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Abstract 

Least square estimators in multiple linear regressions under multicollinearity become unstable as they 

produce large variance for the estimated regression coefficients. Hoerl and Kennard 1970, developed ridge 

estimators for cases of high degree of collinearity. In ridge estimation, the estimation of ridge parameter  

( k ) is vital. In this article new methods for estimating ridge parameter are introduced. The performance of 

the proposed estimators is investigated through mean square errors (MSE). Monte-Carlo simulation 

technique indicated that the proposed estimators perform better than ordinary least squares (OLS) 

estimators as well as few other ridge estimators. 

Keywords:   Multiple Linear Regression, Multicollinearity, Ridge Parameter and MSE. 

1. Introduction 

Consider the classical linear regression model 

uβXy += ,         (1) 

where X is a ( pn× ) matrix of non-stochastic regressors, β  is a ( 1×p ) vector of the 

unknown regression coefficients and u  be a ( 1×n ) vector of random disturbances such 

that 0=][uE and .=]′[ 2IσuuE  For computational point of view X  is normalized and y  

is expressed in deviations from mean. Ordinary least squares give the estimator for β  as 

  yXXXOLS


1
̂  provided  -1XX  exist. OLS is an unbiased estimator. But when 

multicollinearity is present in the data, OLS estimator becomes unstable due to their large 

variance, which may lead to poor prediction. To overcome this condition, the most 

popular and commonly used estimator is the ridge estimator and it was first introduced by 

Hoerl and Kennard 1970. They defined the ordinary ridge estimator as 

  OLSR XXkIXX  ˆˆ -1


 
where k > 0 is the ridge or shrinkage parameter. Ridge 

estimator is a biased estimator which is an alternative estimator to the OLS Estimator. 

Several methods are available in the literature to deal with the problem of 

multicollinearity.  Some of the well known methods for choosing the ridge parameter are: 

Hoerl et al. 1975, Lawless and Wang 1976, McDonald and Galarneau 1975, Hoerl and 

Kennard 2000, Kibria 2003, Khalaf and Shukur 2005, Mardikyan and Cetin 2008, Muniz 

and Kibria 2009, Dorugade and Kashid 2010, El-Dereny and Rashwan 2011, Khalaf 

2012, Al-Hassan 2010, Alkhamisi and Shukur 2007, and Dorugade 2014. 
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Motivation for this paper is to study the performance of ridge estimators available in the 

literature and to suggest modified estimators when multicollinearity is present in the data. 

This article is restricted to deal multicollinearity problem. The proposed modified 

estimators are evaluated using Monte-Carlo simulation and compared in terms of ratio of 

average MSE (AMSE) of OLS over other existing ridge estimators. 

 

For computational ease and for further discussion we express equation (1) in canonical 

form as 

,+= uγZy          (2) 

where βWγXWZ ′=,=  and ),...,,(==′′=′ 21 pλλλdiagDXWXWZZ , where W be a  

( pp× ) matrix such that its columns are normalized eigen vectors of XX′, sλi '  are the 

thj  eigen value of XX′. The ordinary least squares (OLS) estimator of y  is then given by 

  .ˆ 11
yZDyZZZOLS
 

        (3) 

Since ,′= βWγ  implies .̂=ˆ γWβ   

2.   Ordinary Ridge Estimator  

By adding a biasing constant k to the thi element of the diagonal of the matrix ZZ′
(defined as in (3)), the ordinary ridge estimator (ORR) of γ can be written as 

  ,ˆ 11
yZAyZkIDR
 

       (4) 

where kIDA  .  From equations (3) and (4), we write 

  ,ˆˆ
11

OLSR kAI 
         (5) 

The bias of Rγ̂ is given by 

.)ˆ( 1  kAbias R

         (6) 

Therefore the bias of β̂  is  

.)ˆ()ˆ( 1  WkWAbiasWbias R
        (7) 

The mean square error of Rγ̂  is given by 

.
)+(

+
)+(

ˆ=

)ˆ(]′)ˆ([+)ˆ(var=)ˆ(
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1= 1=
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γbiasγbiasγianceγMSE

    (8) 

3.   Proposed Estimators 

Here we propose an estimator for the ridge parameter .k  Earlier, Hoerl and Kennard 

1970, have shown that ridge estimator is biased and its squared bias is continuous and 

monotonically increasing function of k . Moreover, they have shown that for 
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,
ˆ

≤≤0 2

max

2

γ

σ
k the )ˆ( RγMSE is minimum, where 2

maxγ
 
is the largest element of 2γ and 2σ is 

replaced by its estimate 
1

ˆ
ˆ 2






pn

yZyy OLS
 . In the case of ORR, various methods for 

estimating the ridge parameter ( k ) were defined and some of the well known methods 

are listed below: 

i) 
γγ

σp
kHKB ′̂ˆ

ˆ
=

2

  (Hoerl, Kennard and Baldwin 1975)   (11) 

ii) 

∑
1=

2

2

ˆ

ˆ
= p

i

ii

LW

γλ

σp
k   (Lawless and Wang 1976)    (12) 

iii) 

( )[ ]{ }∑
1=

2/1222

2

]ˆ/ˆ[+1+1/ˆ

ˆ
= p

i

iii

HMO

σγλγ

σp
k ,   (Nomura 1988) (13) 

iv) 
 2

maxmax

2

2

max

ˆˆ)1(

ˆ








pn
kKS ,  (Khalaf and Shukur 2005) (14) 

where maxλ  is the largest eigen value of .′XX  

v) 


















max

2

)(

1

ˆˆ

ˆ
,0

j

DK
VIFn

p
Maxk




, (Dorugade and Khashid 2010) (15) 

where ;,...,2,1,
1

1
2

pj
R

VIF
j

j 


  is the variance inflation factor of the thj

regressor. 

vi) ∑
1=

2

2

max
ˆ

ˆ2
=)(

p

i i

AD γ

σ

λ
MeanHarmonick   (Dorugade 2014)  (16) 

 

The estimator HKB still works better in terms of MSE. The estimators DK and AD 

proposed by Dorugade and Khashid 2010 and Dorugade 2014 respectively, perform 

better than HKB when there exist a very high degree ( 9.0≥ρ ) of collinearity among the 

predictors, which may not be realistic in real life situations. Simulation study indicates 

that when there is low or moderate or high degree of collinearity, the estimators KS, 

HMO and LW may tend to be unstable for the lower error variance. To overcome these 

we propose two modified estimators for determining ridge parameter ,k and following 

Hoerl et al. 1975, the suggested modified estimators are defined as: 

vii) 
γγλ

k
γγλγγ

σp
k HKBSV ′̂ˆ

1
+=

′̂ˆ

1
+

′̂ˆ

ˆ
=

maxmax

2

1
      (17) 
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viii) 
m

k
λλγγ

σp
k HKBSV 2

1
+=

)/(2

1
+

′̂ˆ

ˆ
=

2

minmax

2

2
      (18) 

where minmax /= λλm  is called the condition number (Weisberg-1985, Chatterjee and 

Hadi-1988. Higher the value of m , higher is the degree of multicollinearity. If m  is 

between 30-100 indicates moderate to strong correlation and if m  is more than 100 

suggests severe multicollinearity (Liu 2003). The simulation study indicate that suggested 

estimators defined as in (17) and (18) respectively perform better when data is suffering 

from low, moderate and high degree of collinearity. The suggested estimators SV1 and 

SV2 take little over bias than Hoerl and Kennard 1970 but they minimise the total 

variance.  

4.   The Results of Simulation Study 

The performance of the estimators is studied through Monte-Carlo simulation.  The 

performance of these estimators is investigated in the presence of low, moderate and high 

degree of multicollinearity.  The results are obtained by generating a random matrix X  

of size ( pn× ) using the relation ;.,..,2,1;.,..,2,1,)1( 2/12 pjnix ipijij  
 
where 

ijξ  is an independent standard normal pseudo-random number, ρ is specified such that 

2ρ  is the degree of correlation between any two predictors.  These predictor variables are 

standardized such that XX′is in the correlation form and it is used to generate y with 

]′4.0,5.0,9.0,3.0,5.0,3.0[=β  . To study the performance of the proposed estimators 

we have assumed various values for n  as 10, 25, 50 and 100; variances of the residual 

term as 5, 10, 15, 25 and 100 and the degree of correlation ρ as 0.8, 0.9, 0.99 and 0.9999. 

Experiment is repeated 5000 times each and average mean square error (AMSE) is 

computed. Ridge estimates are computed by considering the different estimators of the 

ridge parameter ( k ) defined as in equations (11) to (18). Here we consider the process 

that leads to the maximum ratio of AMSE of OLS over AMSE of other ridge estimators 

to be the best in terms of MSE point of view. From tables - I and II, we observe that the 

performance of the suggested ridge estimators is better and comparable than the other 

estimators in almost all cases. However when there is a wide range of moderate or high 

degree of collinearity the estimator 
2SVk performs considerably better than all other 

estimators considered under study.  If we observe carefully, the suggested estimators and 

as well the other estimators may vary little (under estimates on comparing with OLS) 

when the sample size ( n ) is large, degree of correlation is less and variance 2σ of the 

error terms are small (Ref. table - 1 for n  =100; and error variance 2σ = 5 and ρ = 0.8).  

 

We observe the performance of different estimators from the Figures 1and 2. Figure 1 is 

drawn for AMSE ratio against various values of sample size n , when ρ and 2σ are fixed 

and Figure 2 is drawn for AMSE ratio against various values of error variance 2σ , for 

fixed n  and .ρ They indicate that overall performance of the suggested estimators is 

superior to other estimators considered under study. Further they clearly indicate that 

when predictors are either moderate or highly correlated the performance of the 

suggested estimators is satisfactory and perform similar to that of HKB and KD, and the 
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performance of the estimators LW, AD, HMO, and KS are similar hence forming two 

groups in terms of their performance. A through study has to be done in this regard. 

5.   Conclusion  

The ridge estimators studied in this article are computed for varied combinations of 

sample sizes ( n ), variance ( 2σ ) of the error term and degree of correlation ( ρ ) between 

the predictors.  The suggested estimators are evaluated and compared with other ridge 

estimators. Experiment is repeated 5000 times each and average mean square errors 

(AMSEs) are computed.  When there is wide range of degree of collinearity among the 

predictors the performance of the suggested estimators is satisfactory and slightly better 

over other ridge estimators considered in this articles. 

Table 1:   AMSE ratio of OLS estimator over different Ridge estimators 

Deg. of Corrn. Est. 

 

σ2  = 

n = 10 n = 25 

5 10 15 25 100 5 10 15 25 100 

 

 

 

 

 

 

 

 

8.0  

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

2.9116 

2.6919 

0.9869 

1.4479 

0.9688 

0.9664 

2.9123 

2.9397 

3.1253 

2.8562 

1.0313 

1.5122 

1.0078 

0.9997 

3.1255 

3.1616 

3.2248 

3.0299 

1.0283 

1.5336 

1.0069 

1.0014 

3.2249 

3.2606 

3.3462 

3.1404 

1.0315 

1.5634 

1.0108 

1.0046 

3.3462 

3.3833 

3.0541 

2.8113 

1.0258 

1.5057 

1.0100 

1.0038 

3.0541 

3.0896 

1.9352 

1.9319 

0.8327 

1.0358 

0.8349 

0.8314 

1.9353 

1.9406 

2.6886 

2.6824 

0.9591 

1.2387 

0.9633 

0.9576 

2.6886 

2.6985 

2.9750 

2.9683 

0.9803 

1.2879 

0.9844 

0.9786 

2.9750 

2.9861 

2.9889 

2.9815 

0.9945 

1.3019 

0.9991 

0.9929 

2.9889 

3.0008 

3.1266 

3.1192 

1.0017 

1.3222 

1.0061 

1.0005 

3.1266 

3.1391 

 n = 50 n = 100 

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

1.3093 

1.3089 

0.6826 

0.7747 

0.6856 

0.6823 

1.3093 

1.3108 

2.3401 

2.3392 

0.8990 

1.0693 

0.9046 

0.8985 

2.3402 

2.3442 

2.7726 

2.7715 

0.9542 

1.1523 

0.9599 

0.9537 

2.7727 

2.7778 

2.9422 

2.9409 

0.9787 

1.1841 

0.9855 

0.9781 

2.9422 

2.9482 

3.0453 

3.0438 

0.9997 

1.2102 

1.0077 

0.9992 

3.0453 

3.0520 

0.7755 

0.7755 

0.5061 

0.5373 

0.5086 

0.5060 

0.7755 

0.7759 

1.7551 

1.7550 

0.7963 

0.8779 

0.8021 

0.7961 

1.7551 

1.7565 

2.3039 

2.3037 

0.8930 

0.9971 

0.9027 

0.8928 

2.3039 

2.3061 

2.8759 

2.8756 

0.9651 

1.0909 

0.9731 

0.9649 

2.8759 

2.8789 

3.1028 

3.1025 

0.9972 

1.1303 

1.0070 

0.9970 

3.1028 

3.1064 

Deg. of Corrn. Est. 

       

σ2  =               

n = 10 n = 25 

5 10 15 25 100 5 10 15 25 100 

 

 

 

 

 

 

 

 

9.0=ρ  

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

3.0065 

2.3635 

1.0708 

1.5223 

0.9962 

0.9905 

3.0073 

3.0416 

3.1016 

2.6338 

1.0472 

1.5236 

1.0044 

1.0001 

3.1018 

3.1337 

3.3074 

2.7537 

1.0462 

1.5453 

1.0048 

1.0013 

3.3075 

3.3407 

3.2811 

2.9756 

1.0429 

1.5638 

1.0100 

1.0032 

3.2811 

3.3128 

3.3671 

2.7932 

1.0498 

1.5654 

1.0083 

1.0041 

3.3671 

3.3996 

2.4167 

2.4091 

0.9086 

1.2050 

0.9099 

0.9055 

2.4168 

2.4235 

2.9759 

2.9652 

0.9771 

1.3412 

0.9777 

0.9719 

2.9759 

2.9851 

3.1254 

3.1139 

0.9917 

1.3686 

0.9933 

0.9885 

3.1254 

3.1363 

3.2955 

3.2835 

1.0021 

1.3995 

1.0030 

0.9972 

3.2955 

3.3063 

3.3108 

3.2988 

1.0040 

1.4034 

1.0062 

1.0003 

3.3108 

3.3222 

 n = 50 n = 100 

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

1.7534 

1.7526 

0.7899 

0.9616 

0.7932 

0.7890 

1.7534 

1.7554 

2.6594 

2.6578 

0.9325 

1.1919 

0.9364 

0.9310 

2.6594 

2.6635 

2.9996 

2.9976 

0.9759 

1.2611 

0.9805 

0.9743 

2.9996 

3.0048 

3.0784 

3.0761 

0.9915 

1.2807 

0.9962 

0.9899 

3.0784 

3.0841 

3.2390 

3.2365 

1.0010 

1.3069 

1.0055 

0.9997 

3.2390 

3.2451 

1.1733 

1.1733 

0.6498 

0.7298 

0.6525 

0.6495 

1.1734 

1.1739 

2.2225 

2.2222 

0.8771 

1.0380 

0.8838 

0.8765 

2.2225 

2.2242 

2.7713 

2.7709 

0.9466 

1.1395 

0.9537 

0.9460 

2.7713 

2.7736 

3.1120 

3.1116 

0.9790 

1.1902 

0.9866 

0.9784 

3.1120 

3.1149 

3.2949 

3.2944 

0.9997 

1.2212 

1.0077 

0.9991 

3.2949 

3.2981 
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Table 2:   AMSE ratio of OLS estimator over different Ridge estimators 

Deg. of Corrn. Est. 

 

σ2  = 

n = 10 n = 25 

5 10 15 25 100 5 10 15 25 100 

 

 

 

 

 

 

 

 

99.0  

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

3.4061 

1.6951 

1.3197 

1.6142 

1.0019 

1.0027 

3.4069 

3.4378 

3.4370 

1.6276 

1.3266 

1.6017 

1.0072 

1.0049 

3.4372 

3.4695 

3.3450 

1.5707 

1.3613 

1.5647 

1.0065 

1.0046 

3.3451 

3.3760 

3.5092 

1.6283 

1.3514 

1.5886 

1.0055 

1.0048 

3.5093 

3.5396 

3.3665 

1.6798 

1.3178 

1.5863 

1.0034 

1.0041 

3.3665 

3.3977 

3.4856 

3.3820 

1.0235 

1.4812 

0.9940 

0.9915 

3.4858 

3.4964 

3.5408 

3.4362 

1.0366 

1.4901 

1.0011 

0.9981 

3.5409 

3.5516 

3.4825 

3.3737 

1.0333 

1.4869 

1.0020 

0.9993 

3.4826 

3.4937 

3.4916 

3.3724 

1.0359 

1.4892 

1.0032 

1.0003 

3.4917 

3.5026 

3.5784 

3.4640 

1.0377 

1.4958 

1.0031 

1.0006 

3.5784 

3.5896 

 n = 50 n = 100 

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

3.2033 

3.1857 

0.9920 

1.4039 

0.9802 

0.9763 

3.3034 

3.2084 

3.3434 

3.3238 

1.0034 

1.4229 

0.9929 

0.9893 

3.3434 

3.3490 

3.4503 

3.4292 

1.0126 

1.4459 

1.0007 

0.9967 

3.4503 

3.4563 

3.5475 

3.5269 

1.0123 

1.4623 

1.0023 

0.9988 

3.5475 

3.5535 

3.6299 

3.6085 

1.0142 

1.4787 

1.0043 

1.0003 

3.6299 

3.6360 

2.8888 

2.8856 

0.9514 

1.3108 

0.9492 

0.9456 

2.8888 

2.8911 

3.3624 

3.3582 

0.9929 

1.3993 

0.9904 

0.9857 

3.3624 

3.3654 

3.4641 

3.4596 

1.0010 

1.4169 

0.9983 

0.9939 

3.4641 

3.4672 

3.4954 

3.4908 

1.0058 

1.4243 

1.0026 

0.9979 

3.4954 

3.4986 

3.4514 

3.4468 

1.0074 

1.4189 

1.0056 

1.0002 

3.4514 

3.4546 

Deg. of Corrn. Est. 

 

σ2  = 

n = 10 n = 25 

5 10 15 25 100 5 10 15 25 100 

 

 

 

 

 

 

 

 

9999.0  

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

3.2977 

1.0007 

9.6297 

1.5663 

1.0027 

1.0045 

3.2985 

3.3276 

3.3423 

1.0008 

9.9149 

1.5720 

1.0026 

1.0045 

3.3425 

3.3734 

3.3739 

1.0008 

11.9468 

1.5993 

1.0025 

1.0055 

3.3740 

3.4061 

3.4666 

1.0011 

9.3064 

1.6182 

1.0091 

1.0050 

3.4666 

3.4985 

3.1955 

1.0008 

9.3778 

1.5619 

1.0024 

1.0036 

3.1955 

3.2270 

3.6235 

1.0737 

2.7841 

1.5060 

1.0024 

1.0006 

3.6237 

3.6346 

3.5524 

1.0750 

2.7561 

1.4976 

1.0019 

1.0006 

3.5525 

3.5635 

3.5167 

1.0875 

2.8567 

1.5020 

1.0017 

1.0009 

3.5167 

3.5283 

3.5800 

1.0848 

2.8466 

1.5053 

1.0016 

1.0008 

3.5800 

3.5914 

3.4905 

1.0846 

2.8500 

1.4918 

1.0021 

1.0007 

3.4905 

3.5016 

 n = 50 n = 100 

HKB  

DK  

LW  

KS 

HMO 

AD 

SV1 

SV2 

3.6169 

1.9084 

1.7308 

1.4879 

1.0013 

0.9999 

3.6170 

3.6230 

3.6669 

1.8956 

1.7798 

1.4928 

1.0022 

1.0004 

3.6669 

3.6731 

3.5837 

1.8562 

1.8101 

1.4838 

1.0023 

1.0003 

3.5838 

3.5899 

3.6331 

1.9835 

1.7789 

1.5009 

1.0021 

1.0003 

3.6331 

3.6394 

3.7380 

1.9686 

1.7740 

1.5033 

1.0026 

1.0003 

3.7380 

3.7444 

3.5475 

3.0962 

1.3462 

1.4642 

1.0009 

0.9987 

3.5475 

3.5508 

3.7219 

3.2615 

1.3823 

1.4944 

1.0024 

1.0002 

3.7219 

3.7252 

3.6842 

3.2155 

1.3812 

1.4873 

1.0023 

1.0001 

3.6842 

3.6876 

3.5095 

3.0621 

1.3762 

1.4606 

1.0020 

1.0002 

3.5095 

3.5128 

3.7244 

3.2576 

1.3808 

1.4911 

1.0021 

1.0002 

3.7244 
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Figures 1:  Visualization of performance of ridge estimators for various 

combinations of sample size (n) for fixed error variances (σ
2
) and rho 

(ρ)]  
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Figures 2:  Visualization of performance of ridge estimators for various error 

variances (σ
2
) for fixed sample size (n) and rho (ρ). 
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