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Abstract 

The accelerated life tests provide quick information on the life time distributions by testing materials or 

products at higher than basic conditional levels of stress such as pressure, high temperature, vibration, 

voltage or load to induce failures. In this paper, the acceleration model assumed is log linear model. 

Constant stress tests are discussed based on Type I and Type II censoring. The Kumaraswmay Weibull 

distribution is used. The estimators of the parameters, reliability, hazard rate functions and p-th percentile 

at normal condition, low stress, and high stress are obtained. In addition, credible intervals for parameters 

of the models are constructed. Optimum test plan are designed. Some numerical studies are used to solve 

the complicated integrals such as Laplace and Markov Chain Monte Carlo methods. 

Keywords:  Accelerated life tests; Bayesian approach; Credible Intervals; Constant 

stress; Kumaraswmay Weibull distribution; Laplace approximation; MCMC method; 

Type II censoring; Type I censoring. 

1.   Introduction 

Technology advancements are continuously increasing the improvements in 

manufacturing designs. Therefore, it becomes more difficult to obtain information about 

lifetime of materials or products or with high reliability at the testing time of that device 

under normal conditions. Accelerated life tests (ALTs) are often used in such problems in 

order to shorten the life of test items. This test provides information quickly on the life 

distribution of the products or materials by testing them at higher than normal levels of 

stress such as voltage, high temperature, pressure, load or vibration to stimulate early 

failures. Such testing could save much time, manpower, material and capital. The stress 

can be applied in different ways: The commonly used methods are constant stress, step 

stress, and progressive stress (See Nelson (1990) and Bagdonavicius and Nikulin (2002)). 

In Bayesian analysis the unknown parameters are considered as random variables. The 

use of prior information for the unknown parameters concerning engineering facts and 

material properties is essential. So, this prior information about the characteristics of 



A. A. EL-Helbawy, G. R. AL-Dayian, H. R. Rezk  

Pak.j.stat.oper.res.  Vol.XII  No.3 2016  pp407-428 408 

products can be used in measurable form as prior distribution. The data from experiments 

is observed under acceleration conditions. The Laplace approximation and Markov Chain 

Monte Carlo (MCMC) methods are used to obtain the estimators in accelerated life 

testing. The posterior information obtained is used to estimate the behavior of the 

products under usual conditions. Some references in the field of the accelerated life 

testing are available such as Lydersen and Rausand (1987), Achcar and Neto (1992), 

Achcar and Rosales (1992), Achcar (1994), Achcar (1995), Drop et al. (1996), Zhang and 

Meeker (2003), Ramadan and Ramadan (2012) and Mitra et al.(2013). 

Weibull distribution is one of the most popular models; it has been extensively used for 

modeling data in reliability, engineering and biological studies (Murthy et al. (2004)). A 

distribution was constructed by Kumaraswamy (1980) with two shape parameters (0, 1). 

Kumaraswamy distribution (Kum distribution) is applicable to many natural phenomena 

with the outcomes that have upper and lower bounds such as scores obtained in a test, 

heights of individuals, hydrological data and atmospheric temperatures. A composition 

between Kum distribution and any distribution can be constructed (See Cordeiro et al. 

(2010)). 

The Kumaraswamy Weibull (KumW) is a quite flexible model in analyzing positive data. 

It contains special cases like the exponentiated Weibull, exponentiated Rayleigh, 

exponentiated exponential, Weibull and also the new Kumaraswamy exponential 

distribution. It is derived and described in details (See AL Dayian et al. (2014)). The 

cumulative distribution function (cdf) and the probability density function (pdf) of the 

KumW distribution are obtained as follows: 

  ( |       )    [  ,     ( (  ) )- ]
 
            ,  (1) 

and 

 ( |       )              ( (  ) ),     ( (  ) )-     

       [  ,     ( (  ) )- ]
   
                     (2) 

where            are the shape parameters and   is a scale parameter. These shape 

parameters allow a high degree of flexibility of the KumW distribution. It attracts wider 

applications in engineering, reliability and in other research areas. 

 

The reliability function (rf) of KumW and the hazard rate function (hrf) corresponding to 

(2) can be written, respectively, as follows: 

 ( |       )  [  ,     ( (  ) )- ]
 

 ,      ,   (3) 

and 

 ( |       )  
            ( (  ) ),     ( (  ) )-    

  ,     ( (  ) )- 
,         (4) 

 

This paper is organized as follows: The Laplace approximation is applied for the 

estimation of the parameters based on Type I and Type II censored samples in Section 2. 

In Section 3, the MCMC method is carried out under censored samples of Type I and 

Type II. 
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2.   Laplace Approximation 

Laplace approximation was presented to solve complicated integrations. The conditions 

for Laplace regularity require that the integrals must exist and be finite. Also, the 

determinant of the Hessians must be bounded away from zero at the optimizers and that 

the log likelihood must be differentiable (from first to sixth order) on the parameters and 

all the partial derivatives must be bounded in the neighborhood of the optimizers. The 

expectation value must be a non-negative function (See Achcar and Rosales (1992)). 

 

Bayesian estimation under Type I censored samples in Subsection (2.1) is derived. In 

Subsection (2.2) Bayesian estimation under Type II censored samples is obtained. The 

numerical results are illustrated in Subsection (2.3). 

2.1  Bayesian Estimation based on Type I censored samples 

Suppose that there are k levels of high stress   ,  j=1, 2, ..., k and assume that    is the 

usual condition where   <   <   < ...<   , and there are    units on test at   .When Type 

I censoring is applied at each stress level, the experiment terminates once all the items 

fail or when a fixed censoring time     is reached. The lifetime at stress level   ;     , i=1, 

2, ...,   ,  j=1, 2, ..., k; is considered to have KumW distribution with the pdf in (2) 

 

The stress    is assumed to affect only on the shape parameter of the KumW distribution  

   through the log linear model as follows: 

       (     ).        (5) 

 

The corresponding likelihood function is given by: 

  ( | )  ∏∏*     
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where   is the vector of parameters;   (          ) ,     is an indicator variable such 

that: 

     {
                                
                                

          (7) 

and 

 (       )        ( (    )
 )   

 

Suppose that   is unknown. The joint non informative prior distribution of these 

parameters is as follows: 

  ( )   
  , 

                 (     )          (8) 



A. A. EL-Helbawy, G. R. AL-Dayian, H. R. Rezk  

Pak.j.stat.oper.res.  Vol.XII  No.3 2016  pp407-428 410 

The joint posterior density of    can be obtained as follows: 
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          (9) 

where    ,   ( ) is the joint prior distribution of  , ∫  ∫ ∫ ∫ ∫ ∫    
      

  

                  . 
 

By taking the natural logarithm for (6), then substituting (6) in (9) as follows: 
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one obtains 

  ( | )  
 

 
    (   )

 
           (11) 

where     

   ∫
 

 
   (   )     

       (12) 

 

Numerical integration is required to evaluate (12). The Laplace method applied by 

Achcar (1995), can be used to obtain   in    as follows: 

 ̃  (  )
 

 [   (  (  ))]
 
 

   ( ̂ )    (   )     (13) 

where   is the number of the parameters,  ̂   ̂   ̂   ̂   ̂   ̂   are the argmax(   ); 

maximize (  ),  
 (  ) is the Hessian matrix of    evaluated at  ̂  and  =5 . 

  ( ̂ )  
 

 ̂ 
           (14) 

and 

  (  )   [
  (  )

      
]                                 (15) 

where     ,     ,     ,      and     .  

Then, the joint posterior distribution in (11) for   can be written as: 

  ( | )  
 

 
    (   )

 ̃
          (16) 

where  ̃ is given in (13), (See Cseke and Heskes (2011), Meissen (2013) and Musso et al. 

(2011)). 
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The marginal posterior densities and the conditional expectations for  are obtained 

using the Laplace method to approximate integrals. Then, the estimators of the 

parameters based on the squared error loss function are the mean of the posterior 

distribution and can be obtained as follows: 

 

The estimator of   is given by 

  
   ( | )  

 ̃ 

 ̃
           (17) 

where  

   ∫     ( | )    
           (18) 

and  

 ̃  (  )
 

 0   .  ( ̂ )/1
 
 

  

 ̂  ̂  ̂  ̂ 
   (  ̂ )      (19) 

where  ̂   ̂   ̂       ̂  are the maximum likelihood estimators (MLEs). Applying 

Laplace method and using steps analogous to those used for estimating the parameter  . 

One can obtain the Bayes estimators for                
 

The Bayes estimator of the rf,  ( )  is given by 

  
 ( )   ( ( )| )  ∫  ( )   ( | )       

     (20) 

where  ( ) and   ( | ) are given in (3) and (16) respectively. 

 

The Bayes estimator of the hrf,  ( ), is obtained as follows 

  
 ( )   ( ( )| )  ∫  ( )   ( | )       

     (21) 

where  ( ) is given by (4). 

2.2  Bayesian Estimation based on Type II censoring 

When Type II censoring is applied at each level of stress, once the number of failures    

out of units    are reached the experiment terminates. The lifetime at level of stress   , 

   , i=1, 2, ...,   , j=1, 2, ..., k, is considered to have KumW distribution with the pdf in 

(2). It is assumed that the stress    effects on the shape parameter of the KumW 

distribution    only through the log linear model as in (5).  

The likelihood function of the j-th sample under Type II censoring is presented below:  

  (        | )  ∏
   

(     )

 

   

∏ (   )( (   ))
     

  

   

 

 

Thus, the likelihood function of the KumW distribution    , j=1, 2..., k and i= 1, 2, ...,   ; 

which are identically distributed and independent random variables, can be rewritten as 





A. A. EL-Helbawy, G. R. AL-Dayian, H. R. Rezk  

Pak.j.stat.oper.res.  Vol.XII  No.3 2016  pp407-428 412 

follows: 
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where 
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By taking the natural logarithm for (22), then assuming the same joint non informative 

prior distribution given by (8), the joint posterior density of         and   can be 

obtained similarly as given in (9), just by replacing    with    in (11) . 

 

Then  
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Applying the Laplace approximation and using steps analogous to those used in (12)-

(21), also  ,  ̃,   ( ̂ ), the Bayes estimators based on Type II censoring considering the 

non-informative prior and squared error loss function can be obtained. 
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In parallel with the steps used to obtain the Bayes estimator for a the Bayes estimators for 

          ( )      ( )  can be obtained. 
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2.3 Numerical results  

This subsection aims to illustrate the theoretical results of estimation problems on the 

basis of simulated data. 

2.3.1 Simulation algorithm 

 Several data sets are generated from KumW distribution for a combination of the 

population parameter   and for sample sizes 20, 60 and 100. The transformation 

between uniform distribution and KumW distribution in step j is 

      ,  ,      ( (    )
 
)-  - .      (25) 

 

 It is assumed that there are only two different levels of stress (k=2),      and 

      , which are higher than the stress at usual condition,       . 

 The population parameter of a, b, β,   and λ used in this simulation study are (0.5, 

1.5, 1.2, 2, 2) to generate     , i=1, 2,...,   ,  j = 1, 2. 

 The pre-specified censoring times are       and         in Type I censored 

samples, while in Type II censored samples, numbers of test units are allocated to 

each level of stress    , j=1, 2 where   ,=0.9(  ), j=1, 2 using 1000 replications 

for each sample size. 

 Computer program is used depending on MathCad 14 for obtaining the MLEs 

based on Type I and Type II censored samples. Then, the MLEs are used to solve 

Laplace approximation in (13) to obtain the Bayes estimates for the model 

parameters, rf and hrf. 

 Evaluating the performance of the estimators of   
     

     
 ,    

   and    
  is 

considered through some measurements of accuracy. In order to study the 

precision and variation of estimators, it is convenient to use the relative absolute 

bias (RAB1) =
|                             |

                    
, the mean square error (ER1) and the 

relative error (RE1) =
√   (        )

                    
 under Type I censoring and the RAB2, 

ER2 and RE2 that are obtained based on Type II censored samples. 

 The credible intervals are obtained for the parameters   using two sided 

approximate 100(1  credible intervals. The results based on Type I 

censoring are displayed in Tables 1-3 and Tables 4-6 indicate Type II censoring 

results. 

 The reliability function and hazard rate function are estimated for different values 

of mission times.  

2.3.2 Concluding remarks 

 It is clear from Tables 1 and 4 that the estimates (E1) and (E2) are close to the 

population parameters as the sample size increases. Also, as shown in the 

)%
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numerical results the RAB1, RAB2, ER1, ER2, RE1 and RE2 decrease when the 

sample size increase. In general, ER1 is better than ER2 for all sample sizes. The 

estimate   
  gives the best results over all the parameters in Type I and Type II 

censoring. 

 The two-sided 95% credible intervals for the parameters of KumW are displayed 

in Tables 2 and 5. These tables contain the standard error (SE), lower bound (L), 

upper bound (U) and the length (l) of intervals. The interval of the estimates 

becomes narrower as the sample size increases. The interval length of parameter   

is the shortest among the other parameters in Type I and Type II censoring. The 

length of   is the shortest among the constant parameters of the acceleration 

model.  

 Tables 3 and 6 indicate that the estimates of rf, hrf and their credible intervals. It 

is noted that the reliability decreases when the mission time    increases while SE 

and l decrease as    increases. The results get better in the sense that the aim of an 

accelerated life testing experiments is to get large number of failures (reduce the 

reliability) of the device with high reliability. In other words, when sample size 

increases, the rf increases. Also, the RAB1R for the rf, SE and l decrease when the 

sample size increases. The rf for Type II censoring is better than the rf for Type I 

censoring. The hrf increases when the mission time    increases. The hrf for Type 

II censoring is better than Type I censoring.  

Table 1:  The E1, RAB1, ER1 and RE1 of the estimates for different sample sizes 

based on Type I censoring 

n parameter E1 RAB1 ER1 RE1 

 

 

20 

a 

b 

 

 

 

0.4597 0.0806 0.1364 0.7386 

1.2963 0.1358 0.2525 0.3350 

1.6881 0.4068 0.3492 0.4924 

2.2846 0.1423 0.2499 0.2499 

2.2175 0.1088 0.2158 0.2323 

 

 

60 

a 

b 

 

 

 

0.4776 0.0448 0.0956 0.6184 

1.4390 0.0407 0.1937 0.2934 

1.2805 0.0671 0.2843 0.4443 

2.2149 0.1075 0.1948 0.2077 

2.1537 0.0769 0.1726 0.2077 

 

 

100 

a 

b 

 

 

 

0.4940 0.0120 0.0360 0.3795 

1.4583 0.0278 0.1275 0.2380 

1.2376 0.0313 0.1941 0.3671 

2.1228 0.0614 0.1371 0.1851 

2.1059 0.0530 0.1203 0.1734 





















Bayesian Approach for Constant-Stress Accelerated Life Testing for Kumaraswamy Weibull Distribution ……… 

Pak.j.stat.oper.res.  Vol.XII  No.3 2016  pp407-428 415 

Table 2:  The E1, SE1, 95% credible intervals and lengths for different sample sizes 

based on Type I censoring 

n parameter E1 SE1 L1 U1 l1 

 

 

20 

a 

b 

 

 

 

0.4597 0.3693 0.2945 0.6249 0.3303 

1.2963 0.5025 1.0716 1.5210 0.4494 

1.6881 0.5909 1.4238 1.9524 0.5282 

2.2846 0.4999 2.0610 2.5082 0.4471 

2.2175 0.4645 2.0098 2.4252 0.4155 

 

 

60 

A 

b 

 

 

 

0.4776 0.3092 0.3978 0.5574 0.1597 

1.4390 0.4401 1.3254 1.5526 0.2273 

1.2805 0.5332 1.1429 1.4181 0.2753 

2.2149 0.4414 2.1009 2.3289 0.2279 

2.1537 0.4155 2.0464 2.2610 0.2145 

 

 

100 

a 

b 

 

 

 

0.4940 0.1897 0.4796 0.5319 0.0759 

1.4583 0.3571 1.4914 1.5297 0.1428 

1.2376 0.4406 1.0998 1.3257 0.1762 

2.1228 0.3702 1.8303 2.1968 0.1481 

2.1059 0.3468 2.0529 2.1753 0.1387 

Table 3:    
 

 (ts),   
 (ts), RAB, RE and credible intervals of the rf and hrf at 

confidence level 95%, s=1,2, t1= 0.5, t2= 0.9, R(t1)=0.9646, R(t2)=0.2024, 

h(t1)=0.6532, h(t2)=7.5321 for 20, 60 and 100 sample sizes based on Type I 

censoring 

 

n 

 

   

  
 (  ) 

  
 (  ) 

RAB1R 

RAB1h 

RE1R 

RE1h 

SE1R 

SE1h 

L1R 

L1h 

U1R 

U1h 

l1R 

l1h 

 

 

20 

 

0.5 

0.9184 

1.3809 

0.0479 

1.1141 

0.0107 

0.1478 

0.0103 

0.1229 

0.9138 

1.3299 

0.9230 

1.4359 

0.0095 

0.1099 

 

0.9 

0.4783 

4.8572 

1.3631 

0.3551 

0.1848 

0.0187 

0.0374 

0.1409 

0.4035 

4.5754 

0.5531 

5.1390 

0.1496 

0.5636 

 

 

60 

 

0.5 

0.9478 

1.0852 

0.0033 

0.6614 

0.0081 

0.1307 

0.0078 

0.0854 

0.9322 

0.9144 

0.9634 

2.9140 

0.0312 

1.9996 

 

0.9 

0.5673 

4.2731 

1.8029 

0.4327 

0.0726 

0.0125 

0.0147 

0.0938 

0.5379 

4.2661 

0.5967 

4.4607 

0.0588 

0.1946 

 

 

100 

 

0.5 

0.9669 

0.8736 

0.0024 

0.3374 

0.0036 

0.0178 

0.0035 

0.0116 

0.9599 

0.8504 

0.9739 

0.8968 

0.0140 

0.0464 

 

0.9 

0.6142 2.0346 

0.5875 

0.0143 

0.0069 

0.0029 

0.0517 

0.6084 

3.0039 

0.6200 

3.2107 

0.0116 

0.2068 3.1073 


















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Table 4:  The E2, RAB2, ER2, and RE2 of the estimates for different sample sizes 

based on Type II censoring 

n parameter E2 RAB2 ER2 RE2 

 

 

20 

a 

b 

 

 

 

0.6083 0.2166 0.1827 0.8549 

1.7299 0.1533 0.2753 0.3498 

0.9125 0.2396 0.3586 0.4990 

1.7859 0.1071 0.2684 0.2590 

2.2381 0.1191 0.2469 0.2484 

 

 

60 

a 

b 

 

 

 

0.5628 0.1256 0.1249 0.7068 

1.6109 0.0739 0.2019 0.2995 

1.1362 0.8865 0.2704 0.4333 

1.8532 0.0734 0.2155 0.2321 

2.1644 0.0822 0.1536 0.1959 

 

 

100 

a 

b 

 

 

 

0.5382 0.0764 0.0859 0.5862 

1.5679 0.0453 0.1463 0.2549 

1.1864 0.01133 0.1875 0.3608 

1.9148 0.0426 0.1784 0.2110 

2.1253 0.0627 0.1309 0.1809 

Table 5:  The E2. SE2, 95% credible intervals and lengths for different sample sizes 

based on Type II censoring 

n parameter E2 SE2 L2 U2 l2 

 

 

20 

a 

b 

 

 

 

0.6083 0.4274 0.4171 0.7995 0.3823 

1.7299 0.5247 1.4953 1.9645 0.4693 

0.9125 0.5988 0.6447 1.1803 0.5356 

1.7859 0.5181 1.5542 2.0176 0.4634 

2.2381 0.4969 2.0159 2.4603 0.4444 

 

 

60 

a 

b 

 

 

 

0.5628 0.3534 0.4715 0.6541 0.1825 

1.6109 0.4493 1.4949 1.7269 0.2320 

1.1362 0.5200 1.0019 1.2705 0.2685 

1.8532 0.4642 1.7288 1.9776 0.2488 

2.1644 0.3919 2.0632 2.2656 0.2024 

 

 

100 

a 

b 

 

 

 

0.5382 0.2931 0.4796 0.5960 0.1172 

1.5679 0.3825 1.4914 1.6444 0.1530 

1.1864 0.4330 1.0998 1.2730 0.1732 

1.9148 0.4224 1.8303 1.9993 0.1689 

2.1253 0.3618 2.0529 2.1977 0.1447 




































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Table 6:    
 (ts),   

 (ts), RAB, RE, SE and credible intervals of the rf and hrf at 

95% confidence level, s=1,2, t1= 0.5, t2= 0.9, R(t1)=0.9646, R(t2)=0.2024, 

h(t1)=0.6532, h(t2)=7.5321, for 20, 60 and 100 sample sizes based on Type 

II censoring 

 

n 

 

   
  
 (  ) 
  
 (  ) 

RAB1R 

RAB1h 

RE1R 

RE1h 

SE1R 

SE1h 

L1R 

L1h 

U1R 

U1h 

l1R 

l1h 

 

 

20 

 

0.5 

0.9065 

1.2910 

0.0602 

0.9764 

0.0122 

0.1924 

0.0118 

0.1257 

0.8829 

1.0396 

0.9301 

1.5423 

0.0472 

0.5028 

 

0.9 

0.4659 

5.1077 

1.3019 

4.1077 

0.1956 

0.0225 

0.0396 

0.1694 

0.3867 

4.7689 

0.5451 

5.4465 

0.1584 

0.6776 

 

 

60 

 

0.5 

0.9352 

1.1743 

0.0305 

0.7978 

0.1024 

0.1525 

0.0988 

0.0996 

0.7376 

0.9751 

1.1328 

1.3735 

0.3952 

0.3984 

 

0.9 

0.5549 

4.5179 

1.7416 

0.6672 

0.1275 

0.0145 

0.0258 

0.1083 

0.5033 

4.3013 

0.6065 

4.7345 

0.1032 

0.4332 

 

 

100 

 

0.5 

0.9546 

0.8941 

0.0104 

0.3688 

7.0495 

0.0213 

0.0068 

0.0139 

0.9410 

0.8663 

0.9682 

0.9219 

0.0272 

0.0556 

 

0.9 

0.5017 1.4788 

0.5819 

0.0173 

7.2490 

0.0035 

0.0546 

0.4947 

3.0397 

0.5087 

3.2581 

0.0140 

0.2184 3.1489 

2.3.3 Application 

The main aim of this application is to describe how the proposed method in practice 

might be used. Cordeiro et al. (2010) used Kolmogrov Smirnov goodness of fit test and 

data points representing failure time. The data was extracted from Murthy et al. (2004). 

The data that was used had 30 items (n=30) tested with test stopped after 20th failure 

(r=20). The failure times were arranged in ascending order and divided into two groups. 

Each group is put under one level of stress. The first group is exposed to level of stress 

    . The second group is exposed to level of stress        . 

 

The failure times in the first level are [0.0014, 0.0623, 1.3826, 2.0130, 2.5274, 2.8221, 

3.1544, 4.9835, 5.5462, 5.8196] and the failure times in the second level of stress are 

[5.8714, 7.4710, 7.5080, 7.6667, 8.6122, 9.0442, 9.1153, 9.6477, 10.1547, 10.7582].  

 

The relationship between the shape parameter    and the stress    is tested through testing 

“b”, the coefficient. Hypothesis test is obtained when       with one degree of 

freedom. As a result, the null hypothesis (b=0) is rejected and the relationship exists. 

 

The initial values of   used in this application are   =0.5, b=1.5,   =2,   =2, and   =2. 

The estimated values of  , R(  ) and h(  ) are obtained. The rf and the hrf are estimated 

for different values of mission times. 

 

Moreover, the precision and variation of MLEs, rf and hrf are studied through some 

convenient measures such as the RAB2. The credible intervals of the parameters, rf and 

hrf at confidence level 95% are indicated. The results are displayed in Tables 7 and 8. It 

is concluded that  ̂ is the best estimate among all other estimates while the length interval 
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for the parameter   has the shortest length over all the parameters. Also when a mission 

time increases the rf decreases while on the other hand, when the mission time increases 

the hrf increases. The lengths interval for rf and hrf increase as mission time increases.  

Table 7:  The E2, RAB2, SE2, 95% credible intervals and lengths for different 

sample sizes 

Parameter E2 RAB2 SE2 L2 U2 l2 

a 

b 

 

 

 

0.5291 0.0581 0.0917 0.5228 0.7297 0.2070 

1.5371 0.0250 0.0374 1.4903 1.5748 0.0845 

0.9502 0.0498 0.0500 1.4710 1.5839 0.1129 

1.0110 0.0989 0.1109 0.9824 1.0396 0.0573 

1.7995 0.1003 0.1682 0.2883 0.3751 0.0869 

Table 8:    
 

 (ts),   
 (ts), RAB, ER, RE and credible intervals of the rf and hrf at 

95% confidence level, s=1, 2, t1 = 0.5, t2 =0.9, R(t1)=0.9418, R(t2)=0.6980, 

h(t1)=1.0887, h(t2)=12.5535 

 

t    
 (  ) 
  
 (  ) 

 

RAB2R 

RAB2h 

SE2R 

SE2h 

L2R 

L2h 

U2R 

U2h 

l2R 

l2h 

0.5 0.9324 

1.1359 

0.0099 

0.0434 

0.0057 

0.0068 

0.9210 

1.1223 

0.9438 

1.1495 

0.0228 

0.0272 

0.9 0.6091 

10.6427 

0.1274 0.1986 

1.8347 

0.2119 

6.9733 

1.0062 

14.3121 

0.7943 

7.3388 0.1522 

3.   MCMC Method 

Multiple levels of integration are necessary to obtain the normalizing constant of f(t) and 

the marginal posterior densities. For complicated models these integrations are often 

analytically intractable, and sometimes even a numerical integration cannot be directly 

obtained. In this case, MCMC simulation is the easiest way to get reliable results without 

evaluating integrals, (See Gelman et al. (2003)). When the number of iterations is large 

enough, the samples drawn on one parameter can be regarded as simulated observations 

from its marginal posterior distribution. Functions of the model parameters, such as     

rf, hrf and p-th percentile of the lifetime distribution    at normal conditions   (  ), at 

low stress   (  ) and at high stress   (  ), can also be conveniently sampled. Posterior 

inference can be computed using sample statistics. In this study, WinBUGS, (See 

Spiegelhalter et al. (2003)), is used as a specialized software package for implementing 

MCMC simulation and Gibbs sampling. 

 

The inference under Type I censored samples in Subsection (3.1) is discussed. In 

Subsection (3.2), inference under Type II censored samples is obtained. The application 

inference is illustrated in Subsection (3.3). 







s
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3.1  Inference based on Type I censored samples 

In this subsection, the inference for unknown parameters  ,   , rf , hrf,   (  ),   (  ) 

and   (  ) are obtained. This subsection aims to discuss the estimation and optimum 

problems on the basis of simulated data. 

3.1.1  Simulation algorithms 

The simulation steps are used as follows: 

 Accelerated life data from KumW distribution are generated using MathCad 14 at 

different samples of size (30, 60, 100). 

 Two accelerated stress levels       and        are considered and usual 

levels is taken as        . 

 To avoid posterior dependence on the starting point of a simulation, several 

chains with over-dispersed starting points in one MCMC simulation should be 

run. The simulation converges to the target distribution when traces of all chains 

appear to be mixing together. In this case, three chains with different initials run 

simultaneously in one simulation. Each chain continues for 50000 iterations. 

There are two methods to check convergence. One is examining trace plots of the 

sample values versus iteration. We can be reasonably confident that convergence 

has achieved since the three chains appear to be well mixed. The initial values of 

 , b,  ,   and   for 3 chains are displayed as follows: The first chain is with 

initial values   =0.3, b=0.5,      ,        and        the second chain is 

with initial values   =0.4, b=0.6,       ,       and        and the third 

chain is with initial values   =0.5, b=0.7,      ,       and      . This is 

an informal approach to convergence diagnosis. A quantitative way of checking 

convergence is based on an analysis of variance. The Gelman-Rubin convergence 

statistic, R, is introduced to diagnose convergence. R is defined as the ratio of the 

width of the central 80% interval of the pooled chains to the average width of the 

80% intervals within the individual chains. When a WinBUGS simulation 

converges, R should be, or close to one, see Gelman and Rubin (1992). The 

accuracy of a posterior estimate is calculated in terms of Monte Carlo standard 

error (MC error) of the mean, which is an estimate of the difference between the 

mean of the sample and the true posterior mean. According to Spiegelhalter et al. 

(2003), the simulation should be run until the MC error for each estimate is less 

than 5% of the sample standard deviation. In this case, this rule was achieved. 

 Assume that the experiment is terminated once the failure of all the items occur or 

when a fixed censoring time     is reached (Type I censoring). When      = 

15,    =2.400,      0.2303,      = 30,    =3,      ,      = 50,    =3, 

     , respectively. The corresponding likelihood function is obtained in (6). 

When a Type II censoring is applied, the experiment terminates once the number 

of failures     out of units    are reached. When      = 15,     ,       

     = 30,      ,      ,      = 50,      ,      , respectively. 

The likelihood function of the j-th sample under Type II censoring is presented in 

(22).  
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 It appears that the distribution of   (  ) is quite asymmetric. Therefore, the 

median value instead of the mean value is chosen to be the point estimated value 

for   (  ). 

 Prior distributions are displayed in Table 9, where prior I (P I) is non informative 

prior, uniform distribution (U) and prior II (P II) is informative prior, Weibull 

(W), gamma (G) and exponential (exp) distributions. These priors have the same 

family of the posterior distribution based on Easy fit program 5.5. 

Table 9:   Priors distribution for Bayesian analysis 

Type   b       

Prior I U(0,2) U(0,1) U(0,2) U(0,1) U(0,1) 

Prior II exp(5) W(2,10) G(10E-3,10E3) W(2,10) W(2,5) 

 

The posterior mean and variance of   , given t can be calculated, respectively, as follows  

 (  | )  ∫   
 

 
  ( | )          (26) 

and  

   (  | )  ∫ ,    (  )-
  

 
  ( | )          (27) 

where 

   
 

 
(    (  (  (   )

 

 )
 

  ))
 

      

and  p is the p-th percentile. 

 

 It is assumed that the values of the parameters are unknown and Bayesian method 

is applied to determine the optimal stress changing point. The objective function 

is to minimize the asymptotic variance of the p-th percentile at normal stress, low 

stress and high stress. Tables 16 and 17 summarize the optimal stress changing 

times   
 , optimal failure number    and the corresponding posterior variance of    

at p =0.2. 

3.1.2  Concluding remarks 

 The summary of the samples are displayed in Tables 10-15. A summary can be 

generated showing posterior mean, median, MC error, standard error, a 95% 

posterior credible interval and length. The interval of the parameters  ,   , rf , 

hrf,   (  ),   (  ) and   (  ) becomes narrower as the sample size increases. 

 It is noted that when the sample size, n=100, prior II and Type II censoring are 

applied, the results of    , rf and hrf give approximate value of their initial values. 

 It is clear that increasing the sample size improves the accuracy of the estimates. 

Although the stress saves the experiment time, the results are better in usual 

conditions. Also the number of failures increase as stress increases. 
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 In general, it appears that when using the informative prior, the variance of the 

estimated parameters decreases. This is expected because the prior knowledge 

was incorporated with data and increased the accuracy of the estimates. It is also 

reasonable to conclude that the interval length is narrower with informative priors 

because the posterior depends on information from two sources: the prior 

knowledge and the data (via the likelihood function).  

Table 10:  Posterior statistics of the model parameters under Type I censoring at 

n=30 

Prior Estimate E1 RE1 MC error median 95% CI l1 

 

 

 

 

 

 

I 

 ̂ 0.6629 0.2436 0.001299 0.7102 (0.1058,0.9867) 0.8809 

 ̂ 0.2162 0.1711 9.591E-4 0.1767 (0.0075,0.6379) 0.6304 

 ̂ 0.8390 0.5003 0.0068 0.6921 (0.2343,1.9090) 1.6747 

 ̂ 1.0730 0.4647 0.0063 0.9962 (0.4102,1.9460) 1.5358 

 ̂ 0.9052 0.0831 4.864E-4 0.9283 (0.6923,0.9972) 0.3049 

 ̂  2.2070 0.4597 0.002232 2.2340 (1.3250,3.0050) 1.6800 

 ̂  (  ) 0.9997 5.813E-4 2.124E-6 0.9999 (0.9981,1.0000) 0.0019 

 ̂  (  ) 0.03995 0.0678 2.621E-4 0.01362 (0.0007,0.2368) 0.2361 

 ̂ (  ) 0.3390 0.06948 2.976E-4 0.3418 (0.2016,0.4676) 0.2660 

 ̂ (  ) 0.4863 0.07178 2.081E-4 0.4881 (0.3420,0.6223) 0.2803 

 ̂ (  ) 0.6549 0.09264 2.624E-4 0.6579 (0.4644,0.8285) 0.3641 

 

 

 

 

 

 

II 

 ̂ 0.0452 0.0437 1.899E-4 0.0320 (0.0012,0.1615) 0.1603 

 ̂ 0.2160 0.0624 2.079E-4 0.0847 (0.0131,0.2484) 0.2353 

 ̂ 1.1180 0.1488 4.057E-4 1.1150 (0.8400,1.4210) 0.5810 

 ̂ 0.0072 0.0030 1.108E-5 0.0068 (0.0025,0.0141) 0.0116 

 ̂ 0.2700 0.0493 1.805E-4 0.2670 (0.1824,0.3751) 0.1927 

 ̂  1.0990 0.05852 2.372E-4 1.088 (1.0210,1.2430) 0.2220 

 ̂  (  ) 0.9311 0.02762 8.60E-05 0.9349 (0.8668,0.9734) 0.1066 

 ̂  (  ) 1.9510 0.5058 0.001389 1.9230 (1.0460,3.0180) 1.9720 

 ̂ (  ) 0.0018 0.0077 2.771E-5 6.508E-5 (1.3E-10,0.0159) 0.0159 

 ̂ (  ) 0.0065 0.0177 6.214E-5 0.001077 (2.27E-7,0.0488) 0.0488 

 ̂ (  ) 0.0466 0.1274 3.499E-4 0.01347 (2.97E-5,0.2902) 0.2902 
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Table 11:  Posterior statistics of the model parameters under Type I censoring at 

n=60 

Prior Estimate E1 RE1 MC error median 95% CI l1 

 

 

 

 

 

 

I 

 ̂ 0.3257 0.2228 0.00105 0.2921 (0.0138,0.8165) 0.8028 

 ̂ 0.2664 0.1765 8.36E-04 0.2437 (0.0125,0.6479) 0.6354 

 ̂ 1.6410 0.2851 0.001138 1.7090 (0.9533,1.9880) 1.0347 

 ̂ 1.7820 0.1950 7.89E-04 1.8370 (1.2770,1.9940) 0.7170 

 ̂ 0.7570 0.1446 5.17E-04 0.7690 (0.4519,0.9843) 0.5324 

 ̂  1.6120 0.3192 0.0014 1.5500 (1.1520, 2.3880) 1.2360 

 ̂  (  ) 0.8291 0.07333 2.582E-4 0.8381 (0.6613, 0.9452) 0.2839 

 ̂  (  ) 1.9260 0.5596 0.002034 1.913 (0.8954, 3.0280) 2.1326 

 ̂ (  ) 0.1289 0.05264 1.862E-4 0.1234 (0.0410,0.2462) 0.2052 

 ̂ (  ) 0.1641 0.05372 1.329E-4 0.1611 (0.0672,0.2773) 0.2101 

 ̂ (  ) 0.2084 0.06854 1.653E-4 0.2038 (0.0878,0.3548) 0.2670 

 

 

 

II 

 ̂ 0.08103 0.0768 3.33E-04 0.05822 (0.0022,0.2851) 0.0021 

 ̂ 0.1679 0.09753 3.20E-04 0.1531 (0.02523,0.3940) 0.0256 

 ̂ 0.8294 0.1479 3.89E-04 0.8241 (0.5541,1.1340) 0.5526 

 ̂ 0.0014 0.0013 5.55E-06 0.0011 (3.52E-5,0.0048) 0.0256 

 ̂ 0.0884 0.0288 1.15E-04 0.0854 (0.0413,0.1524) 0.5115 

 ̂  1.1840 0.1077 4.299E-4 1.1630 (1.0400,1.4540) 0.4140 

  ̂  (  ) 0.7437 0.0613 1.683E-4 0.7465 (0.6165,0.8553) 0.2388 

  ̂  (  ) 0.2788 0.0653 2.327E-4 0.2753 (0.1606,0.4169) 0.2563 

  ̂ (  ) 0.0029 0.1311 3.5E-4 9.4E-6 (8.6E-14,0.0161) 0.0161 

  ̂ (  ) 0.0098 0.3308 8.7E-4 1.4E-4 (1.14E-10,0.0569) 0.0569 

  ̂ (  ) 0.1569 27.640 0.0716 0.0017 (1.68E-8,0.4082) 0.4082 
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Table 12:  Posterior statistics of the model parameters under Type I censoring at 

n=100 

Prior Estimate E1 RE1 MC error median 95% CI l1 

 

 

 

 

 

I 

 ̂ 0.3160 0.2045 0.0011 0.2932 (0.0147,0.7470) 0.7323 

 ̂ 0.2470 0.1575 8.40E-04 0.2302 (0.0116,0.5759) 0.0116 

 ̂ 0.0174 0.2181 8.79E-04 1.7990 (1.1910,1.9920) 1.1910 

 ̂ 0.0186 0.1303 5.07E-04 1.8990 (1.5170,1.9960) 1.5170 

 ̂ 0.8459 0.1090 4.06E-04 0.8649 (0.5941,0.9933) 0.5794 

 ̂  1.5740 0.2698 0.001311 1.5240 (1.1810,2.2120) 1.0310 

 ̂  (  ) 0.9872 0.01203 4.727E-5 0.9904 (0.9554,0.9990) 0.0436 

 ̂  (  ) 1.4390 1.016 0.004193 1.223 (0.1867,4.0310) 3.8443 

 

II 
 ̂ 0.0728 0.0688 2.96E-04 0.0525 (0.0020,0.2562) 0.0019 

 ̂ 0.1467 0.0858 2.76E-04 0.1335 (0.0221,0.3458) 0.0202 

 ̂ 0.9863 0.1470 4.12E-04 0.9812 (0.7117,1.2870) 0.6915 

 ̂ 0.0022 0.0016 6.28E-06 0.0019 (2.12E-04,0.0062) 0.6913 

 ̂ 0.1003 0.0261 1.01E-04 0.0981 (0.0558,0.1575) 0.7471 

 ̂  1.1610 0.0931 3.71E-4 1.1430 (1.0350,1.03930) 0.0043 

 ̂  (  ) 0.7657 0.0558 1.571E-4 0.7685 (0.6486,0.8660) 0.2174 

 ̂  (  ) 2.8470 0.4795 0.001443 1.9630 (2.8280,3.8410) 1.0130 

Table 13:  Posterior statistics of the model parameters under Type II censoring at 

n=30 

Prior Estimate E2 RE2 MC error median 95% CI l2 

 

 

 

 

 

 

I 

 ̂ 0.6629 0.2436 0.001299 0.7102 (0.1058, 0.9867) 0.8809 

 ̂ 0.2162 0.1711 9.591E-4 0.1767 (0.0075, 0.6379) 0.6304 

 ̂ 0.8390 0.5003 0.0068 0.6921 (0.2343, 1.9090) 1.6747 

 ̂ 1.0730 0.4647 0.0063 0.9962 (0.4102, 1.9460) 1.5358 

 ̂ 0.9052 0.0831 4.864E-4 0.9283 (0.6923, 0.9972) 0.3049 

 ̂  4.4060 0.05716 2.61E-4 4.4200 (4.2580,4.4730) 0.2150 

 ̂  (  ) 0.9929 0.003453 1.472E-5 0.9935 (0.9843,0.9976) 0.0133 

 ̂  (  ) 0.6281 0.2343 9.981E-4 0.5958 (0.2660,1.1750) 0.9090 

 ̂ (  ) 0.7696 0.1492 6.247E-4 0.7613 (0.5006,1.0820) 0.5814 

 ̂ (  ) 3.3670 0.462 0.001356 3.334 (2.5530,4.3660) 1.8130 

 ̂ (  ) 10.8800 1.809 0.004028 10.65 (8.0340,15.0800) 7.0460 

 

 

 

II 

 

 

 

 ̂ 0.0452 0.0437 1.899E-4 0.0320 (0.0012, 0.1615) 0.1603 

 ̂ 0.2160 0.0624 2.079E-4 0.0847 (0.0131, 0.2484) 0.2353 

 ̂ 1.1180 0.1488 4.057E-4 1.1150 (0.8400, 1.4210) 0.5810 

 ̂ 0.0072 0.0030 1.108E-5 0.0068 (0.0025, 0.0141) 0.0116 

 ̂ 0.2700 0.0493 1.805E-4 0.2670 (0.1824, 0.3751) 0.1927 

 ̂  3.6410 0.5505 0.0071 3.6070 (2.6620,4.8010) 2.1390 

 ̂  (  ) 0.9901 0.007607 8.806E-5 0.9922 (0.9700,0.9985) 0.0285 

 ̂  (  ) 0.4691 0.2823 0.003452 0.4078 (0.1038,1.1770) 1.0732 

 ̂ (  ) 4.1760 3.395 0.04556 3.233 (0.7258,13.2000) 12.4742 

 ̂ (  ) 12.1500 4.906 0.05535 11.15 (5.7720,24.3900) 18.6180 

 ̂ (  ) 37.9500 15.39 0.07805 34.64 (18.7500,76.890) 58.1400 
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Table 14:  Posterior statistics of the model parameters under Type II censoring at 

n=60 

Prior Estimate E2 RE2 MC error median 95% CI l2 

  ̂ 0.2664 0.1765 8.4E-04 0.2437 (0.0125,0.6479) 0.6354 

 ̂ 1.6410 0.2851 0.0014 1.7090 (0.9533,1.9880) 1.0347 

 ̂ 1.7820 0.1950 7.9E-04 1.8370 (1.2770,1.9940) 0.7170 

 ̂ 0.7570 0.1446 5.2E-04 0.7690 (0.4519,0.9843) 0.5324 

 ̂  4.4760 0.004419 1.9E-5 4.477 (4.4640,4.4810) 0.0170 

 ̂  (  ) 1.0000 0.0000 1.4E-12 1.0000 (1.0000,1.0000) 0.0000 

 ̂  (  ) 1.8E-5 1.4E-6 3.8E-9 1.8E-5 (1.5E-5,2.1E-5) 5.29E-6 

 ̂ (  ) 0.4837 0.008012 2.1E-5 0.4835 (0.4688,0.5001) 0.0313 

 ̂ (  ) 0.6960 0.01152 2.9E-5 0.6956 (0.6746,0.7195) 0.0449 

 ̂ (  ) 0.9264 0.01534 3.9E-5 0.9260 (0.8979,0.9577) 0.0598 

 

 

II 

 ̂ 3.8300 0.1045 0.002264 4.0360 (3.6240,3.7300) 0.4120 

 ̂ 3.6680 0.07214 0.001314 3.8090 (3.5270,3.6680) 0.2820 

 ̂ 6.4840 0.1612 6.009E-4 6.8020 (6.1690,6.4830) 0.6330 

 ̂ 3.5430 0.0558 0.001403 3.6540 (3.4370,3.5420) 0.2170 

 ̂ 1.7720 0.0178 4.408E-4 1.8070 (1.7380,1.7720) 0.0690 

 ̂  8.4700 1.0390 0.0207 8.4030 (6.6210,10.7000) 4.0790 

 ̂  (  ) 1.0000 0.0000 1.498E-13 1.0000 (1.0000,1.0000) 0.0000 

 ̂  (  ) 1.2E-9 1.2E-8 1.1E-10 1.8E-11 (1.1E-14,6.8E-9) 5.9E-9 

 ̂ (  ) 0.8028 0.01176 1.9E-4 0.803 (0.7795,0.8256) 0.0461 

 ̂ (  ) 0.8829 0.00511 6.3E-5 0.8829 (0.8728,0.8929) 0.0201 

 ̂ (  ) 0.9571 0.004853 4.9E-5 0.9571 (0.9477,0.9667) 0.0190 

Table 15:  Posterior statistics of the model parameters under Type II censoring at 

n=100 

Prior Estimate E2 RE2 MC error median 95% CI l2 

 

 

 

 

I 

 ̂ 0.9995 4.823E-4 2.296E-6 0.9997 (0.9982,1.0000) 0.0018 

 ̂ 0.9996 4.046E-4 1.769E-6 0.9997 (0.9985,1.0000) 0.0015 

 ̂ 1.9980 0.002135 9.612E-6 1.9990 (1.9920,1.9990) 0.0080 

 ̂ 1.7910 0.02223 5.809E-5 1.7910 (1.7480,1.7910) 0.0870 

 ̂ 0.9994 5.612E-4 2.53E-6 0.9996 (0.9979,0.9996) 0.0021 

 ̂  4.4790 0.0023 1.106E-5 4.4790 (4.4730,4.4810) 0.0080 

 ̂  (  ) 0.9994 3.114E-5 8.246E-8 0.9994 (0.9993,0.9994) 0.0001 

 ̂  (  ) 0.0250 0.0012 3.28E-6 0.0250 (0.0226,0.0275) 0.0049 

 

 

II 

 ̂ 10.920 2.4150 0.09356 12.050 (4.7520,13.060) 8.3080 

 ̂ 2.2410 0.1727 0.00636 2.2940 (1.7900,2.4460) 0.6560 

 ̂ 2.1280 0.2675 0.01007 2.0280 (1.8730,2.9160) 1.0430 

 ̂ 5.0710 1.3650 0.05291 5.5990 (2.1940,6.5180) 4.3240 

 ̂ 2.2120 0.5765 0.02235 1.9430 (1.7960,3.9060) 2.1100 
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Table 16:    Optimum Bayesian design under Type I censoring 

n Prior stress  (   (  | ))    
     

  

 

 

 

30 

 

I 

   0.0069 3.8942 5.5322 

   0.0140 4.7937 3.7167 

   0.0254 3.4911 3.6487 

II 

   0.0045 8.1275 9.9120 

   0.0029 12.0811 12.1467 

   0.0083 6.7855 7.0613 

 

 

 

60 

I 

   0.0063 7.5076 7.8242 

   0.0151 4.8493 5.0539 

   0.0267 3.5653 3.7191 

II 

   0.0201 4.5044 4.6817 

   0.0243 4.0429 4.2041 

   0.0285 3.6834 3.8322 

Table 17:    Optimum Bayesian design under Type II censoring 

n Prior stress  (   (  | ))   
    

   

 

 

 

30 

I 

   0.0293 5 5 

   0.0034 11 11 

   23.7900 13 13 

II 

   0.0164 6 6 

   0.0293 12 12 

   0.0015 14 14 

 

 

 

60 

I 

   0.0357 14 14 

   0.6708 17 17 

   7.0700 20 20 

II 

   1.6820 24 24 

   9.9670 26 26 

   97.400 29 29 

3.2 Application 

Considering the data of this application is given in Subsection 2.3.3. The initial parameter 

values of a, b,       in the 3 chains and the priors distribution used in this application 

are the same as in the simulation study. 

Concluding remarks 

 The summary of the sampling results with respect to the unknown parameters a, 

b,           (  )    (  )   (  ),   (  ) and   (  ), where        are 

displayed in Table 18. A simple summary can be generated showing posterior 

mean, median, MC error, standard error, a 95% posterior credible interval and 

length. 
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 The iteration runs until the MC error for each estimate is less than 5% of the 

sample standard deviation. From Table 18, it is noted that the MC error for each 

estimate is less than 5% of the sample standard deviation and then the rule of MC 

error was achieved. Also, to check convergence, Gelman-Rubin convergence 

statistic, R, is introduced. When a WinBUGS simulation converges, R should be 

one, or close to one. 

 The two-sided 95% credible intervals for the estimates of parameters,   , rf, hrf, 

  (  ),   (  ) and   (  ) of KumW are displayed in Table 18. The interval 

length gets narrower as the sample size increases. 

 In general, it appears that when using the informative prior, the variance of the 

estimated parameters decrease. This is expected because the prior knowledge was 

incorporated with data and increased the accuracy of the estimate. It is also 

reasonable to conclude that the interval length is narrower with informative priors. 

Table 18:  Posterior statistics of the model parameters under Type II censoring at 

n=20 

Prior Estimate E2 RE2 MC error median 95% CI l2 

 

 

 

 

 

I 

 ̂ 0.9808 0.0192 8.57E-05 0.9866 (0.9293,0.9995) 0.0702 

 ̂ 0.9867 0.0133 5.89E-05 0.9908 (0.9514,0.9996) 0.0482 

 ̂ 1.9420 0.0568 2.66E-04 1.9590 (1.7900,1.9980) 0.2080 

 ̂ 0.6732 0.1412 7.14E-04 0.6526 (0.4568,1.0060) 0.5492 

 ̂ 0.3664 0.0385 1.83E-04 0.3653 (0.2942,0.4449) 0.1507 

 ̂  4.3680 0.0871 3.925E-4 4.3900 (4.1420,4.4690) 0.3270 

 ̂  (  ) 0.9993 7.591E-4 3.791E-6 0.9995 (0.9973,0.9999) 0.0026 

 ̂  (  ) 0.0904 0.0821 4.141E-4 0.06626 (0.0099,0.3112) 0.3013 

 ̂ (  ) 1.8120 1.6370 0.02163 1.3350 (0.2390,6.1980) 5.9590 

 ̂ (  ) 6.6040 2.641 0.02908 6.084 (3.1240,13.1700) 10.0460 

 ̂ (  ) 24.4700 10.0100 0.0539 22.33 (12.000,49.4900) 37.4900 

  ̂  0.5886   2.74E-01   0.0029   0.5821   (0.0852,1.1410)   1.0559  

  ̂  0.6980   2.04E-01   0.0021   0.7008   (0.2936,1.0780)   0.7844  

  ̂  1.6530   1.56E-01   4.34E-04   1.6500   (1.3550,1.9650)   0.6100  

  ̂  0.0167   4.74E-03   1.87E-05   0.0163   (0.0089,0.0272)   0.0185  

II  ̂  0.2104   3.25E-02   1.57E-04   0.2085   (0.1523,0.2794)   0.1271  

  ̂   2.5990   0.4948   0.0049   2.5420   (1.8150,3.7180)   1.9030  

  ̂  (  )  0.9836   0.0129   1.052E-4   0.987   (0.9501,0.9983)   0.0482  

  ̂  (  )  0.7222   0.4373   0.0039   0.6387   (0.1209,1.7670)   1.6461  

  ̂ (  )  1.2410   0.2646   0.0125   1.2360   (0.7739,1.7980)   1.0241  

  ̂ (  )  3.3180   0.487   0.01806   3.295  (2.4260,4.3230)   1.8970  

  ̂ (  )  7.2580   1.0040   0.0193   7.1650   (5.5670,9.5130)   3.9460  
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Table 19:    Optimum Bayesian design under Type II censoring 

n Prior stress  (   (  | ))   
    

   

 

 

   30 

 

 

 

I 

   4.0980 4 4 

   0.4832 8 8 

   56.6000 9 9 

 

II 

   0.1304 5 5 

   0.9109 9 9 

   4.3480 10 10 

Remarks 

When r=n the results, obtained for Type II censoring reduce to the complete sample case. 

The results obtained in this paper can be modified to obtain results for special cases of 

KumW distribution under Type I and Type II censored samples as follows: 

 The Kum exponential distribution if    . 

 The Kum Rayleigh distribution if    . 

 The exponentiated Weibull distribution if    . 

 The exponentiated Rayleigh distribution if    ,    . 

 The exponentiated exponential distribution if   =    . 

 The Weibull distribution if       (Khamis (1997) and Liu (2010)). 

 The Rayleigh distribution if    ,   =    . 

 The exponential distribution if          (Ramadan and Ramadan (2012)).  
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