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Abstract 
A new ρ-function is proposed in the family of smoothly redescending M-estimators. The  
ψ-function associated with this new ρ-function attains much more linearity in its central section 
before it redescends, compared to other ψ-functions such as those of Andrews sine, Tukey’s 
biweight and Qadir’s beta function resulting in its enhanced efficiency. The iteratively reweighted 
least squares (IRLS) method based on the proposed ρ-function clearly detects outliers and 
ignoring those outliers refines the subsequent analysis. Three examples selected from the 
relevant literature, are used for illustrative purposes. A comparative simulation study has been 
conducted to evaluate its general applications. The proposed weighted least squares (WLS) 
method indeed achieves the goals for which it is constructed, for it gives quite improved results in 
all situations and is able to withstand substantial amount of outliers. 

Introduction 
It is well known that the ordinary least squares (OLS) method is very sensitive to 
outlying observations. There are several approaches to deal with this problem. 
Several statisticians have developed many robust methods based on different 
approaches. The ever first step came from Edgworth in 1887 that proposed to 
use L1-criterion instead of OLS (Rousseeuw and Yohai 1984). Afterwards the 
most commonly used robust estimators are Huber’s M-Estimators (Hampel et al 
1986), MM-estimators (Yohai 1987), GM-Estimators, Siegel’s Repeated Median 
Estimators (Rousseeuw and Leroy 1987), Least Median of squares (LMS) 
estimators, Least Trimmed Squares (LTS) estimators (Rousseeuw 1984), S-
Estimators (Rousseeuw and Yohai 1984), Minimum Volume Ellipsoid (MVE) 
estimators (Rousseeuw and Leroy 1987), and Minimum Covariance Determinant 
(MCD) estimators (Rousseeuw and Van Driessen 1998).  
 
Huber introduced the notion of M-estimators in 1964 (Hampel et al 1986), which 
opened new gates in the theory of classical statistics. Afterwards several M-
estimators were proposed from time to time and the theory of M-estimators got 
enriched by every day passed. A brief discussion over the concept of M-
estimators is given the following subsections. 
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M-Estimators 
The name M-estimators comes from “generalized maximum likelihood.” It is the 
simplest approach both computationally and theoretically (Hampel et al 1986).  
 
The M-estimate Tn (x1,…….,xn) for the function ρ and the sample x1,……., xn is 

the value of t that maximizes the objective function ( )∑
=
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The corresponding w-function (weight function) for any ρ is then defined as  
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Employing this w-function in OLS, we get weighted least squares (WLS) method 
and the resulting estimates are then called the weighted estimates (Hoaglin et al 
1983).   
 
the weighted estimates are computed by solving the equations 
 

( ) WyXWXX ′′= −1β̂                              (3) 
 

where W is a n x n diagonal square matrix having the diagonal elements as 
weights. 
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Mean

Huber's Estimator

a- a

M-estimators minimize objective function more general than the familiar sum of 
squared residuals associated with the sample mean. Instead of squaring the 
deviations of each observation xi from the estimate t, we apply the 
function ( )txi ;ρ  and form the objective function by summing over the sample: 

( )∑
=

n

i
i tx

1
;ρ . The nature of ( )txi ;ρ  determines the properties of the M-estimator 

(Hoaglin et al 1983). We briefly elaborate some of the most popular M-estimators 
in the following lines. 
 
Huber’s M-estimator uses the following ψ-function 
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Both the least squares and Huber 
objective functions increase without 
bound as the residual departs from 0, 
but the least-squares objective 
function increases more rapidly. Least 
squares assigns equal weight to each 
observation; the weights for the Huber 
estimator decline when |t| > a. The 
Huber’s ψ-function takes into account 
the neighborhood of a normal model in 
a linear way. It has a constant-linear-
constant behavior, i.e. it is constant 
beyond the specified bound (-a to a) 
and is linear like mean within these 
bound see Figure 1. Like the OLS it 
assigns equal weights to all 
observations within its bound, which surely will result in its high efficiency but 
distant outliers still have a maximum influence (in the form of constant a), which 
lead to the efficiency losses of about 10-20 percent in typical cases with outliers 
(Hampel et al 1986). To cope with this problem redescending M-estimators were 
introduced. 

 

Figure 1 Shape of the ψ-functions of mean 

and Huber-estimators. 
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Redescending M-estimators 
The redescending M-estimators were introduced by Hampel (Hampel et al 1986), 
who used a three part-redescending estimator with ρ-function bounded and ψ-
function becoming 0 for large |t| see Figure 2. They reject distant outliers 
completely, but not suddenly, allowing a transitional zone of increasing doubt, 
and are therefore much more efficient than “hard” rejection rules; they are usually 
about as good to clearly better than Huber-estimators (Hampel et al 1986). The 
logic of these estimators is that the very central observations (in the 
neighborhoods of 0) of the normal neighborhood receive maximum weight and as 
they departs from center their weight declines, and as they reach the specified 
bounds their ψ-function becomes 0.  
 
The Hampel’s three part redescending ψ-function is defined as 
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Looking at Figure 2 one can easily 
conclude that the Hampel’s three part 
redescending estimator is still not a good 
one, as the abrupt changes in its slope 
are unappealing because of the abrupt 
changes in the way the data are used. So 
the need of a ψ-function with a smoothly 
redescending nature was seriously felt. 
Several smoothly redescending M-
estimators have been proposed from time 
to time. 
 
A real improvement came from Andrews (A
and Tukey 1977; Hoaglin et al 1983) who us
estimators) and biweight estimators resp
Tukey’s biweight estimators have smoothly
Figure 3 and 4 (Hoaglin et al 1983).  A
smoothly redescending ψ-function shown in
beta function with α = β  (Qadir 1996). The 
as residuals departs from 0, and are 0 for |t| 

n 
Figure 2 Hampel's Three Part ψ-Functio
PJSOR 2005, Vol.1: 49-64 

ndrews 1974) and Tukey (Mosteller 
ed wave estimators (also called sine 
ectively. Both Andrews’ wave and 
 redescending ψ-functions, shown in 

fterwards Qadir proposed another 
 Figure 5, whose weight function is a 
weights for all these decline as soon 
> a.  
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Tukey’s biweight function 
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Figure 3 Andrews wave ψ-function Figure 4 Tukey’s Biweight ψ-function 
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Figure 5 Qadir’s beta ψ-function 
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The Proposed ρρρρ-function 
We propose a new ρ-function with its corresponding ψ and w-functions, thus 
giving development to a new weighted least square method. We discuss the 
shape and properties of its ψ-function comparative to that of others such as 
Huber’s, Andrews, and Tukey’s biweight function.   

Description of the Algorithm 
Consider the following objective function  
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where a is the so-called tuning constant and for ith observation the variable t  are 
the residuals scaled over MAD. 
 
The above ρ-function satisfies the standard properties stated in section 2, 
generally associated with a reasonable objective function. 
The derivative of Eq. (10) with respect to t is  
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The corresponding standard weight function is thus defined as follows 
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The Shape of ψψψψ-function 
Before proceeding to use a robust estimator one would naturally wish to know 
the answers of the two typical questions 
 

1. How robust the estimator is? 
2.  What is the efficiency of the estimator? 
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A natural answer to both of these questions is “a compromise”, that is one have 
to choose an estimator, which has maximum resistance with minimum efficiency 
losses. One would certainly avoid using a robust estimator on the cost of large 
efficiency loss neither would use a completely non-robust estimator with high 
efficiency but would make a compromise between these two options.  
 
It is a well-known statistical truth that the arithmetic mean has the highest 
possible efficiency among all other estimators but unfortunately it is extremely 
sensitive to outliers and even a single outlier can have disastrous effects on it. 
Among M-estimators the most efficient estimator would be Huber’s estimator with 
carefully chosen bounds. The ψ-function of Huber’s estimator has a constant-
linear-constant behavior (Hoaglin et al 1983). Figure 1 shows that the central 
section of Huber’s ψ-function is linear and within specified bounds it coincides 
with the ψ-function of the mean and in respect of efficiency it is its plus point. 
Within the specified bounds it is as efficient as mean can be.  
 
As discussed before the main drawback of Huber’s ψ-function is that distant 
outliers still have maximum (though bounded) influence and would lead certainly 
to certain percent efficiency losses. To avoid these losses, one can use smoothly 
redescending M-estimators such as Andrew’s sine function; see Figure 3, or 
Tukey’s biweight function, see Figure 4, with ρ being bounded and ψ-function 
continuously becoming zero for large absolute residual. They reject distant 
outliers completely, but not suddenly, allowing a transitional zone of increasing 
doubt, and are therefore much more efficient than “hard” rejection rules; they are 
usually about as good to clearly better than Huber-estimators. 
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Figure 6  Shape of Asad’s ψ-function. 
Figure 7 Combined plots of Andrews (Dots), 
Tukey’s (Dash-Dot) Qadir’s (Dash-Dot-Dot) 
and Asad’s  (Solid) ψ-functions. 
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Now we discuss the shape of the proposed ψ-function. The ψ-function given in 
Figure 6 (also in Figure 7) has a different behaviour as compared to that of other 
redescending estimators such as Andrews’s wave and Tukey’s biweight 
estimators. Recalling that the ψ-function of the arithmetic mean is just a linear 
straight-line rendering it theoretically the most efficient estimator. The proposed 
ψ-function capture the property of longer linear central section from the  
ψ-function of mean and behaves linearly for large number of the central values 
as compared to other smoothly redescending ψ-functions. This increased 
linearity certainly responses in enhanced efficiency. The ψ-function then 
redescends gradually for increasing values of residuals and becomes zero for 
values lying outside the specified band. The difference can be clearly seen in 
Figure 7. 

The Method 
The method has a very similar procedure as used for a typical M-estimator. First 
an ordinary least squares model is fitted to the data and the residuals obtained 
from the fit are standardized over the initial scale MAD while subsequent scaling 
is made over Huber’s proposal 2 described in Hampel et al (1986) and Street et 
al (1988). The scaled residuals are transformed using the proposed w-function 
and the initial estimates of regression parameters are calculated. Then using the 
Huber's proposal 2 by IRLS method the final estimates are obtained. 
Experiences show that the new WLS method of estimation is quite insensitive to 
the presence of outliers and can be applied to detect outliers.  

Applications 
We applied the proposed WLS method to different examples to verify its 
effectiveness in detecting outliers. The results of LMS and LTS were obtained by 
using the program PROGRESS proposed by Rousseeuw and Leroy (1987).       

Example 1 
The first example is that of 
Sparrows Wing Length data, taken 
from Zar (1999) in which the wing 
length is the response variable and 
age is the explanatory variable. 
The actual data is quite a good 
data with no outliers at all as the 
OLS model xy 265.0830.0ˆ +=  with 
a residuals sum of squares equal 
(RSS) to 0.720 seems reasonable. 2 7 12 17
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 Figure 8  OLS line fitted to the actual data. 
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Figure 7 shows that 
the fitted line 
represent the data 
well. However let us 
suppose we 
mistakenly record 
the third value of the 
response variable 
as 3.5 instead of 2.2 
thus producing an 
outlier in y-direction. 
The summary 
results from different fits for this contaminated data set are given in Table 1. The 
new RSS is now taken to 2.260, which is significantly different from the old RSS. 
Except the LTS the robust fits from all the other methods detect one outlier and 
give an RSS almost equal to that of the old RSS.  
 
The LTS declares four observations as outliers and deleting these gives an RSS 
of 0.155, which is not a desirable case as we can see that fits from the other 
robust methods depicts the same trend as that of the actual data. The fit from 
Qadir beta function gives the intercept term very close to that of OLS 
(contaminated). The OLS and different robust fits to the contaminated data are 
sketched in Figure 9.  The figure shows that Qadir’s fit and the OLS fits just 
coincide although it detects 
one outlier. The reason for 
this is that it uses the 
sample standard deviation 
as the scaling tool for 
standardizing the OLS 
residuals, which is itself a 
non-robust estimator for 
scale. The fits from LMS, 
Biweight and Asad’s 
methods also coincide with 
each other, as there is a 
very little difference in their 
estimated coefficients.  
 

Table 1 Sparrow’s Wing Length data fitted by OLS and 
different robust methods including the proposed method. 

Coefficients Method 
Constant x 

Cases 
Used 

SS of 
Residuals 

OLS 1.154 0.242 13 2.260 
RWLMS 0.816 0.266 12 0.712 
RWLTS 0.531 0.299 9 0.155 
Qadir (a = 1.5) 1.124 0.244 12 0.925 
Tukey (a = 4.0) 0.802 0.267 12 0.718 
Asad (a = 3.0) 0.811 0.266 12 0.717 
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Figure 9 OLS and Qadir (Solid), LTS (Dash-
Dot), LMS, Biweight and Asad (Dot) fits to the 
contaminated data. 
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Example 2   Telephone Calls Data 
The second example is that of Phone Calls data. This is a real data set with a 
few outliers present in the data. The data set is taken from Belgian Statistical 
Survey. The dependent variable is the number telephone calls made from 
Belgium and the independent variable is the year (Rousseeuw and Leory 1987). 
The scatter plot of the data along 
with different fits is shown in Figure 
10. From the plot it is clear that the 
observation from 1964 to 1969 are 
outliers. Rousseeuw and Leory 
(1987) state that actually from the 
year 1964 to 1969, another 
recording system was used, giving 
the total minutes of calls (The 
years 1963 and 1970 are also 
partially affected because the 
transactions did not happen exactly 
on New Year’s Day).  
 

The fits from OLS and other robust 
methods along with the proposed 
method are given in Table 2. The 
OLS fit is highly influenced by 
outliers as it has a very large residual 
represent neither good nor bad data points
not looking critically at those data and by
Except the Qadir’s WLS all of the other rob
with a negligible 
difference among 
their RSS. Here it 
is to be noted that 
throughout our 
study we use the 
unweighted RSS 
so that a real 
comparison can 
be made among 
different robust 
methods. 

Table 2 Telephone C
robust methods includ

Method 
Co

OLS -
RWLTS -
RWLMS -
Qadir (a = 1.0) -
Tukey  (a = 3.8) -
Asad (a = 3.0) -
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Figure 10 Phone Calls data plot with OLS fit (solid
line): Robust fits by Asad’s WLS and Tukey’s
biweight (dashed lines). 
PJSOR 2005, Vol.1: 49-64 

sum of squares (RSS), thus the fit 
 well. This is what one could obtain by 
 applying the OLS method in routine. 
ust fits ignore 8 outlying observations 

alls data fitted by OLS and different 
ing the proposed method. 
Coefficients 
nstant x 

Cases 
Used 

SS of 
Residuals 

26.01 0.504 24 695.44 
5.164 0.108 16 0.1313 
5.164 0.108 16 0.1313 
5.505 0.115 15 3.5347 
5.306 0.111 16 0.1362 
5.181 0.109 16 0.1314 
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The fits from the OLS, Tukey’s biweight and the proposed method are sketched 
in Figure 10. It is obvious that with the proposed method the model fits very well. 
The OLS line (solid line) is pulled toward the middle of the two groups of 
observations which is the effect of y values associated with years 1964-69, 
rendering it a completely unrepresentative fit, where as the fit with the proposed 
method shows very much robustness and fits a model which represents the 
majority of the observations and avoids outliers. The robust fits by the proposed 
method and Tukey’s biweight differ very little therefore in Figure 10 the two 
robust lines cannot be differentiated from one another. 

Example 3   Stackloss Data 
The third example is the well-known Stackloss data set taken from Rousseeuw 
and Leory (1987). We choose this example because it is a real data set and is 
examined by many statisticians such as Denial and Wood (1971), Andrews 
(1974), Andrews and Pregibon (1978), Cook (1979), Draper and Smith (1981), 
Dempster and Gasko-Green 
(1981), Atkinson (1982), 
Rousseeuw and Leroy (1984), 
Carroll and Rupert (1985), 
Qadir (1996) and several others 
by means of different methods. 
The data describes operation of 
a plant for the oxidation of 
ammonia to nitric acid and 
consist of 21 four-dimensional 
observations. The stackloss (y) 
has to be explained by the rate 
of operation (x1), the cooling 
water inlet temperature (x2), 
and the acid concentration (x3). 
Summarizing the findings cited 
in the literature, it could be said 
that most people concluded that 
observations 1, 3, 4, and 21 were outliers. According to some people observation 
2 is also reported as an outlier (Rousseeuw and Leroy 1987). The standardized 
residuals plot shown in Figure 11 shows that there are no outliers at all as the 
horizontal band encloses the standardized residuals between –2.5 and 2.5. So it 
can be easily concluded the data set contains no outliers at all because all the 
standardized residuals fall nicely within the band. However we observe that 
robust fits give a different idea about the nature of the data. The LTS method 
shows a severe robustness by detecting 6 observations as outliers and gives the 
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Figure 11 Standardized residuals plotted 
against the index of the observations for 
Stackloss data. 
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smallest RSS among all other robust methods.  For a tuning constant equal to 
2.0 the proposed method gives an RSS = 12.827 with 5 observations deleted but 
for a small tuning constant more robust results can be obtained. The OLS and 
other robust fits are given in Table 3.  

 
Table 4 shows the residuals from all the five methods. The residuals from our 
WLS seem very close to that of the other robust methods. The outliers can be 
detected by looking at the residuals of the five robust fits. The residuals of the 
observations 1, 3, 4, 21 are higher in all the fits. The LTS tells a different story 
from others as it further declares observations 2 and 13 as outliers and gives 
large residuals for these observations. The proposed method gives high 
residuals values for observations 1, 3, 4, 13, 21 and deletes all of these 
observations from the subsequent analysis. 
 

Table 4 Residuals from OLS and different robust fits to Stackloss data 
Observations 1 2 3 4 5 6 

i OLS RWLTS RWLMS Qadir Tukey Asad 
1 3.235 7.895 6.218 5.671 5.881 5.918 
2 -1.918 2.843 1.151 0.568 0.805 0.846 
3 4.555 7.639 6.428 6.235 6.068 6.086 
4 5.698 8.776 8.174 7.309 8.318 8.339 
5 -1.712 -0.317 -0.671 -0.844 -0.818 -0.810 
6 -3.007 -0.770 -1.249 -1.768 -1.250 -1.236 
7 -2.390 0.089 -0.424 -1.073 -0.230 -0.233 
8 -1.390 1.089 0.576 -0.073 0.770 0.767 
9 -3.144 -0.743 -1.058 -1.863 -0.852 -0.838 

10 1.267 0.160 0.359 1.033 -0.218 -0.210 

Table 3 Stackloss data fitted by OLS and different robust methods 
including the proposed method. 

Coefficients Method 
Constant x1 x2 x3 

Cases 
Used 

SS of 
Residuals 

OLS -39.920 0.716 1.295 -0.152 21 178.830 
RWLTS -34.057 0.757 0.453 -0.052 15 10.273 
RWLMS -37.652 0.798 0.577 -0.067 17 20.401 
Qadir (a = 1.5) -37.537 0.726 0.923 -0.103 17 27.882 
Tukey (a = 3.0) -36.809 0.850 0.432 -0.075 16 12.760 
Asad (a = 2.0) -37.003 0.849 0.425 -0.071 16 12.827 
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11 2.636 0.629 0.963 -1.961 0.460 0.431 
12 2.780 0.031 0.473 -1.781 -0.183 -0.214 
13 -1.429 -2.736 -2.507 -1.761 -3.067 -3.068 
14 -0.051 -1.616 -1.346 -0.551 -1.671 -1.709 
15 2.361 0.685 1.344 1.771 1.256 1.226 
16 0.905 -0.472 0.143 0.462 0.030 0.012 
17 -1.520 -0.655 -0.373 -0.904 -0.457 -0.412 
18 -0.455 -0.290 0.097 -0.183 0.071 0.087 
19 -0.598 0.309 0.586 -0.003 0.714 0.733 
20 1.412 1.871 1.934 1.845 1.767 1.780 
21 -7.238 -8.257 -8.630 -7.396 -9.448 -9.469 

Discussion 
It is evident from the results of all the three examples that the proposed method 
is quite effective in detecting outliers. In all of the three examples the outliers 
were detected successfully and the subsequent analysis after their deletion 
showed clear improvements. We tried such priorities (e.g. selection of tuning 
constants, selection of scale estimator etc) so that to get similar results as those 
of the other robust methods such as LTS, LMS, biweight, and Qadir’s beta 
function, to verify the effectiveness of the proposed method in detecting the 
unusual observations. Off course different results can be obtained with different 
priorities as it totally depends on user, what kind of results he or she wants.    
 
The actual Sparrows Wing Length data has no outliers at all and the OLS line fits 
the data well with a reasonable RSS of 0.720. We intentionally contaminated it 
for experimental purposes by replacing 2.2 (the third value of the response 
variable) by 3.5. The RSS is now taken to 2.260. The model parameters also 
differ from those of the first one (non-contaminated). We applied the robust 
methods and observed that the proposed method detected that outlier 
successfully with an RSS of about 0.717, quite a good fit.   
 
Both the visual sketch and the large OLS RSS for Telephone Calls data set 
argue that the data are highly influenced by outliers. It is evident from the 
graphical sketch of the data as the OLS line is pulled towards the middle of the 
two groups of the data points rendering it a very unrepresentative line. The fit 
from our new method ignores outlying observations, which in turn decrease 
residuals sum of squares to a considerable extent and the robust line fits the 
remaining observations very well. 
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Stackloss data set is a very popular data set and several statisticians studied it 
from time to time. Most of them declared observations 1, 3, 4, and 21 as outliers. 
The new WLS method also confirms the fact, as the residuals of these 
observations are higher in all the fits. It discards these observations from the data 
and gives a residual sum of squares considerably decreased.  

Simulation 
A simulation strategy described by Rousseeuw and Leroy (1987) has been 
adopted to verify the performance of the proposed method. The strategy consists 
of two steps. The first one is the normal situation,  

ipiiii exxxy +++++= .2,1, .....1  

in which ei ~ N (0, 1) and the explanatory variables are generated as xi,j ~ N  

 

Table 5. Simulation results for Simple and Multiple Regression 
  Values OLS N OLS RWLMS RWLTS Tukey Asad 

n =20 θo 0.910 3.166 1.072 1.072 0.997 0.992
Outliers = 
4  

θ1 0.997 0.993 1.010 1.010 1.010 1.008

 RSS 18.556 357.440 13.518 13.518 13.610 13.640
Outliers Detected ---- ---- 4 4 4 4
        
n = 1000 θo 0.974 1.473 0.987 0.997 0.998 0.990
Outliers = 
50 

θ1 1.003 0.995 1.001 1.001 1.002 1.002

 RSS 995.540 5611.726 838.374 828.172 945.428 945.221
Outliers Detected ---- ---- 65 67 50 50
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n = 50 θo 1.166 3.047 1.180 1.180 1.231 1.222
Outliers = 
10 

θ1 0.992 1.022 0.993 0.993 0.989 0.990

 θ2 1.001 0.900 0.990 0.990 0.989 0.989
 RSS 41.949 738.753 37.730 37.730 37.891 37.832

Outliers Detected ---- ---- 10 10 10 10
        
n = 1000 θo 1.125 1.594 1.000 1.062 0.957 0.968
Outliers = 
50 

θ1 0.932 1.032 0.935 0.935 0.942 0.941

 θ2 1.049 0.953 1.058 1.051 1.055 1.055
 RSS 1089.50 5918.65 912.70 907.19 1040.67 1040.54

M
ul

tip
le
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Outliers Detected --- --- 65 66 50 50
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(0, 100) for   j = 1,…, p. In the second step we construct outliers in y-direction. 
For this purpose, we generate samples where some of the observations (e.g. 
90%, 80%, etc) are as in the first situation and the remaining are contaminated 
by using the error term ei ~ N (10, 1). The results for different regressions are 
given in Table 5. From the table it is clear that the proposed method is quite 
effective in detecting outliers and reduces the RSS to a reasonable extent. 

Conclusion 
We proposed a new ρ-function. The WLS method based on such ρ-function 
produced quite good results. The above three examples and the simulation 
studies show that the proposed WLS method is quite resistive to outliers and the 
subsequent analysis is refined by ignoring those outliers. We advance this new 
method to be used for robust regression as an alternative to other M-estimators.  
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