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Abstract

In this paper we develop approximate Bayes estimators of the parameters, reliability, and hazard rate
functions of the Logistic distribution by using Lindley’s approximation, based on progressively type-Il
censoring samples. Non-informative prior distributions are used for the parameters. Quadratic, linex and
general Entropy loss functions are used. The statistical performances of the Bayes estimates relative to
quadratic, linex and general entropy loss functions are compared to those of the maximum likelihood based
on simulation study.
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1. Introduction

The logistic function is one of the most popular and widely used for growth models in
demographic studies and proposed by Verhulst (1838-1845) see Balakrishnan (1992).
The normal distribution resembles to logistic distribution in shape but the logistic
distribution has thicker tails and higher kurtosis than the normal distribution. The logistic
distribution has been applied in studies of population growth, physicochemical
phenomena, bio-assay and a life test data, see Balakrishnan (1992), and of biochemical
data by Gupta et al. (1967). Oliver (1964) used the logistic function as a model for
agricultural production data. Scerri and Farrugia(1996) compared between the logistic
distribution and weibull distribution for modeling wind speed data. Subrata et al. (2012)
proposed askew logistic distribution and derived some properties for this distribution.
Many researchers have used asymmetric loss function applied to several statistical
models (Bekker et al. (2000), Calabria and Pulcini (1996), Wen and Levy (2001) and Dey
et al. (1987)). Censoring is a common phenomenon in life-testing and reliability studies.
The experimenter may be unable to obtain complete information on failure times for all
experimental units. For example, individuals in a clinical trial may withdraw from the
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study, or the study may have to be terminated for lack of funds. In an industrial
experiment, units may break accidentally. In many situations, however, the removal of
units prior to failure is preplanned in order to provide savings in terms of time and cost
associated with testing. Progressive Type-l1l censoring scheme can be described as
follows: Suppose n units are placed on a life test and the experimenter decides before
hand the quantitym, the number of failures to be observed. Now at the time of the first
failure, R, of the remaining n—1 surviving units are randomly removed from the

experiment. At the time of the second failure, R, of the remaining n—R, —2 units are

randomly removed from the experiment. Finally, at the time of the m —th failure, all the
remaining surviving units R, =n-m —-R, —...—R_, , are removed from the experiment.

Therefore, a progressive Type-1l censoring scheme consists of m, and R,,...,R,, , such
that R, +...+R,, =n—m. The m failure times obtained from a progressive Type-II
censoring scheme will be denoted by x,,...,X,.

2.  Maximum Likelihood Estimators (MLES)

In this section, we derive the MLEs of the unknown parameters based on progressively
type-11 censoring samples. Assume the failure time distribution to be the logistic
distribution with probability density function (pdf)

(x-4)

e #

) )
Bll+e 7

and the corresponding cumulative distribution function (cdf) is given by

;—00 < X< 00,—00 < <00, >0, (2.1)

f(xupB)=

F(xuB)= — (2.2)
1+e 7

Based on the observed sample x, <...<x_ from a progressive type-1l censoring scheme,
(Ry,-..,R,,), the likelihood function can be written as

L(x; 1 ) = cli[f (x)[1-F(x)T¥ 2.3)

where ¢=n(n-1-R,)..(n—R,—..—R,,—m+1), f () and F(.) are given by (2.1)
and (2.2) respectively. Then

_Z“w (x; -#) (Ri+2)
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The log-likelihood function can be written as

n m (xi—u) (R
LogL=/= Logc—mLogﬁ—%Z(Ri +1)(x; —u)+log| [ ]| 1+e 7
1@ m ~(5-4)
E:Logc—mLogﬂ—EZ(Ri+1)(xi—y)—Z(Ri+2)Log l1+e 7 (2.4)

The MLEs of the unknown parameters can be obtained by differentiating the log-
likelihood function (2.4) with respect to the unknown parameters and equating to zero,
we get

- x-4)
E(R‘”)_ie T (R+2)_,
A
1+e 7 |p
(2.5)
c . (x-4)

_m+l=l(Ri+1)(Xi_ﬂ)_ie B (Ri+2)(xi_:&)zo
B Vs = ) |

1+e ik

The solution of the non-linear equations (2.5) is /2, 3 .
The MLEs of the reliability function, and the hazard rate function are given as

R(t)=——, H(t)=—

ta ) =)\
1+e ” pllve 7

3. Bayes Estimates for the Unknown Parameters x and g

In this section Bayesian estimation of the parameters of the logistic distribution along
with reliability function and hazard rate function, using progressive type-1l censoring
samples, based on the square error loss function, linear-exponential loss function, and
general Entropy loss function are obtained.

Assuming that # and g are independent random variables, and no information about u
and g is available, considering a non-informative prior distribution for g in the form

1
oc—:0 <o,
7(B)oe5i0<p
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and a non-informative prior distribution for 4 in the form

m(p)ock;—o0 < <o K :constant.
The joint prior distribution for x and g is given by
ﬂ(y,ﬁ)oc%;0<ﬂ<oo,—oo<lu<oo. (3.1)

by using equations (2.3, 3.1) we get the joint posterior distribution for x and S as
follows

7 flx)= = 7 (1, B)L (x|, B)
[ (1 B)L(x] . B)d pd B

= . (3.2)

ﬁ ﬁfﬂle i=1 [T 1+e 7 dudp
)J :

Integration in equation (3.2) cannot be obtained in a closed form, so we solve it
numerically. In the following sections we derive Bayesian estimators for location and
scale parameters, the reliability function, and the hazard rate function under some loss
functions.

3.1 Bayesian Estimators Under Square Error Loss Function

1. Bayesian estimator for location parameter u

i m (%-#)(R;+1) ) (1-4) -(R+2)
,82*16 =i [ 1+e *
/&Sq = E(/") = ‘l‘__[oﬂ _Zm:(xif,,)(Rﬁl) (x.iy) —(Ri+2) ) (3.3)
(1 2™ " flue | o

Provided That E (,u) exists and is finite. This integration cannot be solved analytically,

so we use Lindley’s Bayes approximation, Lindley (1980). Let u(u, ) be a function of
u and g, and we want to find Bayes estimator for it, based on z(u«, ) as a prior
distribution. The Log-likelihood function for the logistic distribution based on
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progressive type Il censored samples is given by (2.4), Bayes estimate of u (g, 8) using
Lindley approximation is obtained as follows:

F Ju (a1 )L (<1 5)d
E (u(mp)x)="2= |

TTﬂ(ﬂ'ﬂ)L(ﬁﬂ.ﬂ)dydﬁ

—00

Let Q (4, 8) = log[ 7 (21, 8)]
E (u(mp)x)= [u (Mﬂ)Jr%{ZZ(Uu F20,Q; )7y + 2D LUy Ty T D (3.4)
i i ] k w (”’ﬂ)ML

aQ (w1, p) Q, = aQ (w1, p) y = (1. B)

ou ° op ! ou
y uwp) _du(up) _du(up) _du(up)
2 op 11 aluz 1H22 5,32 1H12 ouop
o o _ o oY oy %

L11_ 8/12 'L12 - aﬂaﬂil—zz _a_ﬁzil—ln_a_luail—nz _W’lez = aﬂaﬂz ’L222 =

vi,j,kw =120, =

o
0B

Calculate the elements of matrix {—L,}
-1

0%/ 0%l

| of ouop
2 0%/ 0%l
ouwp  op?

by using Mathematica program we can calculate the inverse matrix, and find the values
of ;.

T . -1 . . .
Substitution in equation (3.4) , Q, =0,Q, = E,u = u,the Bayesian estimator for location

parameter g is given as

A le 1 2 2
Mg 1 g ===+ 2 [Llllr 1 +3Ly, 7,7 + Ll (Tzzrn +27°, ) + L222T222-12:|

B

2. Bayesian estimator for scale parameter

Substitution in equation (3.4) , Q, =0,Q, =_E1,u = 3, the Bayesian estimator for scale

parameter £ is given as

A T, 1 2 2
B U f——=-+ E[menrlz +L, (711722 +27°, ) +3L15,70p 715 + LT 22]

B
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3. Bayesian estimator for reliability function R (t)

Substitution in equation (3.4), Q1:O,Q2:%,u :R(t),the Bayesian estimator for

reliability function R (t) is given by

A 1

1
qu IR (t)_z(ulflz +u2722)+_{

Uyy 7y + 207,
+
2

75
L, U 17211 +U,7y,75,) + Ly Uy (7375, + 27212)
—| U7, 7) + Loy, (U (7,7, + 27221) +3U,73,T5) + Loy,

U707, + uzfzzz)

4. Bayesian estimator for hazard rate function H (t)

Substitution in equation (3.4), Q,=0,Q, =_;1,u =H (t),the Bayesian estimator for

hazard rate function H (t) is given by

A 1

1
Hy, UH (t)_z(u1712+u2722)+_{

Uyy 7y + 2075,
+
2

R PYIZY)

L, U 17211 +U,7y,75,) + Ly Uy (7375, + 27212)
—| 30,7, 7y,) + L, (U (7,7, + 22'221) +3U,73,T5,) + Loy,

U707, + u2r222)

3.2 Bayesian Estimators Under Linear-Exponential Loss Function (LINEX)

1. Bayesian estimator for location parameter u
I[ILINEX =_llog E(e™
C

Provided That E(e™*) exists and is finite. Substitution in equation (3.4) ,
-1 . . . ..
Q,=0,Q, = —,u =e™* the Bayesian estimator for location parameter 4 is given as

08 Lyyy 7’y +3c8 Ly, 7,7y, +
X 1 en  CE T, cTMr, 1| )
Hynex U “c log|e™" + + ——|ce ™ Ly, (722711 +27°, ) +

A 2 2

.y
Ce 'L ypT oty
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2. Bayesian estimator for scale parameter

e . -1 . .
Substitution in equation (3.4), Q, =0,Q, = E,u =e "/ the Bayesian estimator for scale
parameter £ is given as
ce 70/3'—111711712 +

ce ’r,, ce ", 1|
—p 2
7 + > ~3 ce "L, ( Tyl +27°), ) +

. 1 .
Binex O _Elog e+

—cp —cp 2
3ce Ly, 7,7y, HC8 T LT,

3. Bayesian estimator for reliability function R (t)

Substitution in equation (3.4), Q,=0,Q, :%L,u =e ®"® the Bayesian estimator for

reliability function R (t) is given by

- 1 1 +U..7., |+
cR(t u,.z,, +2U..7.
e ()_—ﬂ(ulrlz+uzfzz) 2[ uf Ty Ty, +Uy, 22]
1

R, e U —=log
LINEX 2 2
C 1) Ly (Uyz7y U7 7, ) + Ly U, (73475 +277,,) + 30,757, ) +

2 2
i 2| Lypp (Uy (793 +27%50) + 3U,73,755) + Ly, (Uy Ty Ty +U,775,) |

4. Bayesian estimator for hazard rate function H (t)

Substitution in equation (3.4), Q, =0,Q, =—%,u =e MU the Bayesian estimator for

hazard rate function H (t) is given by

() 1 1
€ __(u1712 +u2722)+§[u11711 + 2,7, +u22722]+
H Sy b
LINEX 2 2
C 1| Ly U5y +U,7 7)) + Ly, (U, (77,5, +277,) + 307, 7))

i 2| 4Ly Uy (7735 +27%5,) + BU,yT3,T50 ) + Ly (U755 +U,7°5,) |

3.3 Bayesian Estimators Under General Entropy Loss Function

1. Bayesian estimator for location parameter u

1

/&Gentmpy = |:E (,uiq )]_a
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Provided That E(;[q) exists and is finite. Substitution in equation (3.4),

-1 . . . .
Q,=0Q,= E,u = 1%, the Bayesian estimator for location parameter x is given as

1

[qu L, T+ q
Fiomiop, 0| 27+ qu ", L4 (q+1) %z, 1 34 Ly, Tt +
entro B 2 2| Ly, (q 1 (T, +27212))+
- Qu M Tty 1]

2. Bayesian estimator for scale parameter

1

Substitution in equation (3.4), Q, =0,Q, = —,u = S, the Bayesian estimator for scale
parameter £ is given as

_ _ I

qp° 71'—1117112'12 + ‘
BGemropy 0l g+ 98 "7, n q (CI +1) B, 1 qﬂ_q_llznz (722711 +27%, ) +
p 2 2 3087 LypsTyty +

| _Qﬂ_q_ll-zzzfzzz 1]
3. Bayesian estimator for reliability function R (t)
Substitution in equation (3.4), Q, =0,Q, = —%,u =(R(t)) " the Bayesian estimator for

reliability function R (t) is given by

4 1 1
(R (t )) i _E(ulrlz +U2T22)+§[u11711 + 27y, +u22722]+

R 0
Gentropy 2 2
1| Ly (Uyz7y +U,7y7,) + Ly U, (7375, +227,) +3U 7,7, +

2 2
2 Lyoo (Uy (7557 +2775)) + 30,7575, ) + Ly (U 7075 +U,775,)

4. Bayesian estimator for hazard rate function H (t)

Substitution in equation (3.4), Q, =0,Q, = —%,u =(H (t))", the Bayesian estimator for

hazard rate function H (t) is given by

<4 1 1
(H (t )) ‘ _E(Ulrlz +u22'22)+§[u112'11+2u21112 +u22722]+

H 0
Gentropy 2 2
1 Lyyy Uy +U,7y75) + Ly (U, (7375, +277,) + 37, 7,) +

2 2
2 Lyoo (Uy (75575 +2775)) + 3U,735T55) + Ly Uy 7075y +U,77%5,)
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It is worth noting that when the value q =-1, the general entropy loss function is the
same as the squared error loss function.

4. Simulation Studies

To demonstrate the importance of the results obtained in the preceding sections,
simulation studies are conducted. For this purpose, by using Monte Carlo method, with
fixed sample size n (the total items put in a life test), with constant censoring scheme,
where R, =R, =R;=..=R,,, where m is the sample size of progressively censored

from the sample of sizen .

m?

The following algorithm is used to generate sample based on progressive type-I1I
censoring scheme, based on any continuous df F, see Balakrishnan and Aggarwala

(2000).

1. Generate m independent Uniform (0,1) observations W ,,...W .

W, =i N L
2. SetV, =W, i, » —{I + > Rj]for i =1,2,...,m.

j=m-i+l

3.U, =1-V V, ..V

mY m_g--"

i =1,2,....m.

m—i+1?
4. Set X, =F'(U,), then X, for i =1,2,...,m, is the progressive type-Il censoring
scheme based on the df F.

5. We repated steps 1,2,3 and 4 (1000) times, for different values of n and m.

w000 1000( []
Z@i z 0i-6

- - - |:l -
estimation average:'—lm, mean square error= , Where, 6 is the

1000
I :

parameter and & is the estimator.
All the computations are prepared by Mathematica 9.
Since the non-linear equations (2.5) are not solvable analytically, numerical methods can
be used, as Newton Rhapson method with initial values closed to real values of the
parameters.
Throughout this section we will use the following abbreviations:

ML : means that the estimate by using the (MLE),
B, : means that the estimate under squared error loss function,

Lx =16 - Means that the estimate under linex loss function at ¢ =16,

B

B\, c-15: Means that the estimate under linex loss function at ¢ =18,
B« c=20 - Means that the estimate under linex loss function at ¢ = 20,
B

: means that the estimate under general entropy loss function at q =5,
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Be..q-7 - Means that the estimate under general entropy loss functionat q =7,
Bee.q10 - Means that the estimate under general entropy loss function at q =10.
Tablel: The average, mean square error, when n=200, m=100, scheme (100*1)
and p= 0.
BLx,czzo BLx,c:ls BLx,c:le BGe,q:lo BGe,q:7 BGe,q:5 BSq ML ﬂ
The average, (mean square error) of the estimators of parameter p
-0.5513 -0.5625 -0.5748 0.1296 0.1127 0.0990 -0.1699 -0.1631 07
(0.3122) (0.326) (0.343) (0.016) | (0.009) | (0.004) (0.0289) (1.1059) '
-0.8668 -0.8754 -0.8846 0.2847 0.2560 0.2320 -0.3443 -0.3419 08
(0.7577) (0.774) (0.792) (0.081) | (0.050) | (0.025) (0.1185) (2.2922) '
-1.0092 -1.0175 -1.0264 0.3497 0.3154 0.2864 -0.4184 -0.4147 09
(1.0254) (1.0438) (1.0641) (0.1223) | (0.0764) | (0.0387) | (0.1751) (3.2864) '
The average, (mean square error) of the estimators of parameter g
0.6687 0.6710 0.6736 0.6734 0.6796 0.6840 0.6969 0.6797 07
(0.0010) (0.0008) (0.0007) (0.0007) | (0.0004) | (0.0003) | (0.0001) (0.0142) '
0.73% 0.7421 0.7448 0.7469 0.7534 0.7582 0.7723 0.756 08
(0.0037) (0.0034) (0.0031) (0.0028) | (0.0022) | (0.0018) | (0.0008) (0.0352) '
0.8289 0.8315 0.8345 0.8399 0.8471 0.8523 0.8680 0.8505 09
(0.0051) (0.0047) (0.0043) (0.0036) | (0.0028) | (0.0023) | (0.0011) | (0.0446) '
The average, (mean square error) of the estimators of reliability function R(t)
R(t=2)=0.0543 0.7
(8x10°°) | (8x10°) | (8x10°) | (00004) | (0.0003) | (0.0002) | (8x10°®) (0.00009)
R(t=2)=0.0759 0.8
0.0754 0.0754 0.0754 0.0388 0.0413 0.0463 0.0749 0.0717
(3x10°°) | (3x10°°) | (2x107°) | (00014) | (0.0012) | (0.0009) | (2x107°) (0.0003)
R(t=2)=0.0978 0.9
0.0962 0.0963 0.0963 0.0506 0.0543 0.0613 0.0958 0.0924
(6x107°) | (6x107°) | (5x107°) | (00022) | (0.0019) | (0.0013) | (5x10°°) (0.0005)
The average, (mean square error) of the estimators of hazard rate function H(t)
H(t=2)=1.3510 0.7
1.3465 1.3498 1.3552 14751 | 16282 | 19055 | (2x10%) | (2x10%)
(0.0001) (0.0002) (0.0002) | (0.0167) | (0.0802) | (0.3172) | (2x10%) (2x10%)
H(t=2)=1.1552 0.8
3
1.2116 1.2164 12238 13319 1478 | 1743 | (5x10%) | (5x10%)
(0.0033) (0.0039) (0.0049) (0.0321) | (0.1066) | (03531) | (3x10%) (2x10%)
H(t=2)=1.0025 0.9
3 3
1.0683 1.0744 1.0832 11686 | 12075 | 15320 | (3x10%) | (3x10%)
(0.0044) (0.0053) (0.0067) (0.0283) | (0.0889) | (02859) | (3x10%) (3x10%)
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Table 2:  The average, mean square error, when n=100, m=50, scheme (50*1)
and p=0.
BLX,C:ZO BLx,c=18 BLx,c=16 BGe,q=1O BGe,q=7 BGe,q:S BSq ML ﬂ
The average, (mean square error) of the estimators of parameter p
-1.7937 -1.8249 -1.8623 0.6331 0.5782 0.5087 -0.7252 -0.7039 07
(3.2202) | (3.3337) | (3.4726) | (0.4009) | (0.2568) | (0.1321) (0.5271) (3.0891)
-1.7148 -1.7407 -1.7715 0.6084 0.5545 0.5267 -0.7382 -0.7284 08
(2.9456) | (3.0361) | (3.1458) | (0.3702) | (0.2362) | (0.1212) | (0.5018) (3.3964)
-1.8433 -1.8679 -1.8972 0.6665 0.6072 0.5550 -0.7826 -0.7583 09
(3.4020) (3.4943) (3.6056) (0.4443) | (0.2832) | (0.1455) (0.6128) (4.6740)
The average, (mean square error) of the estimators of parameter g
0.5549 0.5571 0.5598 0.5558 0.5626 0.5740 0.5876 0.5680 07
(0.0211) | (0.0204) | (0.0197) | (0.0208) | (0.0188) | (0.0173) | (0.0129) (0.0882)
0.6494 0.6520 0.6551 0.6546 | 0.6629 | 0.6744 0.6919 0.6696 08
(0.0227) | (0.0219) | (0.0210) | (0.0212) | (0.0188) | (0.0170) (0.0118) (0.1005)
0.7455 0.7483 0.7518 0.7558 | 0.7659 | 0.7794 0.8019 0.7743 09
(0.0239) | (0.0231) | (0.0220) | (0.0208) | (0.018) | (0.0158) (0.0098) (0.1085)
The average, (mean square error) of the estimators of reliability function R(t)
R(t=2)=0.0543 0.7
0.0465 0.0464 0.0463 0.0072 | 0.0073 | 0.0078 0.0456 0.0445
(0.0001) | (0.0001) | (0.0001) | (0.0022) | (0.0022) | (0.0022) (0.0001) (0.0005)
R(t=2)=0.0759 0.8
0.0679 0.0676 0.0674 0.0151 | 0.0155 | 0.0168 0.0659 0.0639
(0.0001) | (0.0001) | (0.0001) | (0.0037) | (0.0036) | (0.0035) (0.0001) (0.0009)
R(t=2)=0.0978 0.9
0.0906 0.0901 0.0897 0.0239 0.0247 0.0270 0.0873 0.0847
(0.0001) | (0.0001) | (0.0001) | (0.0055) | (0.0053) | (0.0050) (0.0001) (0.0013)
The average, (mean square error) of the estimators of hazard rate function H(t)
H(t=2)=1.3510 0.7
16284 | 16280 | 16309 | 17816 | 19736 | 2.3307 | (2x10) | (2x10™)
(0.0772) | (0.0776) | (0.0788) | (0.1891) | (0.3968) | (0.9855) (4><1028) (3x 1029)
H(t=2)=1.1552 0.8
13710 | 13728 | 13765 | 14895 | 16413 | 19229 | (3x10) | (3x10)
(0.0468) | (0.0477) | (0.0493) | (0.1139) | (0.2417) | (0.6043) (10x 1028) (1x 1030)
H(t=2)=1.0025 0.9
11717 | 11745 | 11794 | 12622 | 13841 | 16100 | (1x10™) | (1x10%)
(0.0289) | (0.0299) | (0.0317) | (0.0691) | (0.1497) | (0.3815) (1x 1028) (1x10%)
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From the simulation studies we noted that:

1. In general, the Bayesian estimators have mean square error less than that of the
MLE.
2. Increasing the sample size leads to decrease mean square error and increase the

accuracy of estimators.

3. The estimate of x under general entropy loss function is the best especially at the
value g =5, and it followed by the MLE. Also by decreasing the value of the
parameter [, the accuracy of estimates increases and mean square error

decreases.

4. For the parameter £, the estimate under squared error loss function is the best,
and it followed by the general entropy loss function especially when the value
q=>5.

5. The estimate of the reliability function R (t) under linex loss function is the best,

and it followed by the squared error loss function.

6. For the hazard rate functionH (t) the estimate under linex loss function is the
best, and it followed by the general entropy loss function.

5. Concluding remarks

Bayesian estimators of the two parameters, reliability, and hazard rate functions for the
Logistic distribution using Lindley’s approximation, based on progressively type-II
censoring samples are obtained. We assumed non-informative prior distributions for the
parameters. Computer simulation study is performed, and show that increasing the
sample size leads to decrease mean square error and increase the accuracy of estimators.
The simulation also stresses the importance of linex and general Entropy loss functions
are applicable in the case studied.
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