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Abstract 

Bayesian and non-Bayesian estimators are obtained for the unknown parameters of Weibull distribution 

based on the generalized Type-II progressive hybrid censoring scheme and different special cases are 

obtained. The asymptotic variance covariance matrix and approximate confidence intervals based on the 

asymptotic normality of the maximum likelihood estimators are obtained. Bayes estimates and Bayes risks 

have been developed under a squared error loss function using informative and non-informative priors for 

the unknown Weibull parameters. It is observed that the estimators obtained are not available in closed 

forms, although they can be easily evaluated for a given sample by using suitable numerical methods. 

Therefore, a numerical example is considered to illustrate the proposed estimators. 

Keywords:  Asymptotic Variance Covariance Matrix; Bayes Estimator; Bayes Risk; 

Generalized Type-II Progressive Hybrid Censoring Scheme; Maximum Likelihood 

Estimator; Weibull Distribution. 

1. Introduction 

In reliability studies and life-testing experiments, the failure time data of experimental 

items are often not completely available. Reducing the cost and time associated with the 

experiments is crucial in statistical experiments with censored data. Kundu and Joarder 

(2006) proposed a progressive hybrid censoring scheme (PHCS). This scheme has 

become quite popular in reliability and lifetime testing studies. Childs et al. (2008) 

proposed Type-II PHCS for the purpose of increasing the efficiency of statistical analysis 

as well as saving the total test time. The drawback of the Type-II PHCS is that far fewer 

than m  failures may be observed and it might take a very long time to observe -thm  

failures and complete the life test. For this motivation, Lee et al. (2015) proposed a 

generalized Type-II PHCS, which the experiment is guaranteed to terminate at a pre-

fixed time. 

 

The rest of the paper is organized as follows. In Section 2, the model of generalized 

Type-II PHCS is described. In Section 3, we introduce the maximum likelihood 

mailto:ashoursamir@hotmail.com
mailto:dr_ahmed_elshahhat@yahoo.com


S.K. Ashour, A. Elshahhat 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp213-226 214 

estimation for the unknown parameters of Weibull distribution under the generalized 

Type-II PHCS and special cases are given. The asymptotic variance covariance matrix 

and the approximate confidence interval based on the asymptotic normality of the 

maximum likelihood estimators (MLEs) are obtained. In Section 4, the Bayes estimates 

and the Bayes risks under squared error loss (SEL) function for the Weibull parameters 

based on generalized Type-II PHCS are provided. In Section 5, a numerical example is 

considered to illustrate the proposed estimators. The paper finally ends with a brief 

conclusion given in Section 6. 

2. Model Description  

Generalized Type-II PHCS proposed by Lee et al. (2015), to overcome the drawbacks of 

Type-II PHCS. This censoring scheme can be described as follows: Consider a life test in 

which n  identical items are put on test. Assume that      1 2
, ,...,

n
X X X  denote the 

corresponding lifetimes from a distribution with the cumulative distribution function 

(CDF),  F x , and the probability density function (PDF),  f x . The integer m , times 

1T  and 2T  are pre-assigned such that m n  and 1 20 T T   , and also 1 2, ,..., mR R R  

are pre-assigned integers satisfying 
1

m

ii
R m n


  . Let 1D  and 2D denote the number 

of observed failures up to time 1T  and 2T , respectively. Similarly, the number of survival 

units withdrawn at times 1T  and 2T  are 
1

1*

1 1 1

m

D ii
R n d R



 
   and 

2

2

*

1 2 1

d

D ii
R n d R 

   , respectively.  

 

The experiment terminated at time    *

1 2max ,min , ,
m

T T X T  all of the remaining 

units at the terminated time *T  are withdrawn from the experiment. If   1m
X T , then 

instead of terminating the test by withdrawing the remaining mR  items after the -thm

failure, the researcher continue to observe failures but without any further withdrawals up 

to time 1T , therefore, 
11 0m m DR R R     . If  1 2m

T X T  , terminate the test at 

 m
X . If   2m

X T , terminate the test at time 2T . Therefore, the generalized Type-II 

PHCS modifies the Type-II PHCS by guaranteeing that the test will be terminate at a pre-

fixed time 2T . Therefore, 2T  represents the absolute longest time that the researcher is 

willing to allow the experiment to continue. A schematic illustration of generalized Type-

II PHCS is depicted in Figure 1. 
 



Bayesian and Non-Bayesian Estimation for Weibull Parameters Based on Generalized Type-II Progressive …… 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp213-226 215 

 

Figure 1:   Schematic illustration of generalized Type-II PHCS 

 

 

Based on the generalized Type-II PHCS, the observed data will be one of the following 

three forms: 
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and, the likelihood function for this censoring scheme is given by 
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3. Maximum Likelihood Estimation 

The Weibull distribution has been extensively used to model lifetimes and material 

strengths. Johnson et al. (1994) presented a detailed account of this distribution and its 

properties. Suppose that the observed failure times are independent identically 

distributed (iid) Weibull distribution with PDF  

  1; , ,     0,  , 0.xf x x e x
        

    
(2) 

and CDF is 

 ; , 1 ,           0,  , 0.xF x e x
           (3) 

where   and   are the shape and scale parameters, respectively. The Rayleigh 

distribution is a special case of the two-parameter Weibull distribution when the shape 

parameter 2   and is a suitable model for life testing studies. Suppose the lifetime 

random variable X  has a Rayleigh distribution with PDF  

 
2

; 2 ,           0,   0.   xf x xe x    
     

(4) 

and CDF is  

 
2

; 1 ,           0,   0.     xF x e x    
     

(5) 

where   is a scale parameter. 

 

Based on the PDF and the CDF of Weibull distribution (2) and (3), respectively, the 

likelihood function of the generalized Type-II PHCS (1), then 
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The likelihood functions (6) can be combined and rewritten as: 

     
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(7) 

where 1,2,3i  ; 

1 1,S D    
1

*

1 1 1DW T R  ,     for Case-I, 
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2 ,S m    2 0W   ,                for Case-II,  

and 

3 2 ,S D   
2

*

3 2 1DW T R  ,     for Case-III. 

 

The corresponding log likelihood function of (7) can be written as 
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(8) 

 

Differentiating (8) with respect to   and  , we get 
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Equating the first derivations (9) to zero and solving for ̂  and ̂ , we get the MLE ̂  

and ̂  of   and  , respectively, in the following forms 
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where 1,2,3i   and 1,2q   for 1,3i  , respectively. 

 

The Fisher information matrix   ,I  is then obtained by taking the negative expectation 

for the second partial derivatives from the natural logarithm likelihood function (8). Since 

this expectation is difficult to obtained, so, under some regularity conditions,  ̂ˆ( , )  is 

approximately bivariately normal with mean   ,  and the asymptotic variance 

covariance matrix   1
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where the elements of the observed information matrix are as follows: 
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Clearly, the MLEs can be obtained by solving set of nonlinear equations, this needs 

computer facilities and numerical technique. 

 

Now,  we propose a confidence intervals for the unknown Weibull parameters   and   

under generalized Type-II PHCS based on the asymptotic distribution of the MLEs ̂  

and ̂  (10) and (11), respectively, then  100 1 %  approximate confidence intervals 

for   and   can be obtained using the asymptotic normality of the MLEs ̂  and ̂  as 

follows 
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where  ˆVar   and  ˆVar   are the first and the second elements on the main diagonal of 

the asymptotic variance covariance matrix (12), respectively, and 
2z   is the upper 

2-th percentile of a standard normal distribution. 

 

Lee et al. (2015) results in the case of exponential distribution can be obtained as a 

special case from above results by putting 1   and replacing   by 1  . We get to 

corresponding new results based on Rayleigh distribution as a special case, i.e., for 2   

and using the PDF and the CDF of Rayleigh distribution (4) and (5), respectively, then 

the MLEs will be the solution of the following log likelihood function: 
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Equating the first derivations from (13) to zero and solving for  ̂ , the MLE ̂  of   taken 

the following form 

    2
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j ijj
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Again, computer facilities and numerical techniques must be used to solve this set of 

nonlinear equations. 

4. Bayesian  Estimation 

Bayes estimators and the corresponding Bayes risks using SEL function under the 

assumption of gamma prior distributions of the unknown parameters of the Weibull 

distribution will be obtained based on generalized Type-II PHCS. We consider Bayesian 

estimation under the assumption that   and   are independently distributed with 

gamma prior distributions. Assumed that  ~ ,Gamma c d  and  ~ ,Gamma a b . 

Therefore, the joint prior density of   and   can be written with proportional as follows 
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For the non-informative priors 0a b c d    , the joint prior density (14) becomes 
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   
    

    
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The normalizing constant 1C  can be obtained using computer facilities and numerical 

techniques. Using the non-informative priors 0a b c d    , the posterior distribution 

(15) can be rewritten with proportional as follows: 

   
     

1
1

1 1
.,

Si
jjj i

i i
x R W

S S
Vx e




 

     

 


  
 

   
  

  

 

 

From (15), we can obtain the marginal distributions of   and  , respectively, as 

follows: 

 

The marginal PDF of   is given by 

    ,,f x x d


       

 

 
 
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i
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j ijj

S c
V e S a
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(16) 

 

The normalizing constant 2C  in (16) is given by 

 

     
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1
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1
i

i
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
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
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Similarly, the marginal PDF of   will be 

    ,,f x x d


       

 
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1 1
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jjj i

i i
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S c S a
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


  

    

 
   

   
    
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 (17) 

 

The normalizing constant 3C  in (17) is given by 

 

     
1

1

3
0 0

1 1
Si

jjj i
i i

x R W b d
S c S a

C V d de



  

   

 
    

   
    

   . 

 

Clearly, the marginal PDF of   can be obtained in a closed form but the marginal PDF of 

  (17) may be obtained by using the computer facilities and numerical techniques. 
 

The SEL function    
2

,     will be used to obtain the Bayes estimator and the 

Bayes risk, respectively. Using (16) and (17) to obtain the Bayes estimators   and   for 

  and   under the SEL function as follows: 

 
   

 
0 0

0 0

,
, ,

, X

, X

U d d
U

d d

   
 

 

  

  

 

 

 

 
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where  ,U    is the Bayes estimator for any function of   and  , that is 

 
 
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and 

 
     
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.
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


  
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 
     

   
   

      

 

Using the marginal PDF of   and   (16) and (17), respectively, the Bayes risk 

associated with   and   under the SEL function can be obtained as follows: 

 

The Bayes risk associated with   is given by 

     
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Similarly, the Bayes risk associated with   is given by 

     
2

2 ,R E X E X        

where, 
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Clearly, the Bayes estimate and the Bayes risk of   and   can be obtained using 

computer facilities and numerical techniques. 

5. A Numerical Illustration 

The performance of the results obtained in Sections 3 and 4 can't be compared 

theoretically, to illustrate the behavior of the proposed methods as well as evaluate the 

statistical performances of these estimates a numerical illustration is conducted. We shall 

use the real data set originally presented by Linhart and Zucchini (1986). The following 

data set is the failure times of the air conditioning system of an airplane. This data set was 

analyzed by Gupta and Kundu (2001). The ordered data with 30n   are as follows: 1, 3, 

5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 95, 90, 120, 

120, 225, 246 and 261.  

 

First, the Weibull distribution will be fitting using the MLEs for the unknown parameters 

of the Weibull distribution and then carrying out goodness of fit. All computations for 

maximum likelihood estimates were performed using R statistical programming language 

with ‘maxLik’ package, which using the method of Newton-Raphson maximization in the 

computations and it presented by Henningsen and Toomet (2011).  
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The MLEs for the unknown parameters of the Weibull distribution can be obtained from 

the following likelihood function as 
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The corresponding log likelihood function will be 

 
   

1 1
, lnln ln 1 .

n

ii

n i

i
x

x
X n nl



     
 

 
      

 
 

  

(18) 

 

Differentiating (18) with respect to   and  , respectively, we get 
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(19) 

 

Equating the first derivations (19) to zero and solving for ̂  and ̂  to get the MLE ̂  

and ̂  of   and  , respectively, in the following forms 
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Using the ‘maxLik’ package in R statistical programming language and the real data set, 

the maximum likelihood estimates ̂  and ̂  of the parameters   and  , respectively, 

are  ˆˆ 0.8536, 54.6136   . For chi-square goodness of fit test, the null and 

alternative hypotheses, respectively, will be  

0 :H  The data set follow the Weibull distribution. 

1 :H  The data set do not follow the Weibull distribution. 

 

The observed and the expected frequencies of the ordered data set can be reviewed in the 

Table 1: 
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Table 1:   Observed and expected frequencies of the data set 

    

 i  

 

 iO  
 

iE  

 

 
2

i iO E  

 

 
2

i i iO E E  

(0,20] 

   (20,50] 

 (50,100] 

 (100,300] 

14 

4 

7 

5 

10.3719  

 7.7611  

 6.2526  

 5.1994 

13.1631 

14.1459 

0.5586 

0.0398 

1.2691 

1.8227 

0.0893 

0.0077 

 

Sum 

 

3.19 

 

Chi-square calculated is given by 

 
2

2

1

k i i

C i
i

O E

E





 , 

hence, 

2 3.19C  . 

Decision: 

The calculated 2

C  is 9..3, and the associated p-value is 0.074. Since the p-value is quite 

high of the significance level 0.05, we cannot reject the null hypothesis that the data are 

coming from the Weibull distribution. 

 

To show the inference for the unknown parameters of the Weibull distribution under 

generalized Type-II PHCS, we have 30n  , 10m   and the progressively Type-II 

censored sample obtained from data on the failure times can be reported in Table 2: 

Table 2: The progressively Type-II censored sample obtained from the data set on 

the failure times in the life test 
 

  i            1          2          3          4           5          6          7           8           9          10 

 
 i

x         1          7         11        14         20        47         71         87        95         246 

  iR          2          2          2          2           2          2          2          2           2           2 

 

To obtain the Bayes and maximum likelihood estimates for the unknown parameters of 

Weibull distribution under the generalized Type-II PHCS, the progressively Type-II 

censored sample can be designed as in the following table: 
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Table 3: Design the progressively Type-II censored sample obtained from the data 

set on the failure times under generalized Type-II PHCS 
 

 
 

Scheme 

 

 

 
 
 

n  

 

 
 

 

m  

 
 

 

1d  

 
 

 

 

1T  

 
 

2d  

 
 

2T  

 
 

 

Case-I 
 

30 

 

6 

 

10 
 

 

20 

   

0 

 

0 

     
 

 Case-II 

 
 

30 

 

10 
 

5 
 

10 
 

12 
 

25 

 
 

  Case-III 

 
 

30 

 

10 

 

-   

 
 

- 
 

8 

 

15 

In Table 3, (-) represent to a number of observed failures which not more than 2d . 

 

Using Table 3 to compute the present new results of Weibull distribution based on 

generalized Type-II PHCS as follows: 

(a) Using R statistical programming language with ‘maxLik’ package, the maximum 

likelihood estimates, the confidence intervals for Weibull parameters under 

generalized Type-II PHCS and the corresponding elements of inverse Fisher 

information matrix are calculated, (see Table 4). 

(b) Using MATHCAD package version 2007 and the posterior distribution in the case 

of Weibull distribution (15), the Bayes estimates and Bayes risks for Weibull 

parameters are calculated, (see Table 5). 

6. Conclusions 

In this paper, the MLEs and Bayes estimators based on the SEL function for the unknown 

parameters of the Weibull distribution has been discussed based on generalized Type-II 

PHCS. The asymptotic variance covariance matrix for the MLEs is obtained. The 

maximum likelihood estimates and the Bayesian estimates have been compared through a 

numerical example to illustrate the inferential results established here. The computational 

results show that the Bayes estimators based on the SEL function is more precise than the 

MLEs. Also, the Bayes estimates have the same behavior whether based on the 

informative or non-informative priors for the unknown parameters of Weibull distribution 

under generalized Type-II PHCS.  
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Scheme 

Maximum 

Likelihood 

Estimates 

Variance & Covariance 

of Estimates 

Confidence Intervals 
 

 
 

  

 
 

 

  

 
 
 

 
 

̂  

 

 
 

 
 

 
 

̂  

 
 

 

 

 ˆVar   

 
 

 ˆVar   

 

 ˆˆCov , 

 

 
 
 

 

L  

 

 

U   

 
 
 

L  
 

U   

 

Case-I 
 

1.0947 

 

0.0074 

 

0.0477 

 

5.22e
-05 

 

-0.0015 

 

0.6664 

 

1.5229 

 

0 

 

0.0216 

 

Case-II 
 

0.8064 
 

0.0135 
 

0.0403 
 

1.68e
-04 

 

-0.0025 
 

0.4129 
 

1.1999 
 

0 
 

0.0389 

 

Case-III 
 

1.0212 
 

0.0085 
 

0.0795 
 

9.29e
-05 

 

-0.0026 
 

0.4686 
 

 1.5739 
 

0 
   

 0.0274 

Table 4: The maximum likelihood estimates and approximate 95% two sided 

confidence intervals for Weibull parameters under generalized Type-II 

PHCS 

Scheme 
Bayes Estimates Variance of Estimates 

 

Informative 

Priors 

 0.715

0.012

a c

b d

 

 
 

 

Non-

Informative 

Priors 

 0

0

a c

b d

 

 
 

 

Informative  

Priors 

 0.715

0.012

a c

b d

 

 
 

 

Non-Informative 

Priors 

 0

0

a c

b d

 

 
 

 
 

 

 

  

 

 
 

 
 

  

 

 
 

 
 

  

 

 
 

 
 

  

 

 Var   

 

 Var   

 

 

 
 

 Var   

 

 
 

 Var   

 

Case-I 

 

0.7063 
 

0.0235 
 

0.7075 
 

0.0231 
 

7.28×10
-4 

 

8.12×10
-5 

 

3.25×10
-4 

 

 3.62×10
-5 

 

Case-II 

 

0.7029 
 

0.0246 
 

0.7059 
 

0.0236 
 

1.87×10
-3 

 

2.08×10
-4 

 

8.52×10
-4 

 

9.37×10
-5 

 

Case-III 

 

7.0025 
 

0.0248 
 

0.7057 
 

0.0237 
 

1.99×10
-3 

 

2.19×10
-4 

 

9.29×10
-4 

 

9.92×10
-5 

Table 5: The Bayes estimates and the Bayes risks for Weibull parameters under 

generalized Type-II PHCS 

References 

1. Childs, A., Chandrasekar, B. & Balakrishnan, N. (2008). Exact likelihood 

inference for an exponential parameter under progressive hybrid censoring. In 

Statistical Models and Methods for Biomedical and Technical Systems, Vonta, F., 

Nikulin, M., Limnios, N. and Huber-Carol, C, (Editors), Birkhäuser, Boston, 319-

330. 

http://www.health.uottawa.ca/biomech/courses/hss2381/confiden.pdf


S.K. Ashour, A. Elshahhat 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp213-226 226 

2. Gupta, R.D. & Kundu, D. (2001). Exponentiated exponential family: an 

alternative to gamma and Weibull distributions. Biometrical journal, 43, 117-130. 

3. Henningsen, A. and Toomet, O. (2011). ‘maxLik’: A package for maximum 

likelihood estimation in R. Computational Statistics, 26, 443-458.  

4. Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate 

Distributions, Second Edition. John Wiley, New York. 

5. Kundu, D. and Joarder, A. (2006). Analysis of Type-II progressively hybrid 

censored data. Computational Statistics and Data Analysis, 50, 2509-2528. 

6. Lee, K., Sun, H. and Cho, Y. (2015). Exact likelihood inference of the 

exponential parameter under generalized Type-II progressive hybrid censoring. 

Journal of the Korean Statistical Society, 45, 123-136. 

7. Linhart, H. & Zucchini, W. (1986). Model Selection. John Wiley, New York. 


