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Abstract

In this paper we study the joint treatment of not missing at random response mechanism and informative
sampling for survey data. This is the most general situation in surveys and other combinations of sampling
informativeness and response mechanisms can be considered as special cases. The proposed method
combines two methodologies used in the analysis of sample surveys for the treatment of informative
sampling and the nonignorable nonresponse mechanism. One incorporates the dependence of the first order
inclusion probabilities on the study variable, while the other incorporates the dependence of the probability
of nonresponse on unobserved or missing observations. The main purpose here is the estimation of finite
population mean and superpopulation parameters when the sampling design is informative and nonresponse
mechanism is nonignorable. Under four scenarios of sampling design and nonresponse mechanism, we
obtained the method of moment estimators of finite population mean, with their biases and mean square
errors. Furthermore, a four-step estimation method is introduced for the estimation of superpopulation
parameters under informative sampling and nonignorable nonresponse mechanism. New relationships
between moments of response, nonresponse, sample, sample-complement and population distributions were
derived. Most estimators for finite population mean known from sampling surveys can be derived as a
special case of the results derived in this paper.

Keywords: Response distribution, Nonignorable nonresponse, Informative sampling
design, Poststatification.

1. Introduction

Data collected by sample surveys are used extensively to make inferences on assumed
population models. Often, survey design features (clustering, stratification, unequal
probability selection, etc.) are ignored and the sample data are then analyzed using
classical methods based on simple random sampling. This approach can, however, lead to
erroneous inference because of sample selection bias implied by informative sampling -
the sample selection probabilities depend on the values of the model outcome variable (or
the model outcome variable is correlated with design variables not included in the
model). See Pfeffermann et. al (1998) and Eideh and Nathan (2006). In addition to the
effect of complex sample design, one of the major problems in the analysis of survey data
is that of missing values. Rubin (1976) and Little and Rubin (2002) consider three types
of nonresponse mechanism or missing data mechanism:

(a) Missing completely at random (MCAR): if the response probability does not depend
on the study variable, or the auxiliary population variable, the missing data are MCAR.

(b) Missing at random (MAR) given auxiliary population variable: if the response
probability depends on the auxiliary population variable but not on the study variable, the
missing data are MAR.
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(c) Not missing at random (NMAR): if the response probability depends on the value of a
missing study variable, the missing data are NMAR.

So, the cross-classification of sampling design and response mechanism is summarized in
the following table:

Table 1
Sampling Design Response Mechanism
MCAR MAR NMAR
Informative-INF INFMCAR INFMAR INFNMAR
Noninformative-NINF NINFMCAR NINFMAR NINFNMAR

The literature dealing with the treatment of nonresponse in surveys, deals with
NINFMCAR, NINFMAR, NINFNMAR, INFMCAR, and INFMAR. See for example,
Little and Rubin 2002, Schafer 1997, Little 1982, Rubin 1976, Sarndal and Swensson
1987, Cobben 2009, Chambers and Skinner 2003, Pfeffermann and Sikov (2011), Little
(1993; 1994), Tang et al. (2003) Qin et al. (2002) Chang and Kott (2008). The methods
used in these papers are summarized by Pfeffermann and Sikov (2011) and Eideh (2012).

For inference problem, Little (1982) classify the nonresponse mechanism as ignorable
(MAR and MCAR) and nonignorable (NMAR). Foe this sense, the cross classification of
sampling design and nonresponse mechanism is:

Table 2
Sampling Design Nonresponse Mechanism
Ignorable Nonignorable
Informative 1 IN
Noninformative NI NN

Pfeffermann and Sikov (2011), and Eideh (2012) consider estimation of superpopulation
parameters and prediction of finite population parameters (census parameters) under
nonignorable nonresponse via response and nonresponse distributions when the sampling
design in noninformative.

None of the above studies consider simultaneously the problem of informative sampling
and the problem of nonignorable nonresponse when analyzing survey data.

In this paper, we study, within a modeling framework, the joint treatment of nonignorable
nonresponse mechanism and informative sampling for survey data, by specifying the
probability distribution of the observed measurements when the sampling design is
informative. This is the most general situation in surveys and other combinations of
sampling informativeness and response mechanisms can be considered as special cases.

It should be pointed here that, according to Sarndal (2011) “Nonresponse causes both
bias and increased variance. Its square is typically the dominant portion of the Mean
Squared Error (MSE). We address primarily surveys on individuals and households with
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quite large sample sizes, as is typical for Journal of Official Statistics for government
surveys; consequently, the variance contribution to MSE is low by comparison. Increased
variance due to nonresponse is nevertheless an issue; striking a balance between variance
increase and bias reduction is considered, for example, in Little and Vartivarian (2005).”
Furthermore, Brick (2013) mentioned that “Model assumptions and adjustments are made
in an attempt to compensate for missing data. Because the mechanisms that cause unit
nonresponse are almost never adequately reflected in the model assumptions, survey
estimates may be biased even after the model based adjustments. Nonresponse also
causes a loss in the precision of survey estimates, primarily due to reduced sample size
and secondarily as the result of increased variation of the survey weights. However, bias
is the dominant component of the nonresponse-related error in the estimates, and
nonresponse bias generally does not decrease as the sample size increases. Thus, bias is
often the largest component of mean square error of the estimates even for subdomains
when the sample size is large”. In we focus here on the bias, variance and MSE.

The paper is structured as follow. Section 2 reviews the definition of response
distribution and estimation of response probabilities. Section 3 introduces new
relationships between moments of response, nonresponse, sample, sample-complement
and population distributions. Section 4 describes the estimation of finite population total

Y, =N ‘12:11 y; , under the four scenarios mentioned in Table 2. Also the main purpose

in this section is the computation of the biases and mean square errors of the estimators.
Section 5 is devoted to the estimation of superpopulation parameters under informative
sampling and nonignorable nonresponse mechanism. Section 6 provides the conclusions.

2. Response and Nonresponse Distributions

Let U = {L N} denote a finite population consisting of N units. Let y be the study
variable of interest and let y, be the value of y for the ith population unit. A probability
sample s is drawn from U according to a specified sampling design. The sample size is

denoted byn. Letx; = (xil,..., xip) , 1€U be the values of a vector of auxiliary variables,
Xppeeer X and z = {zl,..., Zy } be the values of known design variables, used for the sample

selection process not included in the model under consideration. In what follows, we
consider a sampling design with selection probabilities 7, = Pr(i € s) > 0, and sampling

weight w;, =1/7; ; i=1,...,N . In practice, the z,’s may depend on the population values
(x,y,z). We express this dependence by writing: 7, =Pr(ies|x,y,z) for all units

ieU. Denote by 1=(1,.., 1 )’ the N by 1 sample indicator (vector) variable, such that
I, =1 if unit ieU is selected to the sample and I, =0 if otherwise. So that
s={ilieU,l, =1} and its complement iss=c={i|ieU,l, =0}. We consider the
population values v;,..., y, as random variables, which are independent realizations from
a distribution with probability density functions (pdf) f_(y; | ;;6), indexed by a vector
of parametersé.
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In addition to the effect of complex sample design, one of the major problems in the
analysis of survey data is that of missing values. In recent articles by Eideh (2009),
Pfeffermann and Sikov (2011), and Eideh (2012), the authors defined and studied the
problem of nonignorable nonresponse using the response and nonresponse distributions
where the sampling design is noninformative. Following the notations, denote by
R= (Rl,..., RN) the N by 1 response indicator (vector) variable such that R, =1 if unit
ies is observed and R, =0 if otherwise. We assume that these random variables are

independent of one another and of the sample selection mechanism (Oh and Scheuren
1983). The response set is defined accordingly as r = {i €s|R :1} and the nonresponse

set by = {i e s| R, =0}. We assume probability sampling, so that 7, = Pr(i € s) >0 for
all units i eU. Let the response probability v, =Pr(i er|x,y,z)>0 for all units ies
and ¢, =1/, be the response weight fori es.

Eideh (2009) defined and studies the properties of response and nonresponse distributions

when the sampling design is informative and nonresponse mechanism is NMAR or

nonignorable. According to Eideh (2009), the (marginal) response pdf of y; is given by:

Es(l//i |Xi’yi’7/)fs(yi |Xi'9'77) (1)
Es(‘//i | Xi’9777’7)

where, according to Pfeffermann et al. (1998), the sample pdf of y; is:

E, (7 | X,y 7)Y | %,6
Ep(”i |Xi’077/)

fr(yi |Xi’0’7717/):

)

Furthermore, Sverchkov and Pfeffermann (2001) define the sample-complement pdf of

y; as:

Ep(l_ﬂ'i |Xi'yi'7)fp(yi |Xi79)
E, (-7 1%.6,7)

f§(yi |Xi!9!7/) = 3)
Note that f,(y; |X;,0,7,7) is completely specified by f (y, [x,.0), E (7 |X;,y.7)
and Es(Wi |Xi’yi’7/)'

Similarly, the (marginal) nonresponse pdf of y; is given by:

)= BB L 1) o

It should be noted here that, the parameters » and 7 that index mechanisms of response
and sample models, respectively, are characteristics of the data collection but are not
generally of scientific interest. For more discussion on the use of response and
nonresponse distributions for analytic inference in survey sampling, see Pfeffermann and
Sverchkov (2004), Pfeffermann and Sikov (2011), and Eideh (2009, 2012).
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Estimation of response probabilities v, forall ies:

If the nonresponse mechanism is not missing ate random, then the classical methods for
estimating the response probabilities using auxiliary variables, available for respondents
and nonrespondents, is logistic or profit models. If we use the logistic model, then

exp (B, + BiX,)

1+exp(B, + B%;) ©

v, =Pr(R, =1lies,x) =

We can fit this model using maximum likelihood approach. Thus the estimate of y/; is:

5 oolg, i)
" 1replp + Ax)

(6)

If the nonresponse mechanism is NMAR, then values of y, for i e r is available, but for
i ¢ rare not available, so we cannot fit the following model:

e (B, + BiX + B.Y;)
L+exp(B, + Bix + BoY;)

directly using maximum likelihood method. A recent approach of estimation y, under

nonignorable nonresponse is discussed by Matei A. and Giovanna M.R. (2015), based on
latent modeling approach.

v, =Pr(R, =1liesxy) =

(")

3. Relationships between Moments of Response, Nonresponse, Sample, Sample-
Complement and Population distributions.

Following the definitions of response, and nonresponse distributions, we notice that,
given the population distribution, these distributions are completely determined by
identifying E, (7; | ;. ;) E;(, | X;,y;). In practice, these conditional expectations are
not known. Assuming that the available data to the analyst is
{I.,,ieUL{R, %, W,y i estand{y,,x,, i er}, which is the case in secondary analysis,
the question that arises is: how can we identify and estimate, Ep(7zi ly,,x,) and
Es(Wi | X, yi) based only on the theses data? The following relationships answers this

question. Let(y;,x; ) be a vector of random variables.
According to Pfeffermann and Sverchkov (1999), the following relationship hold:
Ep(yi |Xi):{Es(Wi |Xi)}7l Es(Wi Yi |Xi) (8)

Also, according to Sverchkov and Pfeffermann (2004), we have:

% )= Ep{(l_”i)Yi |Xi}_ Es{(Wi _1)Yi |Xi}
S0 aixg e -Dix) ©
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Furthermore, for vector of random variables(yi ,xi), Eideh (2009), proved the following
relationship:

E.(y [%)=1{E, (¢ |x)} 'E (? Y, IX{) (10)
2 Ed0-wyi1x}_EA Dyl x
EF(yi | ')_ Es{(l l//,) } = r{(¢| 1) } (12)

The previous relationships and the following new relationships are fruitful in estimation
of the parameters indexing superpopulation model, informative sampling design,
nonresponse mechanism, and prediction of finite population parameters.

Lemma 1.

E, (4w, %)
E, (v %)= —,( i 1) (12)

Proof:
Using (8) and (10), we get:
(v %)= E.(wy %) E 4wy [x)E.(wy|x)

Es(Wi |Xi) B Er(¢iWi IXi) Es(Wi |Xi)
E, (gw,y, % )E, (¢, |Xi)= E, (gw,y: %)

B Er(¢i |Xi)Er(¢iWi |Xi) Er(¢iWi |Xi)

Lemma 2.
) Efh(w -1y, 1%}
SO O=E -0 9
Proof:
According to (9) and (10), we have:
)= Es{(wi _1)yi |Xi}_ Er{¢i(Wi _1) Yi % } {¢ | X; }
Eg(Yi| i)_ Es{(Wi _1)|Xi} - r{ i |Xi}Er ¢i(Wi _1)|Xi}
_ Er{¢i (Wi _1)Yi |Xi}
Er{¢i (Wi _1)|Xi}
Lemma 3.
)= E.(y)- 2 (1)
. (0)- £, (y) - et @s)

where Cov, (v, ;)= E, (v )—E, (v, JE.(w:).
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Proof:
According to (11), we have

Ef( _): Es{(l_'//i)Yi}: Es(yi)_Es(Yi‘//i)
o Es(l_Wi) 1_Es('/’i)
_ Es(Yi)_Es(yi‘//i)_Es(yi)Es(‘/’i)"‘ Es(yi)Es(V/i)
1_Ep(‘//i)
_ Es(Yi)Es(l_'//i)_Covs(‘//wyi): E ( _)_COVS(‘//i’Yi)
1_Es(V/i) o 1_Es(‘//i)

Similar proof for equation (15).

Note that Section 3.3 of Beaumont (2002) is a special case of equation (14).

Lemma 4.
£, 0=, (0)- a9
EJM)—EJM)=(?Y§?;§) (17)
where Cov,(7;,y;)=E,(y,)—E, (v, )E, (7).
Proof:
According to (9), we have
Ep{(l_”i)Yi} Ep(Yi)_Ep(Yi”i)
ST ) T Ew)
_ Ep(Yi)_Ep(yi”i)_Ep(yi)Ep(”i)+Ep(yi)Ep(”i)
1_Ep(”i)
_Ep(Yi)Ep(l_”i)_covp(”iayi)_ ( )_Covp(”i:yi)
) l_Ep(”i) e 1_Ep(”i)

Lemmab.

Ep(yi)_ EF(yi):_ E

Cov, (gw,y) |, E(dwy)E
(#w )E, {(# - 1)} E, (
)

where Cov, (¢iWi’yi)= Er(¢iWi yi)_ Er(yi )Er(¢iWi :

r (¢| )_ Er (¢| i )Er (¢iWi )
WE. 4 1) =
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Proof:
According to Lemma 1, and (11), we get:

(wy) Efl-wi)y) E(gwy) EA@ -y
=)= 0= - T ) By
(¢.W.y)[Er( ) ] [Er(¢iyi)_Er(yi)]Er(¢iWi)

E, (pw E {(¢ 1)}
_E(4wy)E (#)-E (¢.w.

_—{E. (4w y)-E, (gw, ,) r( ,)}+ W
Er(¢iwi )Er (¢| _1)} E

Cov, (4w, y;) N E, (¢w,y,)
E, (4w, )E, {(# - 1)} E,

Lemma 6.

) B )= (e, (o) &, () 9
Proof:
Using Lemmas 1 and 2, we get:
Es(Wi Yi) Es{(Wi _1)y|}
S00EU)= ) e D)
— Es(Wi Yi )[Es(wi)_l — Es(W. Yi)— Es(yi )]Es(Wu)
E, (w;)E, {(w, -2);
_ Es(W|y| )Es(Wi)_ Es(Wi y.)_ ES(Wi Yi )Es( |)+ E (y )Es(Wu)
E, (¢ )E. {(#, -1}
— {Es(Wi Yi )_ Es(y| Es(W| )} - _ COVs (W. y.)
E. (w; )E. {(w; ~1) E. (w;)E {(w, —2);
Er(¢i )Er(¢iW| 1)_

4. Method of Moments Estimators of Finite Population Mean

In this section we consider the estimation of finite population total Y, = N‘lzil Yi,

under the four scenarios mentioned in Table 2, namely: IN, 11, NI, and NN. Also the main
purpose of this section is the computation of the biases and mean square errors of these
estimators.

474 Pak.j.stat.oper.res. Vol.XIl No.32016 pp467-489



Estimation of Finite Population Mean and Superpopulation Parameters when the Sampling Design is .......

Case 1: Informative sampling design and nonignorable nonresponse (IN).

According to Eideh (2009), we can show that the method of moments estimate (MME) of
the finite population total, Y, = N>y, is given by

Z¢i W;Yi
You = "o (20)

Z¢i W;

which is the two-phase nonresponse adjusted estimator, see Sarndal and Lundstrom
(2005, p 51).

Lemma 7. Statistical properties of y

Y
@ B(Vr)= E(V)- Y, =0
(b) If N is known,

( ) ZZ””W” ddad ( i—(ym))(yj —(yq,,v))yﬁiwmjwj

2 ier jEf |]l//|]

where t, =N .

If N is unknown

V)= e BRI bl (g
[ZQ i] o Y

ier

where y; =y, forall units i= j and wy =y, fori=j.
Proof:

Let =Y gwy, and f, => 4w, . Notethat ¥,, =f, /f, is a ratio estimator of Y, .
ier ier

Now,

Ef)=E (Z¢.W.y] (ZﬂwiyiRij

ier ieU

=Z¢iwiyi77i§//i :Zyi =Yy =4

ieU ieU

Thatis, f; => 4wy, is an unbiased estimator of t,
Similarly,

E(f,)= E(Z@wij = E(Z@Wi Ri)

ier ieU
= Z¢iWi7z'i'//i = 21: N =t,
ieU ieU
Thatis, f, = Z¢iwi is an unbiased estimator of t,.

ier
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Expandy,, = f /t, ina Taylor series, aroundf, =t, and f, =t,, we have

z¢iwiy| i
Vi ier _ 1
y¢W_ Z¢|W| _t2
~t—1+1(t1 tl)—t;(t2 t,)
2 b 2

So that E(Y,,, )~t,/t, . Hence B(Y,, )= E(7,,)- Y, = 0.

(b) Since B(yw)z E(yM)—YU ~ 0, therefore MSE()‘/M):V(VW)+ Bz(yw)z (ym) Note
that, y,, can be written as:

_ t _ — 1. t
yw_i=y¢w =Yy zg(tl_tl)_é(t -t )
R P
-&le-pe)
1, -, 1 _
=t_(1 _YUtZ)zt_(z¢iWi ViR _Yu Z¢iwi Rij
2 2 \lieU ieU
:l (y|_Y_u W R,
t, i
So that
V) 2V(5 )=V £ 3l ¥ o |
2 il
SEORAES AT NN
2 ieU
But,

COV(Ri 'R ): E(RiRj )_ E(R, ')E(Rj)
=TV — YL T Y
Hence,

V(T,)= 1222(%.,% — iy Ny = Yo My Yo wigw,

2|€UJU

Estimation of V(y,,)

If N known,
(yz;m) N2 ZZ s ﬂﬂ;/iﬂjl//j (yi —(Vm))(yj _(ym))?iW@jo (21)
ier jer iij 7'ij

where w; =Pr(i, jer|xy,z)>0 forallunits i, jer.
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If N unknown,

V(VW): : ? ;Z‘””l//‘i ;z.%[t;{/iﬂjwj (yi —(Vm ))(y,- —(ng ))V5iWi¢jWJ (22)
(ZQWiJ er je ij 7 ij

ier

Case 2: Informative sampling design and nonresponse mechanism is ignorable (I1).

The MME of Y, becomes,

D Wy,
yw =l n (23)

W,

which is similar to the estimator given by Sarndal (1980) and discussed in details by
Bethlehem (1988).

Lemma 8. Statistical properties of y, (Bethlehem (1988)).

_ Cly,
@ B(y,)~ <Y
W
_ 1 — — _
(b) V(yw):t_ZZZ(Yi =Y ij' -Y )Nin (”ij‘//ij _”i‘//i”j‘/’j)’ Z‘//i =Ny =t,
2 ieU jeu ieU
Proof:

| did not see the proof anywhere, | decided to show the reader the proof.

(@) Let £ => wy, and f,=>"w,, sothat y, =f, /f, isa ratio estimator of Y . Also,

E(f1 I)r: E(g‘ AV j =II;(; w.y.R j

=§Wiyi7ril//i Zgl//i Yi =t,
and
E(f,)= E(ZwiJ - E[ZwiRij

ier ieU

:Z'//i =Ny =t,

ieU

Using Taylor series, expand y,, =f,/f, around f, =t, and f, =t,, we get:

D wy, .

Yu :ierZ:—Wi =iz_+_(f1 _tl)__é(fZ _tz)

t2 t2 tZ
So that,
¢ Z‘//i Yi _
E \V2 z —1 = IEU = Y *
U= =
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Now,
ZWiYi 1
B(yw)NE(yw)_ u = IEUNV _Wzyl
icU
1]+ viYi
_ — | iU _
R R S PR RN

Cly.y)

(;t//.y. j >

Note that, if the nonresponse mechanism is ignorable, that is the population covariance
between the study variable and response probability is zero, C(l//, y) =0, then B(VW) =0,

and ¥, is an unbiased estimator of Y, . So, in order to reduce the bias, we can apply
poststratification estimation, based on the estimated response probabilities 7, for all
[ €s.

(b) Computation of V(y,,): Note that

So that,

2 IeU

Yl ( Yy, -v )NWCov(Ri,RJ.)

’\’l\)

IE

:i%“z&(y. -Y" ij -Y" )NIWJ<”'JV/'J ”W'EJW‘)
ieU je

t;
Estimation of MSE(Y,,)
First need estimation of V(¥,,):
- 1 v =4 Wi — W7,V
V(ya)= 2 ZZ(yi -Y ij —Y W Lz i) (24)
ier jer TV
W

ier
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Estimation of B(VW)

A Cly,
B(y,)~ Sy (25)
7
where
2 W
v=v,="< (26)
w ZWi
and )

Cly Z = 2wy, -V, v -7,) (27)

i ier
ier

Case 3: Noninformative sampling design and nonignorable nonresponse mechanism

We can show that the MME of Y|, is,

25
y¢ _ er (28)

24

ier

Lemma 9. Statistical properties of y,

(a) B(V¢)z E(y )—VU Z—C()i’”)

T
_ 1 _, -
(b) V(yqﬁ):_zZLJ:ZU:(yi -Y ij -Y »i¢j (ﬂ'ij'//ij _ﬂ'il//i”j'//j)v
[
where > 7z, =N7 =t,.
ieU
Proof:

@) Let f, =>4y, and f, =>4, ,sothat y, =1, /f, is aratio estimator of Y, . Also,

ier ier

E(f,)= E[Z¢i yi]= E[Zqzﬁi Y, Rij

ier ieU

= Z¢iyi”i‘//i = Zﬂ'i yi =14

ieU ieU
and
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Using Taylor series, expand ¥, =, /f, around f, =t, and f, =t,, we get:

D4

S SN [N
So that

E(y¢)zt—z= ;Nzyi -v"
Hence,

B(y¢) (y¢) Yo :E——ZY.

ieU

i A

ieU

L[5y -, |-l

A ﬂZyJ

ieU ieU

ieU

Note that, if the sampling design is noninformative, that is the population covariance
between the study variable and first order inclusion probability is zero, C(y,ﬂ), then

B(y¢): 0,and ¥, is an unbiased estimator of Y, . So, in order to reduce the bias, we can
apply poststratification estimation, based on the inclusion probabilities 7, forall i € s.

(b) Computation of V(y, )

We can write y, as follows:

o ier . tl 1 _ _ f
y¢ Bl Z¢| fz tz +t2 (tl tl) 22(1:2 tZ)
y, z:—1+t£(t1 _tl)_ tté (fz —tz)zl[l _:_“2}
2 L 2 2 2
:Y_*+1(A1_Y_*f2)=Y*+l( ¢y|R| Y Z¢'R']
t2 t2 ieU ieU
:Y_*“‘l (y|_Y_* |R|
tz ieU
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So that,

v(y,)=V (Y " |eu( -v" )¢,le

g
tZZZ(y. A TR Y ACKAE A X

2 ieU jeU

Estimation of v(y¢)

V(5,)- [ S A IR 29)
Z¢Ij ier jer i Vij

ier

Estimation of B(y )

B(y.)~ (7% y) (30)
where
A Z¢i”i
T=7,= —'erz¢_ (31)
and ier

Z¢i §¢( 7¢)(7Ti _77¢) (32)

Case 4: Sampling design is noninformative and nonresponse mechanism is ignorable
Here, we can show that the MME of Y, is given by:
Z Yi Z Yi

yr — Jer — ier (33)

>1 m

ier

Lemma 10. Statistical properties of Y,

@ B(y,)- L)

()
(b) V(yr)=#zz%yj(ﬂ'ij‘//ij _ﬂ'il//i”j‘//j)

ieU jeU
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Proof:
(a) Since
Z Yi 1
E v — ier _ — —Y
(¥,) ~ (Zuly j ;y.ﬂ.w. Y,

Therefore,

B(Y,)=E(Y, Zy. T, - Zy.

IeU ieU

Assume m = E(m)=>" 7y, = N(my), then

ieU

m(éy-”””' N ”‘”_UJ

Cly, my)
wmu o e ~Gew)= )

Note that, if the sampling design is noninformative and nonresponse mechanism is
ignorable, that is the population covariance between the study variable and inclusion

probability is zero, C(y,zw ), then B(y,)=0, and ¥, is an unbiased estimator of Y, . So,

in order to reduce the bias, we can apply poststratification estimation, based on the
product of inclusion probabilities 7z, and estimated response probabilities v, (z,y,) for

alli €s.

B(Y,)

(b) Computation of V(y,

<l
—

ij:iz yyCov(R R)

M” 0 jeu

:—ZZY (”‘//u ”WI”JV/J)

ieU jeU

Estimation of V(V,)

ZZ vy J(ﬂ.,w., rwry;) )

ier jer ﬂ-ul/lu
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Estimation of B(Y, )

B(y, )= C((E)W) Zrlwg‘ —y v, —(w),) (35)

where m(zy ), => 7y .

ier

The four cases can be summarized in Table 3.

Table 3: Method of Moments Estimators of Y, Bias and Variance, MSE =
VAR + (BIAS)?

Sampling Estimator Bias (=) Variance
Design and
Nonresponse
Mechanism
IN ~ Z¢iwiyi 0 L TV — LWV y
AT Nz
ier J (yi _(Vm)xyj —(Vw,))ﬁwiqﬁjwj
I ZWi Yi C(lﬁ' y) ZZ(yi _Y_*ij _Y_*)Niwj X
yw — |erZW l// i ieU jeU
& t? (”ij‘//ij _”i'//i”j‘//j)
TV
zl//i =Ny =t,
ieU
NN Z¢ Yi C()i’”) ZZ(yi _Y_*ij _Y_*yi¢j x
y¢ 'ErZ:¢ T l ieU jeU
il t? (ﬂij%j —7Til//i7fjl//,-)
TV
Y m=N7=t,
ieU
NI . Cly, 1
. = %ny' (ZZWM//) F;‘,JEZU yiyj'(ﬂ'ij‘//ij _ﬂ'iV/i”j‘//j)

An interesting feature of the theses results is that several classical estimators in common
use, within randomization theory (design-based school) of survey sampling, are shown to
be special cases of the proposed approach, thus providing them a new justification.
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5. Estimation under Informative Sampling and Nonignorable Nonresponse
Mechanism

One of the main advantages of basing the inference on the response distribution is that it
permits the use of standard inference procedures like those based on the likelihood
principle. Having derived the response distribution when the sampling design is
informative and the nonresponse mechanism in nonignorable (NMAR) and if the
response measurements are independent, then the response likelihood for & (the
parameter indexing the superpopulation model), » (the parameter indexing the sampling

design) and y (the parameter indexing the nonresponse mechanism), is given by:
r|n(0n7 =]i[fr(yi|Xi'9'77’7/)

i=1

mE s X YLy ) LY | X6,

i=1 E. (v |%.6.7.7)

_f[ l//||xl’y|17/) ( ilxi!yi’n)fp(yilxﬂe)
s(‘//i |Xi’6’n’7)Ep(”i |Xi’9!77)

and the logarithm of the response likelihood for (6,7, 7) is
|in(0.77,7)= D logt, (v, | %;,0.17.7)

i=1

=2.10g £, (i 1x.6)+ 3 10gE, (mi |x,,¥,.7)~ 3100, (mi |x,,6.1) (37)

m

+Z|09Es(‘/filxi’yi’7 ZIOgE ‘//||X|"9777/)

i=1 i=1

The function given in equation (37) can be maximized with respect to (0,77,;/) to obtain

the maximum response likelihood estimates of these parameters. Maximum response
likelihood estimators of other parameters, which are the parameters of interest, (e.g. the
parameter @ characterizing the population distribution ofy) are defined using the

invariance properties of the maximum likelihood (ML) approach.

The response likelihood function, Lr,in(ein’y)1 can be interpreted as a weighted

likelihood, where the weight is the product of the two ratios, the first one is
E, (7 1%, Y:,m)/E, (7 | x;,6,n), which characterize the sampling design, and the

second ratio is E,(w; |X,,Y,,7)/E.(w, |X,,6,7,7), that characterise the missing data
mechanism.
It should emphasize here that,

@  If E (7 |%.y;)=E,(z |x;) for all values ofy,, then the sampling design is
noninformative.

(b)  If E(w, |%,Y;)=E.(w; | x;) for all values of y,, then the nonresponse process is
ignorable.
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Particular Cases:

Case 1: Sampling design is noninformative and nonresponse process is nonignorable.
Then (40) becomes:

1 (6,7)=10g £, (¥, 1%,.6)+ > I0GE, (w, | X,. 1. 7)~ > I0gE, (v, | %,.6,7)  (38)

i=1 i=1 i=1

Case 2: Sampling design is noninformative and nonresponse process is ignorable. Then
(37) becomes:

Ir.ni(e):ilog fp(yi |Xi18) (38)

which is the standard estimation processes, where the missing value mechanism and
process of sampling design are ignored and base the inference on the classical log-
likelihood function. However, analysis using standard estimation methods, which ignores
the last four terms of (22), leads to inconsistent estimates of @. Thus the effect of the
nonignorable missing value mechanism and informative sampling design must be taken
into account.

Case 3: Sampling design is informative and nonresponse process is ignorable. Then (37)
becomes:

L (01)= 2109 £,(4,1%,,0)+ 2 10GE, (7, 1 x,.Y,s71)~ Y I0GE, (7, 1 x,,0,1)  (40)

Now, assuming f (y;1%;,0), E,(7|x,y,7) and E.(w;|X,Y,,») are completely
specified, then the maximum likelihood (ML) estimator of (8,7,7) can be obtained by
maximizing the log likelihood function given in (40) with respect to (8,7,7)
simultaneously, or in four-step method. For modeling of Ep(ﬂ'i |X,,Y,,n7), Pfeffermann et
al. (1998) introduced exponential and polynomial function of (x;, y, ), later Eideh (2003)

considered logit and probit functions. Furthermore, Eideh (2012) adopted the
exponential, linear, logit and probit functions for modeling Es(‘//i | X, yi,y).

In practice the response probabilities are theoretical quantities and they are unknown. For
estimation ofy/,, see Section 2.

Four steps method

Step 1: Estimation of .. See Section 2. Denote the estimate byys,, so that ¢3i =1y, .
We refer to 7, as the response propensity.

Step 2: Estimation of the effect of nonresponse mechanism. Estimate the parameter y
using the relationship given in (10), namely:
1

41
¢i|xi’yi’7) .

Es(‘/’i |Xivyi17): E (
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Thus the parameter » can be estimated by regressing q?i on (xi,yi) using the data set

Ai Yo X, 1€ r}. Denoting the resulting estimate of y byy .

Step 3: Estimation of the effect of sampling design. Estimate the parameter 7 using

the relationship given in (12), namely:
Er iWi i Xi

£ (y, 1, 7) - LY. 1)

= 42
Er(¢iWi |Xi) 2

Thus the parameter n can be estimated using regression analysis. This can be proceed as
follows:

(a) Write (42) as:

E, (v, Ixi,n)=EE'%+y_/‘||x)_(‘))= E, (I,vi[x;) (43)
where
¢-W-
| =——1 44
I Er(¢iWi |Xi) “

(b) Estimate E, (4w, | x,) by regressing 4w, on x; using the data set {xi,&i,wi, ie r}.
(©) Let I, =4w,/E, (4w, |x,), and then regress [y, on x, using the response data set
{ﬂ.yi X, 1€ r}. Denoting the resulting estimate of n by7 .

Step 4: Estimation of the superpopulation model parameter. Substitute y and 7 in
the response log-likelihood function, (40), and since Ep(yzi |%,,y;,77) and

E.(w; |X;,Y;,7) do not contain@, then the ML estimator of & is obtained by maximizing

the resulting response log-likelihood function with respect to the population parameter @,
namely:

Ir.in(e):ilog fp(Yi |Xi’0)_ilong(ﬂi |Xi!eiﬁ)_ilogEs('//i |Xi’0177’77) (45)

In this paper we study the joint treatment of not missing at random response mechanism
and informative sampling for survey data. This is the most general situation in surveys
and other combinations of sampling informativeness and response mechanisms can be
considered as special cases. The proposed method combines two methodologies used in
the analysis of sample surveys for the treatment of informative sampling and the
nonignorable nonresponse mechanism. One incorporates the dependence of the first order
inclusion probabilities on the study variable, while the other incorporates the dependence
of the probability of nonresponse on unobserved or missing observations. The main
purpose here is the estimation of finite population mean and superpopulation parameters
when the sampling design is informative and nonresponse mechanism is nonignorable.
Under four scenarios of sampling design and nonresponse mechanism, we obtained the
method of moment estimators of finite population mean, with their biases and mean
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square errors. Furthermore, a four-step estimation method is introduced for the estimation
of superpopulation parameters under informative sampling and nonignorable nonresponse
mechanism. New relationships between moments of response, nonresponse, sample,
sample-complement and population distributions were derived. Most estimators for finite
population mean known from sampling surveys can be derived as a special case of the
results derived in this paper. This paper can be considered as generalization and extension
of Bethlehem paper (1988).

6. Conclusions

In this article we use two methodologies used in the analysis of sample surveys for the
treatment of informative sampling and the nonignorable nonresponse mechanism. One
incorporates the dependence of the first order inclusion probabilities on the study
variable, while the other incorporates the dependence of the probability of nonresponse
on unobserved or missing observations. Using the new relationships, derived in the
present study, between moments of response, nonresponse, sample, sample-complement
and population distributions, we develop four estimators of finite population mean under
classification of sampling design and nonresponse mechanism. Known estimators in
common use in official statistics are shown to be special cases of the present theory, so
provide new justification of these estimators as method of moments estimators. Further
experimentation (simulation and real data problem) with this kind of estimators and is
therefore highly recommended.

Furthermore, in this paper, we show the role of informative sampling design and
nonignorable nonresponse in adjusting various estimators for bias reduction. In addition
to the estimation of finite population mean, we introduce a new method for the estimation
of superpopulation parameters under informative sampling and nonignorable nonresponse
mechanism.

In brief, ignoring informativeness of sampling design and nonignorable nonresponse, will
yield biased estimators of finite population total. To reduce the bias, we propose the use
of poststratification based on first order inclusion probabilities (in case of informative
sampling design and ignorable nonresponse mechanism), or estimated response
probabilities (for noninformative sampling design and nonignorable nonresponse
mechanism), or product of them (if the sampling deign is noninformative and the
nonresponse mechanism is ignorable).

| hope that the new mathematical results obtained in the present article will encourage
further theoretical, simulation, real data problem, empirical and practical research in these
directions.
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