0.0032099 
0.020 -0.0360501 -0.0046855 
0.030 -0.0396870 -0.0265196 
0.040 -0.0536516 -0.0156076 
0.050 -0.0552965 -0.0201331 
0.060 -0.0985294 -0.0384731 
0.070 -0.0360501 -0.0538332 
0.080 -0.0496699 -0.0538332 
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The bias for the model based estimator is much lower than those of the Local 
Polynomial regression estimators. The large bias associated with the Local 
Polynomial estimators are reflected in the values of its estimators which are 
much lower than the true simulated population total of 99.5078. This can best be 
attributed to the choice of the variance. The precision of estimation can be 
improved by choosing a smaller value of the variance. Table 3 now presents a 
summary of the estimated population totals for the model based and the Local 
Polynomial regression estimators in two stage sampling. 

Table 3:   Summary Results of Estimated Population Totals 

Band width LP  MB 
0.005 60.81535 99.27500 
0.006 61.38900 99.01420 
0.007 61.49330 99.92000 
0.008 60.93400 99.20200 
0.009 59.02400 99.32200 
0.010 58.64900 97.47400 
0.020 60.24100 93.09100 
0.030 59.81800 88.08000 
0.040 59.34000 83.90000 
0.050 59.30700 79.47900 
0.060 58.64900 59.49500 
0.070 60.24000 59.82600 
0.080 59.82400 59.82600 

 
Table 4 now gives the coverage rates of 95 % confidence interval lengths for 
model based and Local Polynomial Regression models. 

Table 4:   Confidence Interval Lengths 

Band width LP  MB 
0.01 38.97447 1.531668 
0.02 40.74652 1.315887 
0.03 39.52278 1.227330 
0.04 38.87707 1.212220 
0.05 38.72655 1.148093 
0.06 38.93319 38.85571 
0.07 38.86739 40.20200 
0.08 38.54396 38.60400 

 
The confidence intervals generated by the model based method are much tighter 
than those generated by the Local polynomial method at lower bandwidths but at 
larger bandwidths, both the LPRE and the model based estimators of population 
total perform poorly. We note that the best performing confidence interval is one 
whose coverage rate is close to the true population total and its length small. 
Consequently, the model based estimators are far better than their local 
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polynomial regression estimators. The results in general show that the model 
based approach outperforms the model assisted method at 95% coverage rate. 
The bias under model based approach is also much lower. 
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