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Abstract 

Various characterizations of twenty four recently introduced distributions are presented. These 

characterizations are based on: ( ) ratio of two truncated moments; (  ) the hazard function and  

(   ) conditional expectations. 
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1.   Introduction 

In designing a stochastic model for a particular modeling problem, an investigator will be 

vitally interested to know if their model fits the requirements of a specific underlying 

probability distribution. To this end, the investigator will rely on the characterizations of 

the selected distribution. Generally speaking, the problem of characterizing a distribution 

is an important problem in various fields and has recently attracted the attention of many 

researchers. Consequently, various characterization results have been reported in the 

literature. These characterizations have been established in many different directions. 

 

The present work deals with certain characterizations of each of the distributions: Harris-

G class (H-GC) of Pinho et al. (2015); Harris extended Burr XII (HEBXII); Harris 

extended exponentiated exponential (HEEE) (both) of Jose et al. (2015); exponentiated 

generalized Weibull Gompertz (EGWG) of El-Damcese et al. (2015); the beta 

exponentiated Lomax (BEL) distribution of Mead (2016) ; Kies (K); three-parameter 

extension of exponential (TPEE) of Lemonte et al. (2016); modified exponential-

geometric (MEG) of Bordbar et al. (2016); Kumarasawamy flexible Weibull extension 

(KFWE) of El-Damcese et al. (2016); transmuted exponentiated Pareto-I (TEP-I) of 

Fatima et al. (2016); transmuted Gompertz (TG) of Abdul-Moniem et al. (2015); the new 

extended Burr XII (EBXII) of Ghosh et al. (2016); Weibull Fréchet (WFr) of Afify et al. 

(2016); Marshall-Olkin gamma-Weibull (MOP  W  ) of Saboor et al. (2016); transmuted 

exponentiated Weibull geometric (TEWG) of Saboor et al. (2016); transmuted 

generalized Gompertz (TGG) of Khan et al. (2016); negative binomial Birnbaum-

Saunders (NBBS) of Cordeiro et al. (2016); Marshall-Olkin extended generalized 

Rayleigh (MOEGR) of MirMostafaee et al. (2016); generalized inverse Lindley of 

Sharma et al. (2015); Kumaraswamy transmuted exponentiated additive Weibull (Kw-

TEAW) of Nofal et al. (2016); beta exponentiated gamma (BEG  ) of Feroze et al. 

(2016); Kumaraswamy Kumaraswamy Weibull (KwKwW) of Mahmoud et al. (2016); 
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beta exponentiated Gumbel (BEG  ) of Ownuk (2015) and exponential Poisson 

Logarithmic (EPL) of Fioruci et al. (2016).  These characterizations are based on: ( ) 
ratio of two truncated moments; (  ) the hazard function and (   ) conditional 

expectations. 

 

For detailed treatments and the domain of applicability of each of these distributions, we 

refer the interested reader to the corresponding papers cited in the References section. 

 

We list below the cumulative distribution function (cdf) and probability density function 

(pdf) of each one of these distributions in the same order as listed above. We will be 

employing the same notation for the parameters as chosen by the original authors. 

 

A)  The cdf and pdf of (H-GC) are given, respectively, by 

 ( )    6
  ( ) 

    ( ) 
7

   

                                                                                    (   ) 

and  

 ( )  
     ( )

[    ( ) ]
  

 

 

                                                                                            (   ) 

 

where,    ,   (   ),       are parameters and  ( ) . ( )     ( )/ is the 

baseline cdf with the corresponding pdf  ( )  
 

B)  The cdf and pdf of (HEBXII) are given, respectively, by 

 ( )    6
 (    )   

   (    )   
7

   

                                                                         (   ) 

and  

 ( )  
          (    ) (   )

[   (    )   ]
  

 

 

                                                                           (   ) 

where,       and   are all positive parameters. 

 

C)  The cdf and pdf of (HEEE) are given, respectively, by 

 ( )    
    [  (      )

 
]

{   ,  (      ) - }
   

                                                            (   ) 

and  

 ( )  
          (      )

   

{   ,  (      ) - }
  

 

 

                                                                    (   ) 

where,       and   are all positive parameters. 

 

D)  The cdf and pdf of (EGWG) are given, respectively, by 

 ( )  0     2 0   .    
  /131

 

                                                              (   ) 
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and  

 ( )              .      /    

(  
  

 
        

)   

0     2 0   .    
  /131

 

                                                                                      (   ) 

     where         and   are all positive parameters. 

 

Note:  A special case of (EGWG) for    , was taken up by El-Bassiouny et al. (2015) 

and characterized based on the upper record values.  Another special case of (EGWG) for 

      and     has appeared in a paper by Maiti and Pramanik (2015). 

 

E)  The cdf and pdf of (BEL) distribution are given, respectively, by 

 ( )  
 

 (   )
∫  

[  (    )  ]
 

 

    (   )                                                     (   ) 

and  

 ( )  
   

 (   )
(    ) (   )[  (    )  ]

    
  

2  [  (    )  ]
 
3
   

                                                                                      (    ) 

where            are all positive parameters and  (   )  ∫  
 

 
    (   )       

 

F)  The cdf and pdf of (K) are given, respectively, by 

 ( )       8  .
   

   
/
 

9                                                                          (    ) 

and  

 ( )  
  (   )(   )      {  .

   

   
/
 

}

(   )   
                                    (    ) 

where     (   )   and   are all positive parameters. 

 

G)  The cdf and pdf of (TPEE) are given, respectively, by 

 ( )    
    *  (    ) +

  (   )   *  (    ) +
                                                       (    ) 

and  

 ( )  
   (    )      *  (    ) +

{  (   )   *  (    ) +}
                                                        (    ) 

where     and   are all positive parameters. 

 

H)  The cdf and pdf of (MEG) are given, respectively, by 

 ( )    
 (   )    

              
                                                                           (    ) 

and  

 ( )  
  (   )    

(              ) 
                                                                             (    ) 

where        all positive and   (     ) are parameters. 
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I)  The cdf and pdf of (KFWE) are given, respectively, by 

 ( )    8  6     
   

 
 7

 

9

 

                                                                         (    ) 

and  

 ( )    (  
 

  
)     

 

    
   

 
 6     

   
 
 7

   

  

8  6     
   

 
 7

 

9

   

                                                                                            (    ) 

where          are all positive parameters. 

 

Note:  A special case of (KFWE) for    , was taken up by El-Gohary et al. (2015). 

 

J)  The cdf and pdf of (TEP-I) are given, respectively, by 

 ( )          ,   (        )-                                                             (    ) 
and  

 ( )         ,   (         )-                                                                (    ) 

where       and | |    are parameters. 

 

K)  The cdf and pdf of (TG) are given, respectively, by 

 ( )       (     )[        (     )]                                                       (    ) 

and  

 ( )          (     )[         (     )]                                                (    ) 

where       and | |    are parameters. 

 

L)  The cdf and pdf of (EBXII) are given, respectively, by 

 ( )    
 

  (    ) 
                                                                                         (    ) 

and  

 ( )  
       (    )   

,  (    ) - 
                                                                                     (    ) 

where       are parameters. 

 

M)  The cdf and pdf of (WFr) are given, respectively, by 

 ( )       {  . (   )   /
  

}                                                                    (    ) 

and  

 ( )  
             (   ) 

{    (   ) }
      {  . (   )   /

  

}                                 (    ) 

where         are all positive parameters. 

 

N)  The cdf and pdf of (MOP  W  ) are given, respectively, by 
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 ( )  
   .  

 

 
 
  

  
/

  (   ) .  
 

 
 
  

  /
                                                                             (    ) 

and  

 ( )  
              

       

 .  
 

 
/ 0  (   ) .  

 

 
 
  

  
/1

                                                       (    ) 

where         ,       are parameters and  (   )  
 

 ( )
∫  
 

 
          ( )  

   
 

O)  The cdf and pdf of (TEWG) are given, respectively, by 

 ( )  
(   ) .    (  ) /

 

   (    (  ) )
 

 {     [
(   ) .    (  ) /

 

   (    (  ) )
 

]}         

                                                                                                                    (    ) 
and  

 ( )      (   )      (  )   

.    (  ) /
   

[   .    (  ) /
 

]
  

         

{      [
(   ) .    (  ) /

 

   (    (  ) )
 

]}                                                                  (    ) 

where   ,   )         , | |    are parameters. 

 

P)  The cdf and pdf of (TGG) are given, respectively, by 

 ( )  [     { 
 

 
(     )}]

 

  

8     [     { 
 

 
(     )}]

 

9                                                                 (    ) 

and  

  ( )          2 
 

 
(     )3 0     2 

 

 
(     )31

   

 

 8      [     { 
 

 
(     )}]

 

9                                                           (    ) 

where         , | |    are parameters. 

 

Note:  For      TGG reduces to TG (Transmuted Gompertz) Distribution, discussed by 

the same authors, which appeared in Pakistan Journal of Statistics, Vol. 32, No.3 , 2016. 

 

Q)  The cdf and pdf of (NBBS) are given, respectively, by 

 ( )  
  ,       ( )-

    

  (    )    
                                                                              (    ) 
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and  

 ( )  
    ( ),       ( )-

 .
 

 
  /

  (    )    
                                                                     (    ) 

where       are parameters, and     ,     are  cdf and pdf of the Birnbaum-Saunders 

distribution.     ( )   6
 

 
4√

 

 
 √

 

 
57 where   is cdf of the standard normal and 

    is a parameter. 

 

R)  The cdf and pdf of (MOEGR) are given, respectively, by 

 ( )    
  (       )

    (       )
                                                                                (    ) 

and  

 ( )  
                

 (   ),    (       )- 
                                                                  (    ) 

where            are parameters and  (   )     (   )    ∫  
 

 
           

 

S)  The cdf and pdf of (GIL) are given, respectively, by 

 ( )  (  
 

(   )  
)       

                                                                               (    ) 

and  

 ( )  
   

(   )
(
    

     
)       

                                                                               (    ) 

where       are parameters. 

 

T)  The cdf and pdf of (Kw-TEAW) are given, respectively, by 

 ( )    {
  .    (       )/

  

 

[     .    (       )/
 

]
 }

 

                                    (    ) 

and  

 ( )       (       )(             ) 0    (       )1
    

  

8  0    (       )1
  

[     .    (       )/
 

]
 

9

   

  

{      .    (       )/
 

}   

{     .    (       )/
 

}
   

                                                                                 (    ) 

     where           with       (or      ) and | |    are parameters. 

 

U)  The cdf and pdf of (BEG  ) are given, respectively, by 

 ( )  
 

 (   )
∫  

[      (    )]
 

 

    (   )                                              (    ) 
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and  

 ( )  
        

 (   )
[      (    )]

    
  

2  [      (    )]
 
3
   

                                                                                  (    ) 

where       and   are all positive parameters. 

 

V)  The cdf and pdf of (KwKwW) are given, respectively, by 

 ( )    8  6  .  .    (  ) /
 

/
 

79

 

                                               (    ) 

and  

 ( )               (  ) .    (  ) /
   

.  .    (  ) /
 

/
   

 

 6  .  .    (  ) /
 

/
 

7

   

  

8  6  .  .    (  ) /
 

/
 

7

 

9

   

                                                                       (    ) 

     where           and   are all positive parameters. 

 

W)  The cdf and pdf of (BEG  ) are given, respectively, by 

 ( )  
 

 (   )
∫  

  2     0    . 
   

 
/13

 

 

    (   )                                (    ) 

and  

 ( )  
    . 

   

 
/

  (   )
   0    . 

   

 
/1   

2     0    . 
   

 
/13

    

  

{  2     0    . 
   

 
/13

 

}
   

                                                    (    ) 

where         all positive,     are parameters and  (   )  ∫  
 

 
    (   )       

 

X)  The cdf and pdf of (EPL) are give, respectively, by 

 ( )    
   [   .

     (      )

     /]

     
                                                                (    ) 

and  

 ( )  
      (         )

    (   )*       ,     (      )-+
                                   (    ) 

where    , both positive and       are parameters. 

2.   Characterization Results  

As mentioned in the Introduction, characterizations of distributions is an important 

research area which has recently attracted the attention of many researchers.  This section 
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deals with various characterizations of the distributions listed in the Introduction. These 

characterizations are based on: ( ) a simple relationship between two truncated moments; 
(  ) the hazard function; (   ) conditional expectation of a single function of the random 

variable. It should be mentioned that for the characterization ( ) the cdf need not have a 

closed form and depends on the solution of a first order differential equation, which 

provides a bridge between probability and differential equation. 

2.1   Characterizations based on two truncated moments 

In this subsection, we present characterizations of all the distributions mentioned in the 

Introduction, in terms of a simple relationship between two truncated moments. Our first 

characterization result employs a theorem due to (Glänzel, 1987), see Theorem 2.1.1 

below. Note that the result holds also when the interval    is not closed. Moreover, as 

mentioned above, it could be also applied when the cdf   does not have a closed form.  

As shown in (Glänzel, 1990), this characterization is stable in the sense of weak 

convergence. 

 

Theorem 2.1.1.  Let (     ) be a given probability space and let    ,   - be an 

interval for some       (                              )  Let        be a 

continuous random variable with the distribution function   and let    and    be two real 

functions defined on   such that 

 ,  ( )|   -   ,  ( )|   - ( )          

is defined with some real function  . Assume that         ( ),     ( ) and   is 

twice continuously differentiable and strictly monotone function on the set  . Finally, 

assume that the equation        has no real solution in the interior of  . Then   is 

uniquely determined by the functions       and  , particularly 

 ( )  ∫  
 

 

 |
  ( )

 ( )  ( )    ( )
|    (  ( ))    

where the function     is  a solution of the differential equation    
    

      
 and   is the 

normalization constant, such that ∫  
 

    . 

 

Here is our first characterization. 

 

Proposition 2.1.1.  Let     (   ) be a continuous random variable and let   ( )  

[    ( ) ]
  

 

   and   ( )    ( ) ( )  for      The random variable    belongs to 

(H-GC) family (   ) if and only if the function   defined in Theorem 2.1.1 has the form 

 ( )  
 

 
 ( )                                                                                                                (     ) 

 

Proof.  Let     be a random variable with pdf (   ), then 

(   ( )) ,  ( )|   -       ( )            
and  

(   ( )) ,  ( )|   -       ( )           
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and finally  

 ( )  ( )    ( )   
 

 
  ( ) ( )                 

 

Conversely, if   is given as above, then  

  ( )  
  ( )  ( )

 ( )  ( )    ( )
 

 ( )

 ( )
          

and hence  

 ( )     . ( )/           

 

Now, in view of Theorem 2.1.1,   has density (   )  
 

Corollary 2.1.1.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.1. The pdf of   is (   ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

 
  ( )  ( )

 ( )  ( )    ( )
 

 ( )

 ( )
                                                                                        (     ) 

 

The general solution of the differential equation (     ) is 

 ( )  [ ( )]
  

[ ∫   ( )(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(     ) is given in Proposition 2.1.1 with   
 

 
  However, it should also be noted that 

there are other triplets (       ) satisfying the conditions of Theorem 2.1.1. 

 

The proofs of the following Propositions (in this subsection) are similar to that of 

Proposition 2.1.1, so we only state the Propositions with their corresponding Corollaries. 

Further, we will not repeat the last sentence of the above paragraph for other 

distributions. 

 

Proposition 2.1.2.  Let     (   ) be a continuous random variable and let    ( )  

[   (    )   ]
  

 

   and   ( )    ( )(    )    for      The random variable 

   belongs to (HEBXII) family (   ) if and only if the function   defined in Theorem 

2.1.1 has the form 

 ( )  
 

   
(    )                                                                                                  (     ) 

 

Corollary 2.1.2.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.2. The pdf of    is (   ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
        (    )                                                              (     ) 
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The general solution of the differential equation (     ) is 

 ( )  (    )  [∫        (    )   (  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(     ) is given in Proposition 2.1.2 with      

 

Proposition 2.1.3.  Let     (   ) be a continuous random variable and let    ( )  

2   [  (      )
 
]
 
3
  

 

 
  and   ( )    ( )(      )

 
  for      The random 

variable    belongs to (HEEE) family (   ) if and only if the function   defined in 

Theorem 2.1.1 has the form 

 ( )  
 

 
[  (      )

 
]                                                                                       (     ) 

 

Corollary 2.1.3.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.3. The pdf of    is (   ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

      (      )
   

  (      ) 
                                                        (     ) 

 

The general solution of the differential equation (     ) is 

 ( )  [  (      )
 
]
  

[ ∫        (      )
   

(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(     ) is given in Proposition 2.1.3 with   
 

 
  

 

Proposition 2.1.4.  Let     (   ) be a continuous random variable and let    ( )  

0     2 0   .    
  /131

   

  and   ( )    ( )   2 0   .    
  /13  for 

     The random variable    belongs to (H-GC) family (   ) if and only if the function 

  defined in Theorem 2.1.1 has the form 

 ( )  
 

 
   2 0   .    

  /13                                                                          (     ) 

 

Corollary 2.1.4.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.4. The pdf of    is (   ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
             .      /    

  

(  
  

 
        

)                                                                         (     ) 
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The general solution of the differential equation (     ) is 

 ( )      .      / [ ∫              .      /    

(  
  

 
  

        
) (  ( ))

  
  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(     ) is given in Proposition 2.1.4 with      

 

Proposition 2.1.5.  Let     (   ) be a continuous random variable and let    ( )  

2  [  (    )  ]
 
3
   

[  (    )  ]
     

and   ( )    ( )[  

(    )  ]
 

 for      The random variable    belongs to (BEL) family (    ) if and 

only if the function    defined in Theorem 2.1.1 has the form 

 ( )  
 

 
2  [  (    )  ]

 
3                                                                           (     ) 

 

Corollary 2.1.5.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.5. The pdf of    is (    ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

   (    ) (   )[  (    )  ]
   

  ,  (    )  - 
             (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  2  [  (    )  ]
 
3
  

  

[ ∫     (    ) (   )[  (    )  ]
   

(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.5 with   
 

 
  

 

Proposition 2.1.6.  Let     (   ) be a continuous random variable and let    ( )     

and   ( )     {  .
   

   
/
 

}  for        The random variable    belongs to (K) 

family (    ) if and only if the function   defined in Theorem 2.1.1 has the form 

 ( )  
 

 
   8  .

   

   
/
 

9                                                                               (      ) 

 

Corollary 2.1.6.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.6. The pdf of    is (    ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

  (   )(   )   

(   )   
                                                 (      ) 
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The general solution of the differential equation (      ) is 

 ( )     8 .
   

   
/
 

9

[
 
 
 
  ∫  

  (   )(   )   

(   )   
 

   8  .
   

   
/
 

9   ( )    
]
 
 
 
 

  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.6 with      
 

Proposition 2.1.7.  Let     (   ) be a continuous random variable and let    ( )  

{  (   )   *  (    ) +}
 
  and   ( )    ( )   * (    ) +  for      

The random variable    belongs to (TPEE) family (    ) if and only if the function   

defined in Theorem 2.1.1 has the form 

 ( )  
 

 
   * (    ) +                                                                                        (      ) 

 

Corollary 2.1.7.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.7. The pdf of    is (    ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
   (    )                                                                           (      ) 

 

The general solution of the differential equation (      ) is 

 ( )     *(    ) + [ ∫    (    )      * (    ) +(  ( ))
  

  ( )  

  ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.7 with      
 

Proposition 2.1.8.  Let     (   ) be a continuous random variable and let    ( )  

(              )
 
  and   ( )    ( ) 

     for      The random variable    

belongs to (MEG) family (    ) if and only if the function   defined in Theorem 2.1.1 

has the form 

 ( )  
 

 
                                                                                                                    (      ) 

 

Corollary 2.1.8.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.8. The pdf of    is (    ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
                                                                                                 (      ) 
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The general solution of the differential equation (      ) is 

 ( )     [ ∫       (  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.8 with      

 

Proposition 2.1.9.  Let     (   ) be a continuous random variable and let    ( )  

8  6     
   

 
 7

 

9

   

  and   ( )    ( ) 
  

   
 
   for      The random variable    

belongs to (KFWE) family (    ) if and only if the function   defined in Theorem 2.1.1 

has the form 

 ( )  
 

 
   

   
 
                                                                                                            (      ) 

 

Corollary 2.1.9.  Let     (   )  be a continuous random variable and let   ( ) be as 

in Proposition 2.1.9. The pdf of    is (    ) if and only if there exist functions    and   

defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 (  

 

  
)     

 

                                                                     (      ) 

 

The general solution of the differential equation (      ) is 

 ( )    
   

 
 6 ∫  (  

 

  
)     

 

    
   

 
 (  ( ))

  
  ( )    7  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.9 with      

 

Proposition 2.1.10.  Let     (     ) be a continuous random variable and let  

  ( )  ,   (        )-    and   ( )    ( ) 
    for        The random 

variable    belongs to (TEP-I) family (    ) if and only if the function   defined in 

Theorem 2.1.1 has the form 

 ( )  
 

 
                                                                                                                  (      ) 

 

Corollary 2.1.10.  Let     (     )  be a continuous random variable and let   ( ) 
be as in Proposition 2.1.10. The pdf of    is (    ) if and only if there exist functions    

and   defined in Theorem 2.1.1 satisfying the differential equation 
  ( )  ( )

 ( )  ( )    ( )
                                                                                               (      ) 

 

The general solution of the differential equation (      ) is 

 ( )     [ ∫       (  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.10 with      
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Proposition 2.1.11.  Let     (   ) be a continuous random variable and let    ( )  

[         (     )]
  

  and   ( )    ( ) 
  (     )  for      The random 

variable    belongs to (TG) family (    ) if and only if the function   defined in 

Theorem 2.1.1 has the form 

 ( )  
 

 
   (     )                                                                                                      (      ) 

 

Corollary 2.1.11.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.11. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 
  ( )  ( )

 ( )  ( )    ( )
                                                                                             (      ) 

 

The general solution of the differential equation (      ) is 

 ( )    (     ) [ ∫         (     )(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.11 with      

 

Proposition 2.1.12.  Let     (   ) be a continuous random variable and let    ( )  

[  (    ) ]
  

  and   ( )     for      The random variable    belongs to 

(EBXII) family (    ) if and only if the function   defined in Theorem 2.1.1 has the 

form 

 ( )   {  (    ) }                                                                                            (      ) 

 

Corollary 2.1.12.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.12. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

       (    )   

  (    ) 
                                                          (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  {  (    ) }
 
6 ∫  

       (    )   

*  (    ) + 
(  ( ))

  
  ( )    7  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.12 with      

 

Proposition 2.1.13.  Let     (   ) be a continuous random variable and let    ( )  

   and   ( )     { . (   )   /
  

}  for      The random variable    belongs to 

(WFr) family (    ) if and only if the function   defined in Theorem 2.1.1 has the form 

 ( )  
 

   
   { . (   )   /

  

}                                                                    (      ) 
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Corollary 2.1.13.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.13. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

           (   ) 

( (   )   )
                                                              (      ) 

 

The general solution of the differential equation (      ) is 

 ( )     { . (   )   /
  

}

[
 
 
 
  ∫  

           (   ) 

( (   )   )
    

   {  . (   )   /
  

} (  ( ))
  

  ( )    ]
 
 
 
 

  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.13 with      

 

Proposition 2.1.14.  Let     (   ) be a continuous random variable and let    ( )  

0  (   ) .  
 

 
 
  

  /1
 

     and   ( )    ( ) 
      

  for      The random 

variable    belongs to (MOP  W  ) family (    ) if and only if the function    defined in 

Theorem 2.1.1 has the form 

 ( )  
 

 
       

                                                                                                           (      ) 

 

Corollary 2.1.14.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.14. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 
  ( )  ( )

 ( )  ( )    ( )
                                                                                        (      ) 

 

The general solution of the differential equation (      ) is 

 ( )        
[ ∫                 

(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.14 with      

 

Proposition 2.1.15.  Let     (   ) be a continuous random variable and let    ( )  

{      [
(   ).    (  ) /

 

   .    (  ) /
 ]} [   .    (  ) /

 

]
 

  and   ( )    ( ) .  

  (  ) /
 

  for      The random variable    belongs to (TEWG) family (    ) if and 

only if the function    defined in Theorem 2.1.1 has the form 

 ( )  
 

 
{  .    (  ) /

 

}                                                                                  (      ) 
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Corollary 2.1.15.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.15. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
  

          (  ) 

    (  ) 
                                                           (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  .    (  ) /
  

[∫            (  ) (  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.15 with      
 

Proposition 2.1.16.  Let     (   ) be a continuous random variable and let    ( )  

{      0     2 
 

 
(     )31

 

}
  

  and   ( )    ( ) 0     2 
 

 
(    

 )31
 

 for      The random variable    belongs to (TGG) family (    ) if and only if 

the function    defined in Theorem 2.1.1 has the form 

 ( )  
 

 
8  [     { 

 

 
(     )}]

 

9                                                          (      ) 

 

Corollary 2.1.16.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.16. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

 
     .   2 

 

 
(     )3/ 0     2 

 

 
(     )31

   

  0     2 
 

 
(     )31

 
                       (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  8  [     { 
 

 
(     )}]

 

9

  

  

6 ∫          { 
 

 
(     )} [     { 

 

 
(     )}]

   

(  ( ))
  

  ( )  

  7  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.16 with   
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Proposition 2.1.17.  Let     (   ) be a continuous random variable and let    ( )  

,       ( )-
 

 
  

  and   ( )    ( )   ( ) for      The random variable    

belongs to (NBBS) family (    ) if and only if the function    defined in Theorem 2.1.1 

has the form 

 ( )  
 

 
(     ( ))                                                                                                (      ) 

 

Corollary 2.1.17.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.17. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

   ( )

     ( )
                                                                            (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  (     ( ))
  

[ ∫     ( )(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.17 with   
 

 
  

 

Proposition 2.1.18.  Let     (   ) be a continuous random variable and let    ( )  

,    (       )-       and   ( )    ( ) 
    

 for      The random variable    

belongs to (NBBS) family (    ) if and only if the function    defined in Theorem 2.1.1 

has the form 

 ( )  
 

 
     

                                                                                                              (      ) 

 

Corollary 2.1.18.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.18. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 
  ( )  ( )

 ( )  ( )    ( )
                                                                                              (      ) 

 

The general solution of the differential equation (      ) is 

 ( )      
[ ∫          

(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.18 with      
 

Proposition 2.1.19.  Let     (   ) be a continuous random variable and let    ( )  

  (    )    and   ( )    ( ) 
     

 for      The random variable    belongs to 

(GIL) family (    ) if and only if the function    defined in Theorem 2.1.1 has the form 

 ( )  
 

 
[        

]                                                                                                 (      ) 
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Corollary 2.1.19.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.19. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

             

                                                                          (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  (        
)
  

[ ∫               
(  ( ))

  
  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.19 with      

 

Proposition 2.1.20.  Let     (   ) be a continuous random variable and let    ( )  

.    (       )/
 (   )

{
  .    (       )/

  

 

[     .    (       )/
 

]
 }

   

 {    

  .    (       )/
 

}
  

 and   ( )    ( ) [     .    (       )/
 

]
 

 for 

     The random variable    belongs to (Kw-TEAW) family (    ) if and only if the 

function    defined in Theorem 2.1.1 has the form 

 ( )  
 

 
8  [     .    (       )/

 

]
 

9                                      (      ) 

 

Corollary 2.1.20.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.20. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
  

 

     (       )(             )  

0    (       )1
   

[     .    (       )/
 

]
   

  0     (    (       ))
 
1
                            (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  8  [     .    (       )/
 

]
 

9

  

  

[
 
 
 ∫       (       )(             ) 0    (       )1

   

 

[     .    (       )/
 

]
   

(  ( ))
  

  ( )    ]
 
 
 

  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.20 with   
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Proposition 2.1.21.  Let     (   ) be a continuous random variable and let    ( )   

[      (    )]
 (   )

2  [      (    )]
 
3
   

 and   ( )    ( )[  

    (    )]
 
 for      The random variable    belongs to (BEG  ) family (    ) if 

and only if the function    defined in Theorem 2.1.1 has the form 

 ( )  
 

 
{  [      (    )]

 
}                                                                       (      ) 

 

Corollary 2.1.21.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.21. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

        [      (    )]
   

  ,      (    )- 
                                   (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  {  [      (    )]
 
}
  

  

[ ∫          [      (    )]
   

(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.21 with   
 

 
  

 

Proposition 2.1.22.  Let     (   ) be a continuous random variable and let    ( )  

8  6  .  .    (  ) /
 

/
 

79

   

 and   ( )    ( ) 6  .  .  

  (  ) /
 

/
 

7

 

 for      The random variable    belongs to (KwKwW) family (    ) if 

and only if the function    defined in Theorem 2.1.1 has the form 

 ( )  
 

 
8  6  .  .    (  ) /

 

/
 

7

 

9                                                    (      ) 

 

Corollary 2.1.22.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.22. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 
  ( )  ( )

 ( )  ( )    ( )

 

             (  ) .    (  ) /
   

.  .    (  ) /
 

/
   

 

6  .  .    (  ) /
 

/
 

7

   

  [  .  (    (  ) )
 
/
 

]
   

                                                                                                                                                    (      ) 
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The general solution of the differential equation (      ) is 

 ( )  8  6  .  .    (  ) /
 

/
 

7

 

9

  

  

[
 
 
 
 ∫               (  ) .    (  ) /

   

.  .    (  ) /
 

/
   

 

6  .  .    (  ) /
 

/
 

7

   

(  ( ))
  

  ( )    
]
 
 
 
 

  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.22 with   
 

 
  

 

Without loss of generality, we assume      and      in the following Proposition. 

 

Proposition 2.1.23.  Let     (   ) be a continuous random variable and let    ( )  
*     ,    -+  (   )*  *     ,    -+ +    and   ( )    ( )*  
   ,    -+ for      The random variable    belongs to (BEG  ) family (    ) if and 

only if the function    defined in Theorem 2.1.1 has the form 

 ( )  
 

   
*     ,    -+                                                                                  (      ) 

 

Corollary 2.1.23.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.23. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

       ,    -

     ,    -
                                                                   (      ) 

 

The general solution of the differential equation (      ) is 

 ( )  *     ,    -+  [ ∫         ,    -(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 
(      ) is given in Proposition 2.1.23 with      

 

Proposition 2.1.24.  Let     (   ) be a continuous random variable and let    ( )  

{       [     (      )]} and   ( )    ( )   (      ) for      The 

random variable    belongs to (EPL) family (    ) if and only if the function    defined 

in Theorem 2.1.1 has the form 

 ( )  
 

 
{     (      )}                                                                                    (      ) 

 

Corollary 2.1.24.  Let     (   )  be a continuous random variable and let   ( ) be 

as in Proposition 2.1.24. The pdf of    is (    ) if and only if there exist functions    and 

  defined in Theorem 2.1.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

     (         )

*     (      )+
                                                        (      ) 
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The general solution of the differential equation (      ) is 

 ( )  {     (      )}
  

[ ∫       (         )(  ( ))
  

  ( )    ]  

where   is a constant. Note that a set of functions satisfying the differential equation 

(      ) is given in Proposition 2.1.24 with   
 

 
  

 

2.2   Characterization based on hazard function 

It is well known that the hazard function,   , of a twice differentiable distribution 

function,  , satisfies the first order differential equation 

  ( )

 ( )
 

  
 ( )

  ( )
   ( )                                                                                                        (     ) 

 

For many univariate continuous distributions, this is the only characterization available in 

terms of the hazard function. The following Propositions establish non-trivial 

characterizations of (H-GC), (HEBXII), (HEEE), (EGWG; for    ), (W-GF), (K), 

(TPEE), (MEG), (KFWE; for    ), (TEP-I), (TG), (EBXII), (WFr), (TGG), 

(MOEGR), (BEG  ) and (BEG  ) distributions in terms of the hazard function which are 

not of the trivial form given in (     ). 
 

Proposition 2.2.1.  Let     (   ) be a continuous random variable. The pdf of    is 
(   ) if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )  

  ( )

 ( )
  ( )   

 ( ){(   )  ( )   }

 ( ) [    ( ) ]
                                (     ) 

with the boundary condition    ( )             ( )  
 

Proof.  If     has pdf (   ), then clearly (     ) holds.  Now, if (     ) holds, then 

 

  
2( ( ))

  
  ( )3  

 

  
2{ ( )[    ( ) ]}

  
3  

or, equivalently,  

  ( )  
 ( )

 ( )[    ( ) ]
  

which is the hazard function of the (H-GC) distribution. 

 

The proofs of the following Propositions in this subsection are similar to that of 

Proposition 2.2.1, so we state them without proofs. 

 

Proposition 2.2.2.  Let     (   ) be a continuous random variable. The pdf of    is 
(   ) if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )  (   )     ( ) 

 
     (   )(    )  [ (    )(    )     ]

[   (    )   ]
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8

(    )  

   (    )   
9                                                                                    (     ) 

with the boundary condition    ( )    for    . 

 

Proposition 2.2.3.  Let     (   ) be a continuous random variable. The pdf of    is 
(   ) if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )     ( ) 

       
 

  
{

(      )
   

,  (      ) -   ,  (      ) -   
}                                    (     ) 

   , with the boundary condition    ( )    for      
 

Proposition 2.2.4.  Let     (   ) be a continuous random variable. The pdf of    is 
(   ) for     if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )  (   )     ( )       2      (        )    

3                        (     ) 

     with the boundary condition    ( )    for      
 

Proposition 2.2.5.  Let     (   ) be a continuous random variable. For      the 

pdf of    is (    )  if and only if its hazard function   ( ) satisfies the differential 

equation 

  
 ( )  (   )(    )    ( ) 

 
  (   )(    ) (   )[  (    )  ]

   

*  ,  (    )  - + 
                                               (     ) 

 

Proposition 2.2.6.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )  

(   )

(   )
  ( )  

  (   )(   )(   )   

(   )   
                           (     ) 

with initial condition   ( )    for      
 

Proposition 2.2.7.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )   (   )(    )    ( ) 

  
    (   )(    ) (   )   *  (    ) +

{  (   )   *  (    ) +}
  

 
 

  
{

  

  (   )   *  (    ) +
}                                                                  (     ) 

with initial condition   ( )  
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Proposition 2.2.8.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )     ( )     (              )

  
                                             (     ) 

with initial condition   ( )  
 

 (   )
  

 

Proposition 2.2.9.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )  (  

 

  
)   ( )   

   

  
    

 

                                                                 (      ) 

with initial condition   ( )   (   )      
 

Proposition 2.2.10.  Let     (     ) be a continuous random variable. The pdf of    

is (    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )     ( )     

            

,   (        )- 
                                                 (      ) 

with initial condition   (   )   (   )  
 

Proposition 2.2.11.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )     ( )   

   (   )      (     )

,  (   )  (     )- 
                                                   (      ) 

with initial condition   ( )   (   )  
 

Proposition 2.2.12.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )  (   )     ( ) 

 
     (   )(    )   {    (    ) }

,  (    ) - 
                                                     (      ) 

with initial condition   ( )    for      
 

Proposition 2.2.13.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )  (   )     ( ) 

 
           (   ) 0    (   ) 1

[    (   ) ]
                                                                        (      ) 

with initial condition   ( )  
    

 (   )   
  

 

Proposition 2.2.14.  Let     (   ) be a continuous random variable. For      the 

pdf of    is (    )  if and only if its hazard function   ( ) satisfies the differential 

equation 

  
 ( )     ( ) 
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{

   2 
 

 
(     )3

        2 
 

 
(     )3

}                                                        (      ) 

with initial condition   ( )   (   )  
 

Proposition 2.2.15.  Let     (   ) be a continuous random variable. The pdf of    is 
(    )  if and only if its hazard function   ( ) satisfies the differential equation 

  
 ( )       ( ) 

 
        

 (   )

 

  
8

    

 (       ),    (       )-
9                                       (      ) 

with initial condition   ( )  
       

 (   ) (     ),   (      )-
  

 

Proposition 2.2.16.  Let     (   ) be a continuous random variable. For     and 

     the pdf of    is (    )  if and only if its hazard function   ( ) satisfies the 

differential equation 

  
 ( )       ( ) 

 
    

(   ) (   )

 

  
2    [      (    )]

 (   )  
3                                   (      ) 

 

Proposition 2.2.17.  Let     (   ) be a continuous random variable. For      the 

pdf of    is (    )  if and only if its hazard function   ( ) satisfies the differential 

equation 

  
 ( )    ( )  

         ,    -

*     ,    -+ 
                                                                      (      ) 

2.3  Characterization based on conditional expectation 

The following propositions have already appeared in (Hamedani, 2013) , so we will just 

state them here which can be used to characterize (H-GC), (HEBXII), (HEEE), (EGWG), 

(K), (MEG), (KFWE), (WFr) and (Kw-TEAW) distributions. 

 

Proposition 2.3.1.   Let       (   )  be a continuous random variable with  cdf   .  

Let   ( )  be a differentiable function on  (   )  with          ( )   .  Then for  

    , 

 , ( )|   -    ( )       (   )   
if and only if  

 ( )  (   ( ))
 

 
  

       (   )  
 

Proposition 2.3.2.  Let      (   )  be a continuous random variable and let    

  (   ) and      (   ) such that          .∫  
 

 

  ( )

 ( )  ( )
  /     Then 

 , ( )|   -   ( )  
implies  

   ( )     8 ∫  
 

 

  ( )

 ( )   ( )
  9  
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Remarks 2.3.1.  ( ) It is easy to see that for certain functions, e.g.,  ( )  
  ( ) 

    ( ) 
  

  
 

   
 and (   )  (   )  Proposition 2.3.1 provides a characterization of (H-GC) 

distribution.   ( ) Taking, e.g.,  ( )  
 (    )   

   (    )   
    

 

   
 and (   )  (   )  

Proposition 2.3.1 provides a characterization of (HEBXII) distribution. ( ) Taking, e.g., 

 ( )  
 0  (      )

 
1
 

{   0  (      )
 
1
 
}
    

 

   
 and (   )  (   )  Proposition 2.3.1 provides a 

characterization of (HEEE) distribution. ( ) Taking, e.g.,  ( )     20   .    
 

 /13    
 

 
  and (   )  (   )  Proposition 2.3.1 provides a characterization of 

(EGWG) distribution for    .  ( ) Taking, e.g.,  ( )     {0
 (   )

 (   )
1
 

}    
 

   
  and 

(   )  (   )  Proposition 2.3.1 provides a characterization of (W-GF) distribution for 
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Proposition 2.3.1 provides a characterization of (K) distribution.  ( )  Taking, e.g., 
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 and (   )  (   )  Proposition 2.3.1 provides a 

characterization of (MEG) distribution.  ( )   Taking, e.g.,  ( )    6     
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 and (   )  (   )  Proposition 2.3.1 provides a characterization of (KFWE) 

distribution.   ( ) Taking, e.g.,  ( )     { . (   )   /
  

}    
 

   
 and (   )  

(   )  Proposition 2.3.1 provides a characterization of (WFr) distribution.  ( )  Taking 

e.g.,  ( )  {
  .    (       )/

  

 

[     .    (       )/
 

]
 }    

 

   
 and (   )  (   )  

Proposition 2.3.1 provides a characterization of (Kw-TEAW) distribution.  ( ) Taking, 

e.g.,  ( )    6  .  .    (  ) /
 

/
 

7 ,   
 

   
 and (   )  (   )  

Proposition 2.3.1 provides a characterization of (KwKwW) distribution. ( ) Taking, e.g., 

 ( )       ,    - ,   
  

    
 and (   )  (   )  Proposition 2.3.1 provides a 

characterization of (EPL) distribution. ( ) Our choices of the functions in ( )  ( ) are 

clearly for the sake of simplicity. 

 

Remarks 2.3.2.  ( ) Taking, e.g., 
 

 
( ( ))   ( )     2   .    

  /3  

Proposition 2.3.2 provides a characterization of (EGWG) distribution for      ( ) 

Taking, e.g.,  
 

 
( ( ))   ( )     { 0

 (   )

 (   )
1
 

}  Proposition 2.3.2 provides a 

characterization of (W-GF) distribution. ( ) Taking, e.g., 
 

 
( ( ))   ( )  

   { .
   

   
/
 

}  Proposition 2.3.2 provides a characterization of (K) distribution. ( ) 
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Taking, e.g., 
 

 
( ( ))   ( )            

  Proposition 2.3.2 provides a 

characterization of (KFWE; for    ) distribution.  ( ) Taking, e.g., 
 

 
( ( ))  

 ( )      { . (   )   /
  

}  Proposition 2.3.2 provides a characterization of (WFr) 

distribution. ( ) Again, clearly, there are other suitable functions as well, we chose the 

above ones for the sake of simplicity. 

3.   Concluding Remarks 

In designing a stochastic model for a particular modeling problem, an investigator will be 

vitally interested to know if their model fits the requirements of a specific underlying 

probability distribution. To this end, the investigator will rely on the characterizations of 

the selected distribution. Consequently, various characterization results have been 

reported in the literature. These characterizations have been established in many different 

directions. The present work deals with the characterizations of              new 

univariate continuous distributions which have appeared in the literature in 2015-2016. 

We certainly hope that the content of this work will be useful to the investigators who are 

interested to know if they have chosen the right distributions. 
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