
Pak.j.stat.oper.res.  Vol.XII  No.3 2016  pp519-531 

Approximate Bayes Estimators of the Logistic Distribution  

Parameters Based on Progressive Type-II Censoring Scheme 

M. Mahmoud 
Department of Mathematics, Faculty of Science 

Ain Shams University, Cairo, Egypt 

mmahmoud46@hotmail.com 

 

A. Rashad 
Department of Mathematics, Faculty of Science 

Helwan University, Ain Helwan, Cairo, Egypt 

armoussa@hotmail.com 

 

M. Yusuf 
Department of Mathematics, Faculty of Science 

Helwan University, Ain Helwan, Cairo, Egypt 

mohammed.yousof@yahoo.com 

Abstract 

In this paper we develop approximate Bayes estimators of the parameters, reliability, and hazard rate 

functions of the Logistic distribution by using Lindley’s approximation, based on progressively type-II 

censoring samples. Non-informative prior distributions are used for the parameters. Quadratic, linex and 

general Entropy loss functions are used. The statistical performances of the Bayes estimates relative to 

quadratic, linex and general entropy loss functions are compared to those of the maximum likelihood based 

on simulation study. 
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1. Introduction 

The logistic function is one of the most popular and widely used for growth models in 

demographic studies and proposed by Verhulst (1838-1845) see Balakrishnan (1992). 

The normal distribution resembles to logistic distribution in shape but the logistic 

distribution has thicker tails and higher kurtosis than the normal distribution. The logistic 

distribution has been applied in studies of population growth, physicochemical 

phenomena, bio-assay and a life test data, see Balakrishnan (1992), and of biochemical 

data by Gupta et al. (1967). Oliver (1964) used the logistic function as a model for 

agricultural production data. Scerri and Farrugia(1996) compared between the logistic 

distribution and weibull distribution for modeling wind speed data. Subrata et al. (2012) 

proposed askew logistic distribution and derived some properties for this distribution. 

Many researchers have used asymmetric loss function applied to several statistical 

models (Bekker et al. (2000), Calabria and Pulcini (1996), Wen and Levy (2001) and Dey 

et al. (1987)). Censoring is a common phenomenon in life-testing and reliability studies. 

The experimenter may be unable to obtain complete information on failure times for all 

experimental units. For example, individuals in a clinical trial may withdraw from the 
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study, or the study may have to be terminated for lack of funds. In an industrial 

experiment, units may break accidentally. In many situations, however, the removal of 

units prior to failure is preplanned in order to provide savings in terms of time and cost 

associated with testing. Progressive Type-II censoring scheme can be described as 

follows: Suppose n  units are placed on a life test and the experimenter decides before 

hand the quantity m , the number of failures to be observed. Now at the time of the first 

failure, 1R  of the remaining 1n   surviving units are randomly removed from the 

experiment. At the time of the second failure, 2R  of the remaining 1 2n R   units are 

randomly removed from the experiment. Finally, at the time of the m th  failure, all the 

remaining surviving units 1 1= ...m mR n m R R      are removed from the experiment. 

 

Therefore, a progressive Type-II censoring scheme consists of m , and 1,..., mR R , such 

that 1 ... = .mR R n m    The m  failure times obtained from a progressive Type-II 

censoring scheme will be denoted by 1,..., .mx x  

2. Maximum Likelihood Estimators (MLEs) 

In this section, we derive the MLEs of the unknown parameters based on progressively 

type-II censoring samples. Assume the failure time distribution to be the logistic 

distribution with probability density function (pdf)  
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and the corresponding cumulative distribution function (cdf) is given by  
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Based on the observed sample 1 < ... < mx x  from a progressive type-II censoring scheme, 

1( ,..., ),mR R the likelihood function can be written as 
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The log-likelihood function can be written as 
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The MLEs of the unknown parameters can be obtained by differentiating the log-

likelihood function (2.4) with respect to the unknown parameters and equating to zero, 

we get  
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The solution of the non-linear equations (2.5) is ̂ , ̂ . 

 

The MLEs of the reliability function, and the hazard rate function are given as 
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3. Bayes Estimates for the Unknown Parameters   and   

In this section Bayesian estimation of the parameters of the logistic distribution along 

with reliability function and hazard rate function, using progressive type-II censoring 

samples, based on the square error loss function, linear-exponential loss function, and 

general Entropy loss function are obtained. 

 

Assuming that   and   are independent random variables, and no information about   

and   is available, considering a non-informative prior distribution for   in the form  

 
1

 ; 0 < <   ,  
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and a non-informative prior distribution for   in the form  

  k ; < <   , : .K constant      

 

The joint prior distribution for   and   is given by  

 
1

, ;0 < < , < <  . (3.1)     


     

by using equations (2.3, 3.1) we get the joint posterior distribution for   and   as 

follows  
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Integration in equation (3.2) cannot be obtained in a closed form, so we solve it 

numerically. In the following sections we derive Bayesian estimators for location and 

scale parameters, the reliability function, and the hazard rate function under some loss 

functions.  

3.1     Bayesian Estimators Under Square Error Loss Function 

1.  Bayesian estimator for location parameter   
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Provided That  E   exists and is finite. This integration cannot be solved analytically, 

so we use Lindley’s Bayes approximation, Lindley (1980). Let ( , )u    be a function of 

  and  , and we want to find Bayes estimator for it, based on ( , )    as a prior 

distribution. The Log-likelihood function for the logistic distribution based on 
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progressive type II censored samples is given by (2.4), Bayes estimate of ( , )u    using 

Lindley approximation is obtained as follows: 
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by using Mathematica program we can calculate the inverse matrix, and find the values 

of .ij  

 

Substitution in equation (3.4) , 1 2

1
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the Bayesian estimator for location 

parameter   is given as  
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2.   Bayesian estimator for scale parameter   

Substitution in equation (3.4) , 1 2
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3.   Bayesian estimator for reliability function ( )R t  

Substitution in equation (3.4),  1 2

1
= 0, = , = ,Q Q u R t




the Bayesian estimator for 

reliability function ( )R t  is given by  
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4.   Bayesian estimator for hazard rate function ( )H t  

Substitution in equation (3.4),  1 2

1
= 0, = , = ,Q Q u H t




the Bayesian estimator for 

hazard rate function ( )H t  is given by  
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3.2     Bayesian Estimators Under Linear-Exponential Loss Function (LINEX) 

1.   Bayesian estimator for location parameter   
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the Bayesian estimator for location parameter   is given as 
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2.   Bayesian estimator for scale parameter   

Substitution in equation (3.4), 
1 2

1
= 0, = , = ,cQ Q u e 




the Bayesian estimator for scale 

parameter   is given as 
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3.   Bayesian estimator for reliability function ( )R t  

Substitution in equation (3.4), ( )

1 2

1
= 0, = , = ,cR tQ Q u e




the Bayesian estimator for 

reliability function ( )R t  is given by 
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4.   Bayesian estimator for hazard rate function ( )H t  

Substitution in equation (3.4), 
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3.3  Bayesian Estimators Under General Entropy Loss Function 

1.   Bayesian estimator for location parameter   

 
1

ˆ = q q
Gentropy E 


 

 
 

 



M. Mahmoud, A. Rashad, M. Yusuf  

Pak.j.stat.oper.res.  Vol.XII  No.3 2016  pp519-531 526 

Provided That  qE   exists and is finite. Substitution in equation (3.4), 

1 2

1
= 0, = , = ,qQ Q u 





 

the Bayesian estimator for location parameter   is given as 
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2.   Bayesian estimator for scale parameter   

Substitution in equation (3.4), 1 2

1
= 0, = , = ,qQ Q u 




the Bayesian estimator for scale 

parameter   is given as 
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3.   Bayesian estimator for reliability function ( )R t  

Substitution in equation (3.4),   1 2
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reliability function ( )R t  is given by 
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4.   Bayesian estimator for hazard rate function ( )H t  

Substitution in equation (3.4),   1 2
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It is worth noting that when the value  = 1q  , the general entropy loss function is the 

same as the squared error loss function.  

4. Simulation Studies 

To demonstrate the importance of the results obtained in the preceding sections, 

simulation studies are conducted. For this purpose, by using Monte Carlo method, with 

fixed sample size n  (the total items put in a life test), with constant censoring scheme, 

where 1 2 3= = = ... = ,mR R R R  where m  is the sample size of progressively censored 

from the sample of size n . 

 

The following algorithm is used to generate sample based on progressive type-II 

censoring scheme, based on any continuous df ,F  see Balakrishnan and Aggarwala 

(2000). 

1.  Generate m  independent Uniform (0,1) observations 1,..., .mW W  

2.  Set 
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for =1,2,...., .i m  

3.  1 1=1 ... ,i m m m iU V V V   =1,2,..., .i m  

4. Set 1= ( ),i iX F U  then ,iX  for =1,2,..., ,i m  is the progressive type-II censoring 

scheme based on the df .F  

5. We repated steps 1,2,3 and 4 (1000) times, for different values of n  and .m   

estimation average
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i


, mean square error
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= ,
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i i
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 where,   is the 

parameter and   is the estimator. 

 

All the computations are prepared by Mathematica 9. 

 

Since the non-linear equations (2.5) are not solvable analytically, numerical methods can 

be used, as Newton Rhapson method with initial values closed to real values of the 

parameters. 

 

Throughout this section we will use the following abbreviations: 

ML : means that the estimate by using the (MLE), 

SqB : means that the estimate under squared error loss function, 

, =16Lx cB : means that the estimate under linex loss function at =16c , 

, =18Lx cB : means that the estimate under linex loss function at =18c , 

, =20Lx cB : means that the estimate under linex loss function at = 20c , 

, =5Ge qB : means that the estimate under general entropy loss function at = 5q , 
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, =7Ge qB : means that the estimate under general entropy loss function at = 7q , 

, =10Ge qB : means that the estimate under general entropy loss function at =10q . 

Table1:  The average, mean square error, when n=200, m=100, scheme (100*1) 

and µ= 0.  

, =20Lx cB  
, =18Lx cB  

, =16Lx cB  
, =10Ge qB  

, =7Ge qB  
, =5Ge qB  

SqB  ML    

The average, (mean square error) of the estimators of parameter µ 

-0.5513 

(0.3122) 

-0.5625 

(0.326) 

-0.5748 

(0.343) 

0.1296 

(0.016) 

0.1127 

(0.009) 

0.0990 

(0.004) 

-0.1699 

(0.0289) 

-0.1631 

(1.1059) 
0.7 

-0.8668 

(0.7577) 

-0.8754 

(0.774) 

-0.8846 

(0.792) 

0.2847 

(0.081) 

0.2560 

(0.050) 

0.2320 

(0.025) 

-0.3443 

(0.1185) 

-0.3419 

(2.2922) 
0.8 

-1.0092 

(1.0254) 

-1.0175 

(1.0438) 

-1.0264 

(1.0641) 

0.3497 

(0.1223) 

0.3154 

(0.0764) 

0.2864 

(0.0387) 

-0.4184 

(0.1751) 

-0.4147 

(3.2864) 
0.9 

The average, (mean square error) of the estimators of parameter  

0.6687 

(0.0010) 

0.6710 

(0.0008) 

0.6736 

(0.0007) 

0.6734 

(0.0007) 

0.6796 

(0.0004) 

0.6840 

(0.0003) 

0.6969 

(0.0001) 

0.6797 

(0.0142) 
0.7 

0.7396 

(0.0037) 

0.7421 

(0.0034) 

0.7448 

(0.0031) 

0.7469 

(0.0028) 

0.7534 

(0.0022) 

0.7582 

(0.0018) 

0.7723 

(0.0008) 

0.756 

(0.0352) 
0.8 

0.8289 

(0.0051) 

0.8315 

(0.0047) 

0.8345 

(0.0043) 

0.8399 

(0.0036) 

0.8471 

(0.0028) 

0.8523 

(0.0023) 

0.8680 

(0.0011) 

0.8505 

(0.0446) 
0.9 

The average, (mean square error) of the estimators of reliability function R(t) 

R(t=2)=0.0543 0.7 

0.0565 
6(8 10 )  

0.0565 
6(8 10 )  

0.0566 
6(8 10 )  

0.0346 

(0.0004) 

0.0363 

(0.0003) 

0.0395 

(0.0002) 

0.0567 
6(8 10 )  

0.0527 

(0.00009) 
 

R(t=2)=0.0759 0.8 

0.0754 
6(3 10 )  

0.0754 
6(3 10 )  

0.0754 
6(2 10 )  

0.0388 

(0.0014) 

0.0413 

(0.0012) 

0.0463 

(0.0009) 

0.0749 
6(2 10 )  

0.0717 

(0.0003) 
 

R(t=2)=0.0978 0.9 

0.0962 
6(6 10 )  

0.0963 
6(6 10 )  

0.0963 
6(5 10 )  

0.0506 

(0.0022) 

0.0543 

(0.0019) 

0.0613 

(0.0013) 

0.0958 
6(5 10 )  

0.0924 

(0.0005) 
 

The average, (mean square error) of the estimators of hazard rate function H(t) 

H(t=2)=1.3510 0.7 

1.3465 

(0.0001) 

1.3498 

(0.0002) 

1.3552 

(0.0002) 

1.4751 

(0.0167) 

1.6282 

(0.0802) 

1.9055 

(0.3172) 

13(2 10 )
26(2 10 )  

13(2 10 )
28(2 10 )  

 

H(t=2)=1.1552 0.8 

1.2116 

(0.0033) 

1.2164 

(0.0039) 

1.2238 

(0.0049) 

1.3319 

(0.0321) 

1.478 

(0.1066) 

1.7434 

(0.3531) 

13(5 10 )  

27(3 10 )  

13(5 10 )
29(2 10 )  

 

H(t=2)=1.0025 0.9 

1.0683 

(0.0044) 

1.0744 

(0.0053) 

1.0832 

(0.0067) 

1.1686 

(0.0283) 

1.2975 

(0.0889) 

1.5320 

(0.2859) 

13(3 10 )  

26(8 10 )  

13(3 10 )  

28(3 10 )  
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Table 2:  The average, mean square error, when n=100, m=50, scheme (50*1) 

and µ = 0.  

, =20Lx cB  
, =18Lx cB  

, =16Lx cB  
, =10Ge qB  

, =7Ge qB  
, =5Ge qB  

SqB  ML    

The average, (mean square error) of the estimators of parameter µ 

-1.7937 

(3.2202) 

-1.8249 

(3.3337) 

-1.8623 

(3.4726) 

0.6331 

(0.4009) 

0.5782 

(0.2568) 

0.5087 

(0.1321) 

-0.7252 

(0.5271) 

-0.7039 

(3.0891) 
0.7 

-1.7148 

(2.9456) 

-1.7407 

(3.0361) 

-1.7715 

(3.1458) 

0.6084 

(0.3702) 

0.5545 

(0.2362) 

0.5267 

(0.1212) 

-0.7382 

(0.5018) 

-0.7284 

(3.3964) 
0.8 

-1.8433 

(3.4020) 

-1.8679 

(3.4943) 

-1.8972 

(3.6056) 

0.6665 

(0.4443) 

0.6072 

(0.2832) 

0.5550 

(0.1455) 

-0.7826 

(0.6128) 

-0.7583 

(4.6740) 
0.9 

The average, (mean square error) of the estimators of parameter  

0.5549 

(0.0211) 

0.5571 

(0.0204) 

0.5598 

(0.0197) 

0.5558 

(0.0208) 

0.5626 

(0.0188) 

0.5740 

(0.0173) 

0.5876 

(0.0129) 

0.5680 

(0.0882) 
0.7 

0.6494 

(0.0227) 

0.6520 

(0.0219) 

0.6551 

(0.0210) 

0.6546 

(0.0212) 

0.6629 

(0.0188) 

0.6744 

(0.0170) 

0.6919 

(0.0118) 

0.6696 

(0.1005) 
0.8 

0.7455 

(0.0239) 

0.7483 

(0.0231) 

0.7518 

(0.0220) 

0.7558 

(0.0208) 

0.7659 

(0.018) 

0.7794 

(0.0158) 

0.8019 

(0.0098) 

0.7743 

(0.1085) 
0.9 

The average, (mean square error) of the estimators of reliability function R(t) 

R(t=2)=0.0543 0.7 

0.0465 

(0.0001) 

0.0464 

(0.0001) 

0.0463 

(0.0001) 

0.0072 

(0.0022) 

0.0073 

(0.0022) 

0.0078 

(0.0022) 

0.0456 

(0.0001) 

0.0445 

(0.0005) 
 

R(t=2)=0.0759 0.8 

0.0679 

(0.0001) 

0.0676 

(0.0001) 

0.0674 

(0.0001) 

0.0151 

(0.0037) 

0.0155 

(0.0036) 

0.0168 

(0.0035) 

0.0659 

(0.0001) 

0.0639 

(0.0009) 
 

R(t=2)=0.0978 0.9 

0.0906 

(0.0001) 

0.0901 

(0.0001) 

0.0897 

(0.0001) 

0.0239 

(0.0055) 

0.0247 

(0.0053) 

0.0270 

(0.0050) 

0.0873 

(0.0001) 

0.0847 

(0.0013) 
 

The average, (mean square error) of the estimators of hazard rate function H(t) 

H(t=2)=1.3510 0.7 

1.6284 

(0.0772) 

1.6289 

(0.0776) 

1.6309 

(0.0788) 

1.7816 

(0.1891) 

1.9736 

(0.3968) 

2.3307 

(0.9855) 

14(2 10 )  

28(4 10 )  

14(2 10 )  

29(3 10 )  
 

H(t=2)=1.1552 0.8 

1.3710 

(0.0468) 

1.3728 

(0.0477) 

1.3765 

(0.0493) 

1.4895 

(0.1139) 

1.6413 

(0.2417) 

1.9229 

(0.6043) 

14(3 10 )  

28(10 10 )  

14(3 10 )  

30(1 10 )  
 

H(t=2)=1.0025 0.9 

1.1717 

(0.0289) 

1.1745 

(0.0299) 

1.1794 

(0.0317) 

1.2622 

(0.0691) 

1.3841 

(0.1497) 

1.6109 

(0.3815) 

14(1 10 )  

28(1 10 )  

14
(1 10 )  

29
(1 10 )  
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From the simulation studies we noted that:   

1. In general, the Bayesian estimators have mean square error less than that of the  

MLE. 

2. Increasing the sample size leads to decrease mean square error and increase the 

accuracy of estimators. 

3. The estimate of   under general entropy loss function is the best especially at the 

value = 5q , and it followed by the MLE. Also by decreasing the value of the 

parameter ,  the accuracy of estimates increases and mean square error 

decreases. 

4. For the parameter  , the estimate under squared error loss function is the best, 

and it followed by the general entropy loss function especially when the value

= 5q . 

5. The estimate of the reliability function  R t  under linex loss function is the best, 

and it followed by the squared error loss function. 

6. For the hazard rate function  H t , the estimate under linex loss function is the 

best, and it followed by the general entropy loss function. 

5. Concluding remarks  

Bayesian estimators of the two parameters, reliability, and hazard rate functions for the 

Logistic distribution using Lindley’s approximation, based on progressively type-II 

censoring samples are obtained. We assumed non-informative prior distributions for the 

parameters. Computer simulation study is performed, and show that increasing the 

sample size leads to decrease mean square error and increase the accuracy of estimators. 

The simulation also stresses the importance of linex and general Entropy loss functions 

are applicable in the case studied.  
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