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Abstract 

The paper presents the Bayesian analysis of two-parameter geometric extreme exponential distribution with 

randomly censored data. The continuous conjugate prior of the scale and shape parameters of the model 

does not exist while computing the Bayes estimates, it is assumed that the scale and shape parameters have 

independent gamma priors. It is seen that the closed-form expressions for the Bayes estimators are not 

possible; we suggest the Lindley’s approximation to obtain the Bayes estimates. However, the Bayesian 

credible intervals cannot be constructed while using this method, we propose Gibbs sampling to obtain the 

Bayes estimates and also to construct the Bayesian credible intervals. Monte Carlo simulation study is 

carried out to observe the behavior of the Bayes estimators and also to compare with the maximum 

likelihood estimators. One real data analysis is performed for illustration.  

Keywords:  Log-concave density function, Lindley’s approximation, Gibbs sampling, 

Metropolis-Hastings’s algorithm, Markov chain Monte Carlo. 

1. Introduction 

There are several censoring mechanisms that are used in survival time studies to reduce 

the experimental time and cost. The most popular among these are the right censoring 

schemes because of their crucial importance in reliability and life testing experiments. An 

observation is said to be right censored at time t if the exact value of it is not known 

except that it is greater than or equal to t. Under type I censoring, a sample of n units is 

followed until a fixed time t. The lifetime of a sampling unit will be known only if it is 

less than or equal to the predetermined maximum follow-up time t. Clinical data is often 

collected by fixing a maximum follow-up time t for each unit in the study. Under type II 

censoring, a sample of n units is followed until a fixed number of units r n  have 

experienced the event of interest. In this scheme the number of units experiencing the 

event is prefixed but the total duration of the study is random. Type II censoring scheme 

is often used in life testing applications and toxicology experiments. The unified feature 

of Type I and Type II censoring schemes is that the exact observation window is known 

for each unit in the sample. 

 

The third type of right censoring is random censoring in which censoring time is not 

fixed but depends on other random factors which are modeled by independent random 

variable known as censoring time variable. Consider an example where the patients with 

colorectal cancer enter simultaneously into the study after their tumors have been 

removed by surgery and we want to observe their lifetimes but censoring occurs in one of 
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the following forms: loss to follow-up (e.g. the patient may decide to move elsewhere), 

drop out (e.g. due to bad side effects or refusal to participate), death from other diseases 

or termination of the study. Clearly, these random factors are beyond the control of an 

investigator and are modeled by a censoring time variable. 

 

In the statistical analysis of failure time data, an investigator is frequently faced with 

choosing an underlying parametric distribution. In some situations physical 

considerations determine the distribution to be employed. However, many statistical 

problems arise from processes which cannot be theoretically linked to a particular 

parametric distribution. The lack of the general theory for the choice of an underlying 

parametric distribution has resulted in the usage of distributions which are not necessarily 

robust to possible alternative distributions. The exponential distribution is commonly 

used in life testing studies because of its simplicity and its inherent relation to the well 

defined theory of Poisson processes. It is somewhat surprising to observe that a limited 

attention has been paid in analyzing randomly censored lifetimes when the lifetimes are 

not exponential. The reason may be that the analysis becomes too difficult and may not 

be tractable. However, the density functions of two-parameter lifetime distributions like 

Weibull, Burr type XII and generalized exponential, geometric extreme exponential, etc., 

can take different curve shapes and can incorporate increasing, decreasing or constant 

failure rates as compared to exponential distribution which can incorporate only a 

constant failure rate. 

 

In this paper, we consider a two-parameter geometric extreme exponential (GEE) 

distribution introduced by Marshal and Olkin (1997) and further studied extensively by 

Adamidis et al. (2005). Like Weibull and gamma distributions, GEE distribution can 

have increasing, constant or decreasing hazard function depending on the shape 

parameter. For additional properties of GEE distribution, see Marshal and Olkin (1997). 

Marshal et al. (2001) studied the discrimination between geometric extreme exponential 

distribution and Weibull, gamma and log-normal distributions as alternatives. 

Kitidamrongsuk and Siripanich (2010) provided a method for selecting the member of a 

collection of distributions that best fit a set of observations. They considered the 

geometric extreme exponential and gamma distributions in their study and proposed a test 

statistic based on empirical Laplace transform. Pakyari (2010) compared the generalized 

exponential with geometric extreme exponential and Weibull distributions based on the 

likelihood ratio and minimum Kolmogorov distance criteria. For the Bayesian analysis of 

randomly censored generalized exponential and Weibull distributions, readers are 

referred to Danish and Aslam (2013, 2014). 

 

The remainder of the paper is organized as follows. In Section 2, we derive the model and 

its assumptions. The maximum likelihood (ML) estimation for the unknown parameters 

is presented in Section 3. Section 4 contains the prior distributions, loss functions, Bayes 

estimates based on Gibbs sampling and Lindley’s approximation. A simulation study is 

carried out in Section 5. A real data analysis is performed in Section 6 and finally, we 

conclude the paper in Section 7.  
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2. The model and its assumptions 

Let 1 2, ,..., nX X X be independent and identically distributed random variables with 

distribution function F(x) and density function f(x). Let 1 2, ,..., nT T T be also independent 

and identically distributed random variables with distribution function G(t) and density 

function g(t). In the context of reliability and life testing experiments, iX ’s are the true 

survival times of n individuals censored by iT ’s from the right so that one observes only 

independent and identically distributed random pairs    1 1, ,..., , ,n nY D Y D where iY min

 ,i iX T  and  i i iD X T  
 
is indicator of noncensored observation, for i = 1, 2,..., n. 

Now it is simple to show that the joint density function of Y and D
 
is  

       
1

, , ( ) 1 ( ) ( ) 1 ( ) ; 0, 0,1.
d d

Y D X T T Xf y d f y G y g y F y y d


    
 

(1) 

 

This is the usual model of random censorship studied under nonparametric context by 

several authors including Kaplan and Meier (1958), Efron (1967), Breslow and Crowley 

(1974) and Meier (1975). In some situations the censoring time variable T  is informative 

to the survival time variable X  through its distribution function. Koziol and Green 

(1976) introduced a special model under the assumption that X  and T  are independent 

and they are connected by the relation  

 1 ( ) 1 ( ) .T XG y F y


  
       

(2) 

for some positive constant  . The assumption (2) otherwise indicates that the 

instantaneous event rate is proportional to the instantaneous rate of censoring. Under the 

assumption (2), the joint density function (1) reduces to   

    1

, , ( ) 1 ( ) ; 0, 0,1.d

Y D X Xf y d f y F y y d

    

  
 (3) 

 

In this paper, we assume that the random variable X  follows a two-parameter GEE 

distribution with shape parameter θ and scale parameter λ. The probability density 

function and cumulative distribution function of GEE distribution are  

 
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  

 
    

(4) 

and 

 ; , 1 .
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e
F x

e e



 


 





 
 

        
(5) 

respectively. Using (4) and (5) in expression (3), we have 

 
 

 
 

11 1

, 2
, ; , , ; 0, 0,1.

1

y d

Y D
x x

e
f y d y d

e e

 


 

 
  



  


 

  
 

   (6) 
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3. Maximum likelihood estimation 

In this section, we derive the ML estimators ̂ , ̂  and ̂  of unknown parameters ,   
and   assuming the model defined in (6) holds. For an observed sample

     1 1, ,..., , ,n ny d y d y d
 
of size n from (6), the likelihood function is 

     
 

 
 

1 1

1 21

1

, , , 1 ,

n

i
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y nn d
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l y d e e
          

    



 
 

  

(7) 

where  1 .    The log-likelihood function can be written from (7) as
  

   

       

   

1 1

1

, , , ln 1 ln ln 1

2 ln 1 . (8)i
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Differentiating (8) with respect to ,  ,   and equating the resulting expressions to zero, 

we have the likelihood equations as 
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(9)
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(10) 

and 
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1 1

ln ln 1 0.i

n

in n
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(11) 

 

All the likelihood equations are nonlinear, so the ML estimates do not exist in closed-

forms. We suggest the NLP procedure in SAS to compute the ML estimates of the 

parameters.  

4. Bayesian estimation 

This section deals with loss functions, prior distributions for the unknown parameters and 

the Bayes estimates using Gibbs sampling procedure and the Lindley’s approximation. 

4.1 Loss functions 

In order to select a best decision in decision theory, an appropriate loss function must be 

specified. The squared error loss function (SELF) is generally used for this purpose. The 

use of SELF is well justified when over estimation and under estimation of equal 

magnitude has the same consequences. When the true loss is not symmetric with respect 

to over estimation and under estimation, asymmetric loss functions are used to represent 

the consequences of different errors. Nevertheless, we consider both the symmetric and 

asymmetric loss functions in our Bayesian analysis. 
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The SELF is defined as 

 
   

2

1
ˆ ˆ, ,SE SEl       

where ˆ
SE


 
is a decision to estimate parameter θ under SE loss function. The Bayes 

estimator of θ under SELF is 

 ˆ ,SE E 
         

(12) 

where E denotes the expectation with respect to the posterior distribution of θ.  

 

The second loss function to be considered is the asymmetric precautionary loss function 

(APLF) defined by 

 

 
 

2

2

ˆ
ˆ , .

ˆ
AP

AP

APl
 

 



  

 

This loss function is a special case of the general class of precautionary loss functions 

introduced by Norstrom (1996). The Bayes estimator of θ under APLF is 

 
1
22ˆ .AP E  

          
(13) 

 

Another very useful asymmetric loss is the linear exponential loss function (LELF) 

introduced by Varian (1975). The LELF with parameters 1k  and c  is defined as 

 
   3 1 1 ; 0,cl k e c c      

where ˆ
LE    . The sign of parameter c represents the direction of asymmetry and its 

magnitude reflects the degree of asymmetry. For 0c  , the underestimation is more 

serious than the overestimation, and for 0c  , the overestimation is more serious than the 

underestimation. For c close to zero, the LE loss function is approximately the squared 

error loss function. The Bayes estimate of θ under LELF is
    

 
1ˆ ln .c

LE E e
c

  
        

(14) 

 

Still another suitable asymmetric loss function is the general entropy loss function 

(GELF) proposed by Calabria and Pulcini (1996). The GELF with parameters q and 2k   

is defined as 

 

 4 2

ˆ ˆ
ˆ , ln 1 ; 0.

q

GE GE
GEl k q q

 
 

 

    
               
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For 0q  , a positive error has more serious effect than a negative error and for 0q  , a 

negative error has more serious effect than a positive error. The Bayes estimate under 

GELF is 

 
1

ˆ .q q
GE E 


 

          
(15) 

4.2 Prior and posterior distributions 

For the Bayesian estimation of unknown parameters, one needs prior distributions for 

these parameters. The prior distributions depend upon the knowledge about the 

parameters and the experience of similar phenomena. However, the specification and 

formulation of a prior distribution is a difficult job as correctly pointed out by Arnold and 

Press (1983) that there is no clear cut way in which one can say that one prior is better 

than the other. The model under consideration has shape and scale parameters; and the 

continuous conjugate prior for these parameters does not exist. We assume the following 

independent gamma priors for θ, λ and β 

 
 

 
 

 
 

1

1 1

2

2 2

3

3 3

11
1 1 1

1

12
2 2 2

2

13
3 3 3

3

; , , 0

; , , 0

; , , 0

a
a b

a
a b

a
a b

b
e a b

a

b
e a b

a

b
e a b

a







   

   

   

 

 

 


  
 




  
 


 

       

(16) 

 

The assumptions of independent gamma priors are not unreasonable. Many authors have 

used the independent gamma priors for the scale and the shape parameters of lifetime 

distributions, see for example, Berger and Sun (1993), Kundu and Pradhan (2009), 

Joarder et al. (2011). 

 

The joint prior density of the unknown parameters can be written as  

  3 31 1 2 2 11 1
, , .

a ba b a b
e e e

            


     
(17) 

 

Combining the density function in (7) and the likelihood function in (17), the joint 

posterior density function of ,  and  given data is 

   

   
 

 

2 2

11 3 11 2

1 1
1 1 1

2
1

, , ,

1
. (18)

1

n n

i i

i i

i

b y a n d
a n bb a n

n

y
i

y d e e e

e

 
 




      



 

 
      
        






 
 
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The posterior expectation any function of parameters, say  , , ,U    can be written as 

      
    
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(19) 
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However, it is not possible to evaluate (19) in closed-form. We use two different methods 

to approximate (19), namely (a) Gibbs sampling and (b) Lindley’s approximation. 

4.3 Bayes estimates using Gibbs sampling 

In this section, we obtain the Bayes estimates of θ, λ and β under different loss functions 

using Gibbs sampling procedure. The full conditional forms for θ, λ and β up to 

proportionality can be obtained from (18) as 

    
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(20) 
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(21) 

and 
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(22) 

respectively. To obtain the Bayes estimates using Gibbs sampler, it is required to have 

some mechanism of generating samples from the full conditional distributions. The full 

conditional form (20) is log-concave if   
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which is true for practical situations. Thus the samples of θ can be generated using the 

method proposed by Devroye (1984). The full conditional form (21) can be tackled using 

the Metropolis-Hastings algorithm (see Gilks et al. 1995) with 
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  as a candidate-generating density. The procedure is 

explained in Chib and Greenberg (1995). Finally the full conditional form (22) is gamma 

density, so the samples of β can be easily generated using any of the gamma generating 

routines. Now following the idea of Geman and Geman (1984) and using (20), (21), (22), 

it is possible to generate samples of (θ, λ, β) from posterior distribution (18) and then to 

obtain the Bayes estimates and corresponding credible intervals. Starting with suitable 

choice of initial values, say  0 0 0, , ,    we suggest the following procedure to generate 

the posterior samples and then to obtain the Bayes estimates: 
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Devroye (1984). 
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and u from U(0,1), 
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    (ii) If u < min (1, d) then 
1 x  else go to (i), 

 where  
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5.  The Bayes estimates of θ, λ and β under SELF can obtained from 
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 
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7. The Bayes estimates of θ, λ and β under LELF can be obtained from 
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 
 3

13

1 1ˆ ln .j

M
c

LE

j

e
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
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 8. The Bayes estimates of θ, λ and β under GELF can be obtained from
 

  

1

1

1
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 
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2
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1
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3

3

1

1

1ˆ .
M q

q

GE j

jM
 







 
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 

  

4.4 Bayes estimates using Lindley’s approximation 

This section provides the Bayes estimates under different loss functions using the 

Lindley’s approximation. Lindley (1980) proposed a procedure to approximate the ratio 

of two integrals such as (19). The procedure is explained in Appendix. 

 

The Bayes estimates of θ, λ and β under SELF using the Lindley’s approximation are 

 1 11 2 12 3 13 1 11 2 12 3 13

1ˆ ˆ ,
2

SE A A A               
   

(22) 

 1 21 2 22 3 23 1 21 2 22 3 23

1ˆ ˆ ,
2

SE A A A               
   

(23) 

 1 31 2 32 3 33 1 31 2 32 3 33

1ˆ ˆ .
2

SE A A A               
   

(24) 
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The Bayes estimates of θ, λ and β under APLF using the Lindley’s approximation are 

 

     

1
2 2

1 11 2 12 3 13 1 11 2 12 3 13 11
ˆ ˆ ˆ ˆ2 ,BL A A A                     

     
(25) 

     

1
2 2

1 21 2 22 3 23 1 21 2 22 3 23 22
ˆ ˆ ˆ ˆ2 ,BL A A A                     

    
(26) 

     

1
2 2

1 31 2 32 3 33 1 31 2 32 3 33 33
ˆ ˆ ˆ ˆ2 .BL A A A                     

    
(27) 

 

The Bayes estimates of θ, λ and β under LELF using the Lindley’s approximation are 
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 
         

   
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The Bayes estimates of θ, λ and β under GELF using the Lindley’s approximation are 

   
  1
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

    
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(32) 

 
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1

1 31 2 32 3 33 3 333
1 31 2 32 3 33

1ˆ ˆ 1
ˆ ˆ2 2

q

GE

A A A qq    
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 


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(33) 

The closed-form expressions for A1, A2 and A3 are provided in Appendix. 

5. Simulation 

A simulation study is performed to observe the behavior of the proposed ML estimators 

and the Bayes estimators based on Gibbs sampling for different sample sizes and for 

different censoring rates. We consider different sample sizes: n = 20, 40, 60; different 

censoring rates: p = 0.50, 0.80; different values of loss function parameters: c =q = -1.5, -

0.9, -0.3, 0.3, 0.9, 1.5; different combinations of hyperparameters: a1 = 0, b1 = 0, a2 = 0, 

b2 = 0, a3 = 0, b3 = 0 (prior-1), a1 = 4, b1 = 2, a2 = 2, b2 = 2, a3 = 2, b3 = 2 (prior-2) when 

θ = 2, λ = 1, β = 1, prior-1 and  prior-2 (a1 = 3, b1 = 2, a2 = 2, b2 = 2, a3 = 1, b3 = 4) when 

θ = 1.5, λ = 1, β = 0.25. Where prior-1 denotes the noninformative priors for θ, λ and β 

when all the hyperparameters in (17) are zero and prior-2 denotes the informative priors 

for θ, λ and β when the hyperparameters are taken so that the priors’ means are the same 

as the original means. For a particular case, we generate 1000 randomly censored 

samples from (6) and for each sample we compute the ML estimates, the Bayes estimates 
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under different loss functions based on 20,000 MCMC samples with burn-in 10,000 

samples. The average ML estimates, average Bayes estimates and the corresponding 

mean squared errors (MSEs) are obtained for each replicate. The results are reported in 

Tables 1-3. It is observed that as the sample size increases the biases and the MSEs the 

estimators decrease. The behavior of Bayes estimators under prior-1 is very similar to the 

ML estimators in terms of MSEs. The Bayes estimators under prior-2 perform quite 

better than the ML estimators and the Bayes estimators under prior-1. When comparing 

the Bayes estimators under different loss functions, it is seen that the  

Table 1:  Average values of the estimators of θ and the corresponding MSEs (in 

parenthesis) under (a) prior-1 and (b) prior-2 when θ = 2. 

(a) 

p n MLE SE AP 
LE 

 c = -0.3     c = 0.3      c = 0.9  

GE 

 q = -1.5   q = -0.9    q = -0.3 

0.50 20 2.965 

(3.114) 

2.879 

(3.166) 

2.579 

(1.557) 

2.478 

(1.706) 

1.763 

(0.916) 

1.336 

(0.904) 

2.341 

(1.321) 

2.024 

(1.247) 

1.870 

(1.132) 

40 2.382 

(2.388) 

2.216 

(2.281) 

2.565 

(1.601) 

2.498 

(1.736) 

1.982 

(1.001) 

1.632 

(0.796) 

2.276 

(1.219) 

2.178 

(1.160) 

1.939 

(1.142) 

60 2.112 

(1.181) 

2.234 

(1.042) 

2.479 

(1.273) 

2.431 

(1.359) 

2.066 

(0.833) 

1.800 

(0.635) 

2.159 

(1.145) 

2.108 

(1.025) 

2.047 

(0.950) 

0.80 20 2.915 

(3.663) 

2.898 

(3.411) 

2.742 

(1.903) 

2.673 

(2.056) 

1.994 

(1.039) 

1.567 

(0.813) 

2.528 

(1.627) 

2.350 

(1.376) 

1.944 

(1.243) 

40 2.528 

(2.305) 

2.339 

(2.284) 

2.624 

(1.624) 

2.582 

(1.739) 

2.136 

(0.981) 

1.830 

(0.6897) 

2.483 

(1.439) 

2.309 

(1.257) 

1.943 

(1.055) 

60 2.364 

(1.405) 

2.325 

(1.353) 

2.534 

(1.303) 

2.502 

(1.375) 

2.176 

(0.829) 

1.942 

(0.587) 

2.430 

(1.169) 

2.205 

(1.033) 

2.009 

(0.926) 

 
(b) 

 

p n SE AP 
LE 

  c = -0.3       c = 0.3        c = 0.9  

GE 

  q = -1.5      q = -0.9      q = -0.3 

0.50 20 2.020 

(0.047) 

2.118 

(0.106) 

2.093 

(0.103) 

1.998 

(0.082) 

1.915 

(0.079) 

2.081 

(0.096) 

2.036 

(0.089) 

1.991 

(0.085) 

40 2.015 

(0.036) 

2.108 

(0.092) 

2.089 

(0.089) 

1.984 

(0.070) 

1.893 

(0.072) 

2.077 

(0.082) 

2.027 

(0.075) 

1.976 

(0.073) 

60 2.004 

(0.026) 

2.105 

(0.062) 

2.082 

(0.058) 

1.964 

(0.045) 

1.863 

(0.036) 

2.068 

(0.053) 

2.011 

(0.047) 

1.954 

(0.048) 

0.80 20 2.059 

(0.060) 

2.117 

(0.126) 

2.092 

(0.124) 

2.001 

(0.101) 

1.921 

(0.096) 

2.081 

(0.117) 

2.037 

(0.110) 

1.995 

(0.105) 

40 2.041 

(0.042) 

2.122 

(0.109) 

2.089 

(0.107) 

1.990 

(0.084) 

1.901 

(0.083) 

2.081 

(0.099) 

2.032 

(0.091) 

1.983 

(0.088) 

60 2.035 

(0.030) 

2.114 

(0.075) 

2.081 

(0.071) 

1.962 

(0.057) 

1.862 

(0.067) 

2.066 

(0.065) 

2.009 

(0.059) 

1.953 

(0.060) 
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Bayes estimators under LELF perform better than the rest. The Bayes estimates under 

LELF and GELF are computed for various values of loss function parameters c and q in 

the range -1.5 to 1.5 and reported only for which the estimates are appropriate. It is seen 

that the range of suitable values of loss function parameters is different for the estimation 

of shape parameter θ, scale parameter λ and censoring parameter β. Since the ML 

estimator of β exists in closed-form, it outperform in all cases. The scale parameter λ can 

be estimated quite accurately under LE loss function (c = 0.3) or under GE loss function 

(q = -0.9) even for sample size as small as 20. However, no general rule can be drawn for 

the estimation of shape parameter θ.                

Table 2:  Average values of the estimators of λ and the corresponding MSEs (in 

parenthesis) under (a) prior-1 and (b) prior-2 when λ = 1. 

(a) 

p n MLE SE AP 
LE 

c = -0.9    c = -0.3     c = 0.3  

GE 

q = -1.5   q = -0.9     q = -0.3 

0.50 20 1.247 

(0.395) 

0.915 

(0.141) 

1.019 

(0.001) 

1.032 

(0.163) 

0.954 

(0.145) 

0.878 

(0.139) 

0.984 

(0.135) 

0.900 

(0.143) 

0.799 

(0.169) 

40 1.115 

(0.145) 

0.959 

(0.114) 

1.039 

(0.109) 

1.029 

(0.123) 

0.982 

(0.116) 

0.935 

(0.113) 

1.002 

(0.109) 

0.950 

(0.115) 

0.887 

(0.130) 

60 1.078 

(0.095) 

0.983 

(0.086) 

1.034 

(0.082) 

1.027 

(0.089) 

0.997 

(0.086) 

0.968 

(0.085) 

1.010 

(0.083) 

0.977 

(0.086) 

0.939 

(0.094) 

0.80 20 1.187 

(0.250) 

0.958 

(0.118) 

1.043 

(0.116) 

1.034 

(0.131) 

0.984 

(0.121) 

0.933 

(0.116) 

1.003 

(0.115) 

0.958 

(0.119) 

0.882 

(0.132) 

40 1.086 

(0.096) 

0.998 

(0.077) 

1.043 

(0.076) 

1.038 

(0.082) 

1.011 

(0.078) 

0.984 

(0.076) 

1.021 

(0.076) 

0.993 

(0.078) 

0.961 

(0.082) 

60 1.059 

(0.063) 

1.011 

(0.055) 

1.039 

(0.055) 

1.037 

(0.058) 

1.019 

(0.056) 

1.002 

(0.054) 

1.026 

(0.055) 

1.008 

(0.055) 

0.988 

(0.056) 

 
(b) 

p n SE AP 
LE 

 c = -0.3        c = 0.3       c = 0.9  

GE 

  q = -1.5      q = -0.9      q = -0.3 

0.50 20 1.017 

(0.023) 

1.049 

(0.262) 

1.027 

(0.024) 

1.007 

(0.021) 

0.987 

(0.020) 

1.033 

(0.024) 

1.014 

(0.022) 

0.994 

(0.021) 

40 1.007 

(0.017) 

1.030 

(0.018) 

1.014 

(0.017) 

0.999 

(0.016) 

0.985 

(0.015) 

1.018 

(0.017) 

1.004 

(0.016) 

0.990 

(0.016) 

60 1.003 

(0.016) 

1.022 

(0.017) 

1.009 

(0.016) 

0.997 

(0.015) 

0.986 

(0.015) 

1.013 

(0.016) 

1.001 

(0.016) 

0.989 

(0.016) 

0.80 20 1.019 

(0.028) 

1.044 

(0.031) 

1.027 

(0.029) 

1.012 

(0.027) 

0.996 

(0.025) 

1.032 

(0.030) 

1.017 

(0.028) 

1.001 

(0.027) 

40 1.011 

(0.018) 

1.027 

(0.020) 

1.016 

(0.019) 

1.005 

(0.018) 

0.995 

(0.017) 

1.019 

(0.019) 

1.009 

(0.018) 

0.998 

(0.018) 

60 1.008 

(0.015) 

1.021 

(0.016) 

1.0112 

(0.015) 

1.003 

(0.015) 

0.995 

(0.015) 

1.014 

(0.015) 

1.006 

(0.015) 

0.998 

(0.015) 
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Table 3:  Average values of the estimators of β and the corresponding MSEs (in 

parenthesis) under (a) prior-1 and (b) prior-2 when β = 1, β = 0.25. 

(a) 

p n MLE SE AP 
LE 

c = -0.3      c = 0.3     c = 0.9  

GE 

q = -1.5   q = -0.9     q = -0.3 

0.50 20 1.007 

(0.001) 

0.970 

(0.001) 

1.049 

(0.003) 

1.015 

(0.003) 

0.985 

(0.001) 

0.955 

(0.002) 

0.995 

(0.003) 

0.965 

(0.005) 

0.953 

(0.006) 

40 1.003 

(0.000) 

1.021 

(0.00) 

1.044 

(1.002) 

1.019 

(0.001) 

0.996 

(0.000) 

0.974 

(0.001) 

1.016 

(0.001) 

1.003 

(0.000) 

0.980 

(0.001) 

60 1.002 

(0.000) 

1.007 

(0.000) 

1.019 

(0.001) 

1.012 

(0.000) 

0.995 

(0.000) 

0.979 

(0.001) 

1.012 

(0.001) 

1.001 

(0.000) 

0.983 

(0.000) 

0.80 20 0.251 

(0.000) 

0.253 

(0.000) 

0.282 

(0.003) 

0.256 

(0.003) 

0.251 

(0.001) 

0.247 

(0.002) 

0.268 

(0.001) 

0.250 

(0.000) 

0.232 

(0.003) 

40 0.251 

(0.000) 

0.252 

(0.000) 

0.275) 

(0.002) 

0.255 

(0.000) 

0.250 

(0.000) 

0.248 

(0.000) 

0.256 

(0.000) 

0.253 

(0.000) 

0.244 

(0.001) 

60 0.250 

(0.000) 

0.251 

(0.000) 

0.264) 

(0.000) 

0.253 

(0.000) 

0.251 

(0.000) 

0.249 

(0.000) 

0.252 

(0.000) 

0.249 

(0.000) 

0.241 

(0.001) 

 
(b) 

p n SE AP 
LE 

 c = -0.3       c = 0.3        c = 0.9  

GE 

 q = -1.5      q = -0.9      q = -0.3 

0.50 20 1.026 

(0.001) 

1.079 

(0.007) 

1.043 

(0.003) 

1.010 

(0.001) 

0.980 

(0.001) 

1.053 

(0.004) 

1.021 

(0.001) 

0.990 

(0.001) 

40 1.022 

(0.001) 

1.057 

(0.003) 

1.033 

(0.001) 

1.011 

(0.000) 

0.991 

(0.000) 

1.039 

(0.002) 

1.018 

(0.001) 

0.997 

(0.000) 

60 1.018 

(0.000) 

1.044 

(0.002) 

1.026 

(0.001) 

1.010 

(0.000) 

0.995 

(0.000) 

1.031 

(0.001) 

1.015 

(0.000) 

1.000 

(0.000) 

0.80 20 0.253 

(0.000) 

0.268 

(0.000) 

0.254 

(0.000) 

0.252 

(0.000) 

0.249 

(0.000) 

0.261 

(0.000) 

0.251 

(0.000) 

0.241 

(0.000) 

40 0.252 

(0.000) 

0.257 

(0.000) 

0.253 

(0.000) 

0.250 

(0.000) 

0.248 

(0.000) 

0.259 

(0.000) 

0.251 

(0.000) 

0.244 

(0.000) 

60 0.250 

(0.000) 

0.253 

(0.000) 

0.251 

(0.000) 

0.250 

(0.000) 

0.250 

(0.000) 

0.256 

(0.000) 

0.251 

(0.000) 

0.246 

(0.000) 

6. Data Analysis 

In this section, we analyze a real data set from Fleming and Harrington (1991). The data 

belongs to Group IV of the Primary Biliary Cirrhosis (PBC) liver study conducted by 

Mayo Clinic. The event of interest is time to death of PBC Patients. The data on the 

survival times (in days) of 36 patients who had the highest category of bilirubin are: 400, 

77, 859, 71, 1037, 1427, 733, 334, 41, 51, 549, 1170, 890, 1413, 853, 216, 1882
+
, 1067

+
, 

131, 223, 1827, 2540, 1297, 264, 797, 930, 1329
+
, 264, 1350, 1191, 130, 943, 974, 790, 

1765
+
, 1320

+
. The observations with ‘+’ indicate censored times. For computational ease, 
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each observation is divided by 1000. Since we do not have any prior information about 

the unknown parameters, we use the noninformative priors for θ, λ and β, that is

1 1 2 2 3 3 0a b a b a b      for Bayes estimates. We compute the ML estimates and the 

Bayes estimates under SELF, APLF, LELF and GELF using Gibbs sampling procedure 

and Lindley’s approximation. To test the goodness of fit of the model to this data, we 

compute the Kolomogorov-Smirnov D statistics and the associated p-values. The results 

are given in Table 4. Based on the Kolomogorov-Smirnov test, we can say that the test is 

nonsignificance for all the methods. However, the Bayes estimates under LELF based on 

Gibbs sampling fit the data quite well. 

Table 4:  The ML estimates and the Bayes estimates, Kolomogorov-Smirnov D 

statistics and the associated p-values based on different methods for real 

data 

Method LF       K-S D p-value 

MLE   - 3.9724 1.8703 0.1666 0.1841 0.2442 

Bayes (MCMC) SE 4.1970 1.7720 0.1724 0.2022 0.1555 

AP 5.0912 1.8385 0.1921 0.2203 0.0970 

LE 2.6158 1.6604 0.1693 0.1376 0.5936 

GE 3.6282 1.7118 0.1587 0.1729 0.3154 

Bayes (Lindley) SE 4.2438 1.7953 0.2519 0.1976 0.1777 

AP 3.3703 1.6751 0.1529 0.1891 0.2202 

LE 2.7547 1.7146 0.2522 0.1505 0.4806 

GE 3.4534 1.9195 0.1930 0.1621 0.3927 

7. Conclusion 

In this paper we compared the maximum likelihood estimators and the Bayes estimators 

of geometric extreme exponential distribution parameters under random censorship. For 

this the squared error, asymmetric precautionary, linear exponential and general entropy 

loss functions are considered using informative and noninformative priors. It is observed 

that the Bayes estimates of unknown parameters cannot be obtained in closed-forms, we 

used Gibbs sampling and Lindey’s approximation to obtain the approximate Bayes 

estimates. To observe the behavior of the estimators based on different methods, a 

simulation study is performed for different sample sizes, for different censoring rates and 

for different loss function parameters of linear exponential and general entropy loss 

functions. It is observed that as the sample size increases the MSEs of the estimators 

decrease. The ML estimates and the Bayes estimates under noninformative priors on the 

unknown parameters behave approximately in similar manner. However, the Bayes 

estimators under independent gamma priors perform quite better than the ML estimators 

and the Bayes estimators under noninformative priors. It is seen that the scale parameter λ 

and the censoring parameter β can be estimated quite effectively under LELF and GELF 

with appropriate choice of corresponding parameters. This is true for both the informative 
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and noninformative priors and for sample sizes as small as 20. However, we cannot find a 

general rule for the estimation of shape parameter θ even for sample sizes as large as 60. 

One real data analysis is performed to illustrate various methods. It is seen that all 

Kolomogorov-Smirnov test of fit is non-significance for all the methods. However, the 

Bayes estimate under LELF based on Gibbs sampling fit the data quite better than the 

rest. 

Appendix  

The posterior expectation given in (18), using the notations    1 2 3, , , ,     
 
and

   1 2 3 1 2 3, , ln , ,        , can be written as 

 
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(34) 

 

For sufficiently large n, the expression (34) is evaluated by Lindley’s approximation as 

       

   

1 2 3 1 2 3 1 1 2 2 3 3 4 5 1 1 11 2 12 3 13

2 1 21 2 22 3 23 3 1 31 2 32 3 33
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where 
1 2 3
ˆ ˆ ˆ, ,   are the ML estimates of 1 2 3, ,   ,

 1 1 2 2 3 3, 1,2,3,i i i id i       
  

4 12 12 13 13 23 23,d U U U      5 11 11 22 22 33 33

1
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Moreover
ij is (i, j)th element of minus the inverse of the Fisher information matrix and 

all the quantities are evaluated at  1 2 3
ˆ ˆ ˆ, ,   .  
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