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Abstract 
In this paper, we present an adaptive estimator for panel data model with unknown unit-time 
varying heteroscedastic error component of unknown form by using probability weighted 
moments rather than conventional kernel estimators already available in the literature and 
then evaluate the finite sample performance of the proposed estimator in terms of efficiency 
and testing of hypothesis. The Monte Carlo evidence suggests that the proposed estimator 
performs adequately under different data generated processes, especially for small samples 
that are the most practical situations.  
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Introduction 
An extensive literature is available on the issue of heteroscedasticity in the 
context of cross-section and time-series data and to deal this problem, 
especially, for heteroscedasticity of unknown form, there are many adaptive 
results using nonparametric methods; see Carroll (1982), Delgado (1992), 
Hidalgo (1992), Robinson (1987), among many others. But for panel data, 
referred as cross-section data sampled over different time period for the same 
economic agent, the issue of heteroscedasticity has not been studied as 
much extensively. In recent literature, only few references can be found so 
for; see Roy (1999), Baltagi (1998), Li and Stengos (1994), Baltagi and Griffin 
(1988), Randolph (1988), Mazodier and Trongnon (1978), etc. Randolph’s 
work is based on unbalanced panel data while Baltagi and Griffin (1988) 
extend on Mazodier and Trongnon’s work for the balanced case. Baltagi and 
Griffin (1988) consider heteroscedasticity coming in through the unit-specific 
error. They simply use an empirical example to provide some support for their 
estimators. Also the procedure proposed by them requires a large time 
component for the panel, which may not always be available. Li and Stengos 
(1994) provide an adaptive estimator for panel data models with unit-time 
varying heteroscedastic error component. Roy (1999) proposes an adaptive 
estimator for the estimation of panel models with unit-specific heteroscedastic 
error component by giving some Monte Carlo evidence to support the 

mailto:drpasha@bzu.edu.pk
mailto:aslamasadi@bzu.edu.pk


G. R. Pasha, Muhammad Aslam 

PJSOR 2005, Vol.1: 33-44 34

proposal and unlike the estimator proposed by Baltagi and Griffin (1988), 
there is no need for large time component.  
 
In this paper, an adaptive procedure is formulated for the estimation of panel 
data model with unit-time varying heteroscedastic error component of 
unknown form by replacing the kernel estimator, presented by Li and Stengos 
(1994), with probability weighted moments, explained by Downton (1966) and 
Greenwood (1979) due to their robustness over conventional moments for 
more efficient inferences. Monte Carlo studies on the lines of Rilstone (1991), 
Li and Stengos (1994) and Roy (1999) are carried out to evaluate the 
performance of the estimator. Since Li and Stengos (1994) find the proposed 
estimator to perform adequately comparing it with different standard 
estimators so, in this paper, we just compare the new proposed estimator with 
the estimator given by Li and Stengos (1994). In section 2, we give unit-time 
varying heteroscedastic error component panel data model. In section 3, an 
adaptive estimator is proposed on the basis of probability weighted moments. 
In section 4, Monte Carlo experiment is carried out under two different data 
generating procedures to rank the performance of the adaptive estimator. In 
section 5, results and discussion are presented and also performance of the 
estimators is evaluated in testing of hypotheses. Finally, section 6 concludes.  

Unit-time Varying Heteroscedastic Error Component Panel Data Model  
A standard error component model, discussed by Hsiao (1985), Li and 
Stengos (1994), Baltagi (1995), and Roy (1999) among others is given as 
 

 yit = xitβ + µi  + νit          (2.1) 
 

where i = 1, 2, …, N; t = 1, 2, …, T, xit is 1 x k, µi is the unit-specific error 
component with µit ~ i.i.d. (0, σ µ

2 ) while νit is the unit-time varying error 
component and  ~ i.i.d.(0, π ij ). Where )(xijij ππ = = Var (νit) and shows that 
unit-time varying error component is heteroscedastic. 
 
The vector-matrix form of (2.1) can be 
 y = xβ + Zµ + ν        (2.2) 
where Z = IN ⊗ eT, eT is a T dimensional column vector of ones and µ = [µ1, 
µ2, …, µN]/. y and ν are NT x 1 column vectors of the dependent variable and 
the unit-time varying error component, respectively  while x is an NT x K 
matrix of repressors.  
 
The inverse of the conditional variance-covariance matrix of the error term in 
(2.2) denoted by Ω -1, following Baltagi and Griffin (1988) and Roy (1999), is 
given as 

Ω -1 = diag[1 /σ 2
i ] ⊗ (JT 

/T) + diag[1 /σν
2 ] ⊗ (IT – JT 

/T)  (2.3) 
where σ 2

i  = Tωi + σν
2  ∀ i and JT is a square matrix of ones of dimension T. 
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The true GLS estimator of β is  
 yxxx ΩΩ′ −− ′= − 11

)( 1~β         (2.4) 
 
Since (2.4) involves working with a NT x NT (Ω -1) matrix which can be quite 
demanding if one has a large data set so (2.4) can be rewritten as 
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where xi is a T x K matrix of repressors for the i-th individual, yi is T x 1 and 
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with  ρi = σ µ
2  /γi and  γi = σ µ

2  + π ij  (the total variance)   (2.7) 

Adaptive Estimator 
To obtain the Estimated Generalized Least Squares (EGLS) of β (as in 2.5), 
we need to estimate ρi and γi given in (2.6). Following Hsiao (1986) and Li and 
Stengos (1994), σ µ

2  can be estimated as 
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where µ̂ it  is the OLS residual.  
Li and Stengos (1994) and Roy (1999) propose a kernel estimator of γi  as 

 
∑∑

−

∑∑
−

=

= =

= =

N

j

T

t

jti

N

j

T

t

jti
jt

i

h
xxK

h
xxK

1 1

1 1

2

)(

)(ˆ
ˆ

µ
γ                           (3.2) 

where K(.) is the kernel function as )
2

exp(
2
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smoothing parameter. Then after obtaining the estimate of γi , the estimate of 
π ij  can be obtained as σγπ µˆˆˆ 2−= iit  and then after calculating γσρ µ ˆ/ˆˆ 2

ii = , the 
estimate of β (2.5) can be achieved.  

 
But in this paper, we present an adaptive estimator in the presence of unit-
time varying heteroscedastic error component by estimating Var(νit) = π ij  
using probability weighted moments discussed by Downton (1966) as linear 
estimate of the standard deviation of the normal distribution as 
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For our problem 
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where y it)( are the ordered observations and (i-0.5)/N is the empirical 
distribution function FN (Y). 
 
Now the adaptive estimator can be given by reformulating (2.5) as 
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Monte Carlo Experiment 
In this section, Monte Carlo experiment is carried out to study the 
performance of the proposed estimator. For comparative purposes, the design 
of the Monte Carlo experiment is as same as used by Rilstone (1991), Li and 
Stengos (1994), and Roy (1999). The following model is considered: 
 

yit = β0 + β1xit + µi + νit ; i = 1, 2, …, N; t = 1, 2, …, T  (4.1) 
 

where xit = 0.5ωi,t-1 + ωit and ωit is generated by two different data generating 
processing (DGP), namely 
 
DGP-I:  ωit ~ i.i.d. U (0, 2), 
DGP-II: ωit ~ i.i.d. e itν and νit i.i.d. N (0, (0.4)2) i.e., ωit is Lognormal. 
 
The parameters β0 and β1 are assigned the values 5 and 0.5, respectively and 
µi’s are generated as µi ~ N (0,σ µ

2 ). We generate νit as νit ~ i.i.d. N (0,π ij ). 
Where π ij = Var (νit) = )(xijπ  shows that unit-time varying error component is 
heteroscedastic and )(xijπ = α2(1 + λ xit )2. Let ))(( xE ππ = , denotes the 
expected variance of νit. On the lines of Li and Stengos (1994), we fix the total 
variance γi = σ µ

2  + π  = 8 and define ρ = σ µ
2 / (σ µ

2 +π ), where ρ takes values, 
0.2, 0.5, and 0.8. For each fixed value of ρ, the value of σ µ

2  is calculated to 
vary the share of the variance of the unit-specific error term in the total 
variance. For each fixed value of ρ andσ µ

2 , λ is assigned values 0, 1, 2, and 3 
where 0 denotes homoscedastic unit-time varying error while the degree of 
heteroscedasticity increases as the value of λ becomes larger. For a fixedσ µ

2 , 
a value of π  is obtained (as π   = 8 - σ µ

2 ) using the different values of λ (0, 1, 
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2, and 3) and the values of α are chosen in such a way that the expected 
variance π  is fixed for different values of λ. Then the values of ωi are 
obtained for each σ µ

2 under the four different λ values. Following Roy (1999) 
and Li and Stengos (1994), the two schemes for sample sizes are used: 
 

i) N = 50, T = 3; i.e., N X T = 150 
ii) N= 100, T= 3; i.e., N X T =300 

 
For the estimation part, the estimator proposed by Li and Stengos (1994), is 
evaluated on the same directions of Li and Stengos (1994), using the normal 
kernel and smoothing parameter values h (0.8, 1, 1.2) and this estimation is 
denoted as generalized least squares adaptive (GLSAD) estimation as named 
by Li and Stengos (1994). The proposed adaptive estimator (3.5) is 
determined and denoted as probability weighted generalized least squares 
(PWGLS).  
 
Li and Stengos (1994) report the adequacy of the proposed GLSAD estimator 
by comparing it with different standard estimators i.e., OLS estimator, 
conventional GLS estimator of one-way error component model that assumes 
the remainder error term νit is homoscedastic (GLSH), and WITHIN estimator. 
So in this section, the adaptive PWGLS estimator is just compared with the 
GLSAD estimator of Li and Stengos (1994) and the OLS estimator. For this 
purpose, the efficiency of PWGLS relatives to GLSAD and OLS is computed. 
The relative efficiency (R.E) is defined here as the ratio of the mean square of 
the estimator under consideration to the mean square error of PWGLS e.g., 
R.E = M.S.E (GLSAD)/M.S.E (PWGLS).  
  
The efficiency of the estimators is not only concern while estimating the model 
(4.1) but performance of the hypothesis tests regarding the coefficients is also 
counted. To illustrate the impact of the both estimators on hypothesis testing, 
a test H0: β1=0.5 against β1 ≠ 0.5 is considered and the relevant p-values are 
computed. The larger p-value gives the statistical non-significance and 
indicates the stronger evidence for accepting the null hypothesis; β1=0.5.  

Results and Discussions 
Table 1 gives the relative efficiency under DGP-I, with a sample size of 150, 
formed with N = 50, T = 3. It shows when λ = 0 then for all the cases of  ρ = 
0.2, 0.5, 0.8, both GLSAD estimator and the proposed PWGLS estimator 
perform almost with equal efficiency. In other words, when the unit-time 
varying error term is homoscedastic then one may use any one from the both 
estimators. But for all different values of ρ, the OLS estimator performs poorly 
and bears relatively great efficiency loss for smaller values of σ µ

2  (larger 
contribution ofπ ). The OLS estimator performs worse since it ignores both the 
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effects of µi and νit. When λ = 1, the PWGLS estimator performs well for all 
the cases of ρ = 0.2, 0.5, 0.8 but as the contribution of σ µ

2  increases in the 
total variance the relative efficiency of the PWGLS estimator begin to 
decrease. That is for the larger role of π  in the total variance, the proposed 
estimator becomes more attractive. For the higher degree of 
heteroscedasticity (λ = 2, 3), the PWGLS outperforms as compared to GLSAD 
and OLS. The sensitivity of the GLSAD estimator can be observed by the 
selection of the smoothing parameter h. Generally, for different values of h the 
GLSAD estimator varies in performance that also verifies the findings of Roy 
(1999) and Li and Stengos (1994) no such problem is faced for the use of 
PWGLS. 
 
Table 2 gives the relative efficiency under DGP-I, with a sample size of 300, 
formed with N = 100, T = 3. The results in this table almost possess the same 
qualitative interpretations as that is in Table 1. The PWGLS performs quite 
adequately in all the cases as discussed above. It can again be noted that 
with the increase in sample size from 150 to 300, the efficiency of the PWGLS 
decreases, although in small amount. For example, In Table 1, for the case of 
ρ = 0.2 (and λ=1, 2, 3), the relative efficiency ranges from 1.0475 to 1.2514 
that falls in 1.0067 to 1.2455 in Table 2. Similar decrease can be found in the 
cases when ρ = 0.5, 0.8. These results again signify the attractiveness of the 
PWGLS for small samples.  
 
Table 3 and Table 4 show the relative efficiency under DGP-II where 
regressors are generated by lognormal distribution and the sample sizes are 
150 and 300. The adaptive estimator PWGLS gives the results in the same 
fashion as under DGP-I. Efficiency benefits of the proposed estimator can be 
found for smaller values of ρ and σ µ

2  (larger contribution ofπ ) almost in the 
same routine as discussed above.  
 
The performance of the estimators in the hypothesis tests regarding the 
coefficients is also taken into account while estimating the model. Table 5 
shows the p-values for testing the hypothesis H0: β1=0.5 against β1 ≠ 0.5 to 
see the impact of the both estimators, GLSAD and the proposed PWGLS 
under DGP-I with sample size 150. The larger p-value gives the statistical 
non-significance and indicates that there is no significant difference between 
the estimated value of slope coefficient and the parametric value 0.5 or, in 
other words, a stronger evidence for accepting the null hypothesis; β1 = 0.5. 
The table reports that when λ = 0 then for all the cases of ρ = 0.2, 0.5, 0.8, 
both GLSAD estimator and the proposed PWGLS estimator perform almost 
equally in the sense of hypothesis testing. For λ = 1, the p-value falls around 
0.97 for PWGLS and that is around 0.96 for GLSAD which means that the test 
is highly non-significant or there is no significance difference between the 
estimated slope value and the parametric (hypothesized) slope value. For 
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PWGLS there is stronger evidence to accept the null hypothesis as compared 
to GLSAD. In other words, the PWGLS estimates remain closer to the true 
value as compared to GLSAD estimates. This degree of non-significance 
increases with the increase of the degree of heteroscedasticity and in almost 
all the cases the p-value remains low for GLSAD when compared with that of 
the adaptive PWGLS estimator and same sensitivity of the smoothing 
parameter can also be found here. This also magnifies the adequacy of the 
proposed estimator even in testing of hypothesis.  
 
Table 6 shows a different picture of p-values under DGP-I (sample size; 300) 
as in Table 5. For homoscedastic unit-time varying error term (λ=0), there is 
relatively high difference up to 0.05 between the p-values for the both 
estimators and PWGLS estimator bears high p-values. For λ = 1, p-values 
increase for the both estimators in large sample and remains to some extent 
high for PWGLS but for λ = 2 and λ = 3, generally, the p-values decline for 
PWGLS and rise for GLSAD. As it is previously discussed that for small 
sample PWGLS shows better performance as it does in large samples, 
generally, a similar behaviour for p-values is also observed in this table.   
  
Table 7 and Table 8 show the p-values for testing the slope coefficient under 
DGP-II where regressors are generated by lognormal distribution and the 
sample sizes are 150 and 300. The results follow the same routine as they do 
in Table 5 and 6.  

Conclusions 
In this paper, following the work of Li and Stengos (1994) and Roy (1999), we 
present an adaptive estimator for panel data model with unit-time varying 
heteroscedasticity of unknown form by replacing kernel estimator, presented 
by Li and Stengos (1994), with probability weighted moment estimator. The 
Monte Carlo study under different data generating processes shows the 
adequate performance of the proposed estimator over the GLSAD estimator 
suggested by Li and Stengos (1994), specially for small samples and high 
degree of heteroscedasticity and while comparing with the tedious 
manipulations and sensitivity of the smoothing parameter in the GLSAD 
estimator. When one does not have any information on the degree of 
heteroscedasticity and the share of the different variances of the error terms 
in the total variance, which would indeed be the case with real data and from 
more applied point of view, it might be better to use PWGLS. Moreover, our 
proposed estimator PWGLS also performs with qualitative attractiveness for 
the hypothesis tests regarding the coefficients while estimating the model. 
Although, this performance is not very remarkable as compared to that of 
GLSAD estimator but yet relatively simple computations make it more 
desirable to use.  
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Table 1: Relative Efficiency of the Slope Coefficient: DGP-I, N = 50, T = 3 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

GLSAD(h = 0.8) 1.0094 1.0482 1.1180 1.2490 
GLSAD(h = 1.0) 1.0082 1.0476 1.1174 1.2514 
GLSAD(h = 1.2) 1.0080 1.0475 1.1168 1.2440 
OLS 2.1358 3.3138 4.6565 5.3927 

ρ = 0.5 
GLSAD(h = 0.8) 1.0087 1.0319 1.1083 1.2116 
GLSAD(h = 1.0) 1.0084 1.0303 1.1062 1.2144 
GLSAD(h = 1.2) 1.0078 1.0320 1.1057 1.2068 
OLS 1.5060 2.3076 2.7616 2.6960 

ρ = 0.8 
GLSAD(h = 0.8) 1.0041 1.0329 1.0907 1.1879 
GLSAD(h = 1.0) 1.0035 1.0314 1.0884 1.1922 
GLSAD(h = 1.2) 1.0035 1.0309 1.0880 1.1836 
OLS 1.1010 1.3259 1.4622 1.5463 

Table 2: Relative Efficiency of the Slope Coefficient: DGP-I, N = 100, T=3 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

GLSAD(h = 0.8) 1.0481 1.0101 1.1168 1.2449 
GLSAD(h = 1.0) 1.0476 1.0070 1.1159 1.2455 
GLSAD(h = 1.2) 1.0475 1.0067 1.1153 1.2400 
OLS 3.5777 2.3007 5.0926 5.9372 

ρ = 0.5 
GLSAD(h = 0.8) 1.0077 1.0295 1.1077 1.2071 
GLSAD(h = 1.0) 1.0075 1.0280 1.056 1.2080 
GLSAD(h = 1.2) 1.0068 1.0291 1.050 1.2020 
OLS 1.5007 2.2854 2.7783 2.7163 

ρ = 0.8 
GLSAD(h = 0.8) 1.0036 1.0298 1.0890 1.1788 
GLSAD(h = 1.0) 1.0029 1.0287 1.0863 1.1805 
GLSAD(h = 1.2) 1.0024 1.0280 1.0858 1.1738 
OLS 1.0995 1.3143 1.4331 1.5223 
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Table 3: Relative Efficiency of the Slope Coefficient: DGP-II, N = 50, T=3 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

GLSAD(h = 0.8) 1.0078 1.0529 1.0922 1.1986 
GLSAD(h = 1.0) 1.0064 1.0610 1.0910 1.998 
GLSAD(h = 1.2) 0.9975 1.0558 1.1013 1.2054 
OLS 1.9900 3.0817 4.2250 4.8019 

ρ = 0.5 
GLSAD(h = 0.8) 1.0079 1.0396 1.0770 1.1611 
GLSAD(h = 1.0) 1.0055 1.0474 1.0742 1.1630 
GLSAD(h = 1.2) 0.9954 1.0435 1.0869 1.1693 
OLS 1.3992 2.1108 2.3968 2.3399 

ρ = 0.8 
GLSAD(h = 0.8) 1.0079 1.0252 1.0617 1.1434 
GLSAD(h = 1.0) 1.0022 1.0237 1.0588 1.1466 
GLSAD(h = 1.2) 1.0015 1.0234 1.0585 1.1543 
OLS 1.0662 1.2823 1.3864 1.4503 

Table 4: Relative Efficiency of the Slope Coefficient: DGP-II, N=100, T=3 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

GLSAD(h = 0.8) 1.0073 1.0591 1.0925 1.1992 
GLSAD(h = 1.0) 1.0024 1.0707 1.0897 1.1951 
GLSAD(h = 1.2) 1.0031 1.0632 1.1054 1.2113 
OLS 2.2910 3.5635 5.0615 5.8107 

ρ = 0.5 
GLSAD(h = 0.8) 1.0028 1.0423 1.0899 1.1748 
GLSAD(h = 1.0) 1.0024 1.0548 1.0864 1.1698 
GLSAD(h = 1.2) 1.0021 1.0463 1.0995 1.1886 
OLS 1.4516 2.2511 2.7595 2.7047 

ρ = 0.8 
GLSAD(h = 0.8) 1.0018 1.0183 1.0668 1.1339 
GLSAD(h = 1.0) 1.0007 1.0338 1.0619 1.1282 
GLSAD(h = 1.2) 0.9840 1.0231 1.0831 1.1500 
OLS 1.0728 1.2972 1.3604 1.4514 
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Table 5: P-Value for testing H0: ββββ1=0.5 against ββββ1 ≠≠≠≠ 0.5: DGP-I, N=50, T=3 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

PWGLS 0.9569 0.9783 0.9748 0.9758 
GLSAD(h = 0.8) 0.9400 0.9667 0.9645 0.9566 
GLSAD(h = 1.0) 0.9362 0.9618 0.9689 0.9612 
GLSAD(h = 1.2) 0.9382 0.9689 0.9679 0.9603 

ρ = 0.5 
PWGLS 0.9602 0.9606 0.9863 0.9758 
GLSAD(h = 0.8) 0.9688 0.9533 0.9583 0.9585 
GLSAD(h = 1.0) 0.9698 0.9569 0.9521 0.9521 
GLSAD(h = 1.2) 0.9697 0.9548 0.9511 0.9508 

ρ = 0.8 
PWGLS 0.9726 0.9731 0.9717 0.9711 
GLSAD(h = 0.8) 0.9734 0.9625 0.9548 0.9609 
GLSAD(h = 1.0) 0.9814 0.9650 0.9437 0.9564 
GLSAD(h = 1.2) 0.9782 0.9674 0.9420 0.9543 

Table 6: P-Value for testing H0: ββββ1=0.5 against ββββ1 ≠≠≠≠ 0.5: DGP-I, N=100, T=3 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

PWGLS 0.9833 0.9992 0.9906 0.9920 
GLSAD(h = 0.8) 0.9336 0.9899 0.9806 0.9752 
GLSAD(h = 1.0) 0.9341 0.9927 0.9829 0.9775 
GLSAD(h = 1.2) 0.9426 0.9876 0.9778 0.9722 

ρ = 0.5 
PWGLS 0.9653 0.9767 0.9995 0.9925 
GLSAD(h = 0.8) 0.9822 0.9735 0.9606 0.9577 
GLSAD(h = 1.0) 0.9830 0.9778 0.9556 0.9531 
GLSAD(h = 1.2) 0.9813 0.9727 0.9545 0.9520 

ρ = 0.8 
PWGLS 0.9675 0.9866 0.9675 0.9604 
GLSAD(h = 0.8) 0.9695 0.9829 0.9543 0.9679 
GLSAD(h = 1.0) 0.9774 0.9820 0.9467 0.9616 
GLSAD(h = 1.2) 0.9746 0.9866 0.9443 0.9588 
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Table 7:  P-Value for testing H0: ββββ1=0.5 against ββββ1 ≠≠≠≠ 0.5: DGP-II, N=50, T=3 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

PWGLS 0.9573 0.9457 0.9384 0.9425 
GLSAD(h = 0.8) 0.9483 0.9359 0.9341 0.9239 
GLSAD(h = 1.0) 0.9423 0.9417 0.9320 0.9279 
GLSAD(h = 1.2) 0.9466 0.9365 0.9294 0.9309 

ρ = 0.5 
PWGLS 0.9334 0.9508 0.9554 0.9441 
GLSAD(h = 0.8) 0.9294 0.9406 0.9392 0.9070 
GLSAD(h = 1.0) 0.9320 0.9443 0.9413 0.9106 
GLSAD(h = 1.2) 0.9387 0.9453 0.9454 0.9115 

ρ = 0.8 
PWGLS 0.9578 0.9618 0.9400 0.9322 
GLSAD(h = 0.8) 0.9456 0.9488 0.9070 0.9054 
GLSAD(h = 1.0) 0.9464 0.9530 0.9109 0.9140 
GLSAD(h = 1.2) 0.9464 0.9583 0.9120 0.9150 

Table 8: P-Value for testing H0: ββββ1=0.5 against ββββ1 ≠≠≠≠ 0.5: DGP-II, N=100, T=3 
 

 λ = 0 λ = 1 λ = 2 λ = 3 
ρ = 0.2 

PWGLS 0.9693 0.9878 0.9813 0.9867 
GLSAD(h = 0.8) 0.9505 0.9646 0.9767 0.9701 
GLSAD(h = 1.0) 0.9472 0.9635 0.9695 0.9728 
GLSAD(h = 1.2) 0.9618 0.9742 0.9720 0.9861 

ρ = 0.5 
PWGLS 0.9589 0.9867 0.9839 0.9792 
GLSAD(h = 0.8) 0.9376 0.9654 0.9805 0.9577 
GLSAD(h = 1.0) 0.9377 0.9715 0.9823 0.9574 
GLSAD(h = 1.2) 0.9382 0.9599 0.9839 0.9576 

ρ = 0.8 
PWGLS 0.9531 0.9765 0.9721 0.9618 
GLSAD(h = 0.8) 0.9503 0.9573 0.9694 0.9448 
GLSAD(h = 1.0) 0.9802 0.9561 0.9690 0.9483 
GLSAD(h = 1.2) 0.9823 0.9645 0.9714 0.9452 
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