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Abstract 

This paper is concerned with the estimation, forecasting and evaluation of Value-at-Risk (VaR) of Karachi 

Stock Exchange before and after the global financial crisis of 2008 using Bayesian method. The 

generalized autoregressive conditional heteroscedastic (GARCH) models under the assumption of normal 

and heavy-tailed errors are used to forecast one-day-ahead risk estimates. Various measures and 

backtesting methods are employed to evaluate VaR forecasts. The observed number of VaR violations 

using Bayesian method is found close to the expected number of violations. The losses are also found 

smaller than the competing Maximum Likelihood method. The results showed that the Bayesian method 

produce accurate and reliable VaR forecasts and can be preferred over other methods.  

Keywords:   GARCH, Volatility, Value-at-Risk, MCMC. 

1. Introduction 

Value-at-Risk (VaR) has become a popular tool and is widely used for risk management 

and capital allocation by financial institutions. Both underestimation and overestimation 

of risk could have a negative effect in financial markets. Therefore accurate estimates of 

VaR is crucial for the financial stability of markets. VaR can be defined as the quantile of 

the loss, during a specific time period, that can occur within a given portfolio. A precise 

quantile estimate far out in the left tail of the return distribution is desirable. A thorough 

survey of risk measures is provided by Jorion (2007).    

 

Various approaches for estimating and predicting VaR exist in literature. These include 

nonparametric method such as historical simulation; semi-parametric method based on 

extreme value theory and quantile regression method and full parametric models (see 

McNeil and Frey, 2000 and Engle and Manganelli, 2004, among others). Kuester et al. 

(2006) provided an overview and comparisons of these and further methods whereas a 

comprehensive overview is found in Abad et al. (2014).  

 

Under the parametric statistical approaches, the autoregressive conditional 

heteroscedastic (ARCH) model of Engle (1982) and generalized ARCH (GARCH) model 

of Bollerslev (1986) are widely-used by researchers and practitioners. These models can 

capture the conditional variance structure and some of the stylized facts of many financial 

time series. Since then numerous extensions of the GARCH model have been proposed. 

Among them, the exponential GARCH model of Nelson (1991) and asymmetric model of 

Glosten et al. (1993) are popular. Accurate volatility estimates are essential for producing 

reliable VaR estimates. 

 

The estimates of the parameters of GARCH model is usually obtained using the Gaussian 

maximum likelihood and the estimator is often called the quasi maximum likelihood 
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estimator (QMLE). However, normality is often rejected in applications as the 

unconditional distribution of most financial asset returns has fatter tails than implied by 

this model with normal errors. The excess of (unconditional) kurtosis has been most 

commonly accommodated with Student-t distributed errors (e.g. Baillie and Bollerslev, 

1989). Besides, robust methods for the estimation of GARCH models are also suggested 

(Peng and Yao, 2003; Muller and Yohai, 2008; Iqbal and Mukherjee, 2010 to cite few)  

 

Another approach to estimate the parameters and volatility of GARCH model is to use 

Bayesian framework. The Bayesian paradigm offers a natural way of taking both 

parameter uncertainty and model uncertainty into account. However, the literature on 

Bayesian treatment of GARCH model in not as enormous as in the case of QMLE. In 

Bayesian setup, most of the time a researcher has to rely on computational methods such 

as Markov Chain Monte Carlo (MCMC) for the estimation of these models (see 

Nakatsuma, 1998, 2000, Ardia, 2008 and Deschamps, 2012). 

 

Karachi Stock Exchange (KSE) is the major stock market of Pakistan. Most of the studies 

on risk estimated of KSE that exist in literature applied classical methods for estimation 

and prediction. Iqbal et al. (2010) used four different parametric methods and two non-

parametric methods for VaR computation of KSE. Qayyum and Nawaz (2010) used 

extreme value theory and Nawaz and Afzal (2011) computed the VaR using Historical 

Simulation and Risk Metrics method. Mahmud and Mirza (2011) forecast the volatility of 

KSE before and after the financial crisis using GARCH models. Haque and Naeem 

(2014) investigated the volatility forecasting performance of GARCH models with 

various distribution of innovations. To the best of our knowledge, the Bayesian 

framework has not been yet applied for volatility or risk forecasting of KSE. This 

motivate us to fill this gap and contribute to the literature.  

 
The main aim of this paper is to estimate and forecast VaR using GARCH models in 

Bayesian setup. The QMLE method is also used for the comparison of results. The 

estimates and forecasts of volatility and VaR are computed by these two methods using 

Gaussian and Student-t distributions for innovations. Various evaluation measures and 

backtesting methods are employed to compare the in-sample and out-of-sample forecasts 

of VaR. The daily closing prices of KSE from January 03, 2005 to December 30, 2011 

are used in the present study. This study is important from various angles. First, as 

aforementioned, the VaR estimates of KSE are calculates using Bayesian method that to 

the best of our knowledge has not been studied. Another contribution of this study is to 

check the effects of large shocks on risk estimated of KSE not only in the full time period 

but also before and after the global financial crisis. This may help practitioners and 

researchers to understand the behaviour of risk measure when the market is hit by large 

shocks at different time periods and their after effects. Finally, the use of Bayesian 

method for forecasting in GARCH model may encourage academicians and researchers 

in Pakistan to apply Bayesian methods for local financial data.  

 

The rest of the paper is organized as follows: In Section 2, a brief overview of GARCH 

model and both estimation methods are presented. Value-at-Risk estimation and 

prediction are briefly discussed along with various evaluation measures in Section 3. In 

Section 4, the results of this study are reported and discussed. Finally, Section 5 

concludes the article. 
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2.  GARCH Model and Estimation 

For the simple GARCH (1, 1) model, the following representation of the return series 

          is assumed. Observer             such that 

     
   

                         (2.1) 

                 
         , 

 

where      is a sequence of independent and identically distributed (i.i.d.) unobservable 

real-valued random variables with mean 0 and variance 1 and distribution D; and 

   [        ]
    the unknown parameter vector in the parameter space 

     [     ]                          
 

Under these parameter constratints, The GARCH(1,1) model in (2.1) is strictly stationary 

and hence covariance stationary under finite second moment.  

 

In this study, two error distributions are used for the i.i.d innovations. The choice 

              is a standard and Student-t distribution. Th later is standardized to 

have zero mean and unit variance. 

 

The conditional likelihood can be written as:  

            ∏
 

√  

   (
  

√  

)

 

   

   

where              and    is the relevant error density function of   . In the classical 

setup,   is assumed to be the true and fixed value and the maximum likelihood estimator 

of   is then obtained by  

 ̂         
 

        

 

In the Bayesian setup,   is considered to be a random variable with a prior density      

which depends on the researcher’s prior belief. These parameters are assumed to be a 

priori independent and normally distributed truncated to the intervals that define each 

one. It is also assumed that few known and constant hyperparameters specify their 

densities.  For example, as proposed in Ardia (2008), these are given by 

         
                  

           and    (     
 )        , where   is the 

indicator function. 

 

The posterior density of   is obtained using the Bayes’ rule as 

          
            

∫              
 

  
   

where                   is the likelihood function of the model parameters and the 

denominator is the so called normalizing constant. But, this posterior distribution is 

generally not anlaytically tractable. Therefore, MCMC sampling strategies are adopted 

for obtaining samples from the joint posterior distributions. These include the famous 
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Metropolis-Hasting algorithm (Metropolis et al., 1953 and Hasting, 1970) and the Gibbs 

sampler (Geman and Geman, 1984), among others.  

 

For the GARCH (1,1) model in (2.1) and assuming          , the likelihood function of 

  can be written as:  

                  
 

     [ 
 

 
        ]  

where                       
    and     is the determinant of a matrix. The 

likelihood for Student-t distribution can also be written in a similar fashion with 

additional parameter,  , the degress of freedom, that is also estimated with the 

parameters. For a comprehensive details of MCMC method in GARCH model, interested 

reader are referred to Nakatsuma (1998) and Ardia (2008).   

3.   Value-at-Risk Forecasting and Evaluation 

This section first describes the method of predicting VaR using GARCH model. Then, 

evaluation measures and bactesting methods are presented to evaluate these VaR 

estimates. VaR measures the worst expected loss of a portfolio over a target horizon at a 

given confidence level, due to an adverse movement in the relevant security price (Jorion, 

2007). For a known probability  , a           VaR is defined as the  th conditional 

quantile of the returns. Hence the VaR at time      for the returns            is 

defined as  

                        

where      is the conditional distribution of    given then information available up to 

   . Hence, from (2.1) we get      
        

       where     is the quantile 

function of the innovation     . The estimate of VaR is then defined as  

 ̂   ̂ 
   

 ( ̂ )   [  ]                           {    ̂ 

 
 ⁄   ̂  }          (3.1) 

 

The Basel Committee on Banking Supervision (1996) recommends a backtesting 

procedure to evaluate the accuracy of VaR forecasts. This is generally based on the 

number of observed violations, i.e. when actual losses exceed VaR in a sample period. 

3.1 Coverage probability and violation rate 

Let us define the total number of observed violations as    

   ∑   

 

   

                    ̂   

 

Then the closeness of empirical rejection probability   ̂       to ‘ ’ can be used to 

assess the overall predicative performance of the VaR model. This probability also 

known as VaR violation rate provides an interesting insight to VaR forecasts.  

 

In case a model correctly specifies the conditonal quantile of returns, its true   ̂ should be 

equal to nominal level  . The ratio   ̂   can be used to compare and rank competing 
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models. Of course, a model with this ratio close to unity is prefered and in case of ties, 

conservative model (  ̂    ) is chosen as superior .  

3.2 Average quadratic loss 

The magnitude of losses is also important in the evaluation of VaR. Lopez (1999) 

considered this magnitude and defined the average quadratic loss (AQL) of a VaR 

estimate. The overall AQL of a VaR estimate is obtained as ∑       
 
     where 

     {
    ̂     

               ̂ 

                                          ̂ 
 

 

Next, we define formal tests for backtesting VaR estimates. 

3.3 Coverage tests 

The first test is the unconditional likelihood ratio test proposed by Kupiec (1995). It is 

defined as  

      [       ̂       ̂                      ] 

which is asymptotically     
 . 

 

Christoffersen (1998) defined the independence coverage test statistic, denoted by       

as follows. For          let     denotes the number of time points           for 

which      is followed by       . Let  

 ̂               ⁄        ̂            ⁄  
 

Then  

       [  (    ̂   
     ̂  

        ̂   
     ̂  

    )    (    ̂            ̂          )]  
 

The conditional coverage test statistic of Christoferssen (1998) which is asymptotically 

    
  is  

                

3.44 Dynamic quantile test 

Higher order dependence in VaR violations also need to be checked. The dynamic 

quantile (DQ) test of Engle and Manganelli (2004) is used for this purpose. This test is 

described as follows. Let the  th response          be  

    {
                ̂  
                     ̂ 

 

and      . Consider a linear regression model with response   [       ]  and a 

    design matrix    [    ] with     and all ones in the first column. For the 

     th term with                 if     and        if     and       ̂ . The 

DQ test statistic is asymptotically     
  and is defined as  

    
  ̂     ̂ 

      
 

Where   ̂               is the ordinary least square estimator. 
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These measures and tests are used in this study to evaluate and compare the performance 

of risk estimates of QMLE and Bayesian method. 

4. Empirical Results and Discussion 

4.1 Data and preliminary analysis 

The present study uses the daily closing prices of Karachi Stock Exchange (KSE 100 

Index). The dataset is obtained from the http://finance.yahoo.com for the period of 

January 03, 2005 to December 31, 2011. This period include the high volatile period 

because of the global financial crisis. This may help us to understand the dynamics of 

KSE before and after the financial crisis. The full data set consists of 1686 observations. 

The data is later divided into two periods: the pre-crisis period (03 January 2005 – 30 

August 2008) consisting of 907 observations, and the post-crisis period (01 September 

2008 – 31 December 2011) having 779 data points. The KSE was almost static for few 

weeks during the last quarter of 2008 and therefore few observations (from 09 October 

2008 – 12 December 2008) are removed.  

 

The returns at time   is defined as                                     , where    

is the closing index of KSE at time  . Then using          ̅         (with 

  ̅  ∑     
 
   ) as our observations, the whole span in each time period is divided into 

two parts: the estimation or in-sample part of initial   observations used for estimating 

the unknown parameters in GARCH models and the validation or out-of-sample part of 

      observations for the prediction and assessment of VaR. For out-of-sample 

forecasting,        which corresponds to one year observations. The recommended 

back-testing guideline proposed by the Basel Committee on Banking Supervision (1996) 

is to also evaluate a one percent (1%) VaR model over a 12 month test period (250 

trading days). The daily closing prices (in thousands US dollar) and log-returns of KSE 

are shown in Figure 1 below. The effect of global financial crisis is evident on KSE. A 

large drop in the prices and high volatility and volatility clustering can also be seen in in 

log-returns. 
 

 

Figure 1.   Daily closing prices (left) and log-returns (right) of KSE 
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Table 1 presents the summary statistics for the full, before the crisis and after the crisis 

time periods. These statistics may help us to examine the behaviour of the stock returns. 

All time periods have higher kurtosis and negative skewness in returns. The normality in 

returns was tested using Jarque-Bera test for normality and high values of this test show 

that the KSE returns are significantly different from normality. High values of Ljung-Box 

(  ) statistic for the squared returns at lag 20 were also observed in all time periods. This 

is the indication of dependence in squared returns and thus a need for fitting GARCH 

models. In summary, the KSE return series do not conform to normal distribution, display 

negative skewness (the distribution has a long left tail) and high kurtosis (fat tails) for all 

periods. It can also be noticed that the unconditional volatility is higher just before the 

crisis period. 

Table 1: Summary statistics for daily return of Karachi Stock Exchange 

Periods Full Before crisis After crisis 

Sample size 1686 907 779 

Mean  0.0145. 0.0169 0.0117 

Median  0.0476 0.0828 0.0149 

Minimum -2.6240 -2.2640 -2.2300 

Maximum 3.5850 3.5850 2.3020 

SD  0.6158 0.8755 0.5884 

Skewness -0.3385 -0.3599 -0.2778 

Kurtosis 4.8973 4.5592 5.0183 

JB 285.08 111.46 142.24 

       1656.90 782.44 897.81 

Note: Full period (03 January 2005 – 31 December 2011); Before crisis period (03 January 2005 – 30 

August 2008); After crisis period (01 September 2008 – 31 December 2011); JB (Jarque-Bera statistic for 

normality of return);    (Ljung-Box statistics at lag 20 for serial correlation in squared returns). 

 

Next, the GARCH model is fitted to all three time periods. The in-sample estimates of 

parameters, volatility and VaR are obtained using the QMLE and Bayesian method under 

the assumptions of both Gaussian and Student-t distributions. For the MCMC method, a 

total of 10,000 iterations are run discarding the first 2,000 realizations as burn-in period. 

Posterior results are then based on 8,000 realizations of the Markov chain with the prior 

distributions as explained in Section 2. The simulated Markov chains are checked for 

convergence and good mixing by visual inspection of the marginal traces, density 

estimates, and autocorrelations are observed. Figure 2 shows an illustration of the 

diagnostic plots. 

4.1 In-sample VaR analysis 

Table 2 presents the in-sample VaR results of both estimation methods. First, the results 

of QMLE and Bayesian methods under Gaussian assumption for errors are discussed. For 

the sake of brevity, the results of only        (90% VaR confidence level) is 

presented. Similar results are obtained for other levels. As it can be seen that both 
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methods produce reasobaly indentical results for the full time period. The observed 

ratios   ̂   were found close to 1 which means that the number of observed violations are 

close to expected number of violations. The results of all three tests (unconditional and 

conditional coverage tests and dynamic quantile test) values divided by their respective 

critical values at 5% confidence level are also reported. A value greater than 1 means 

rejection of the test at 5% level. Non-significant values for unconditional coverage test 

and significant values for conditional coverage and DQ test are found using QMLE. In 

Bayesian method, again only unconditional test is found non-significant. The average 

quadratic loss (AQL) produced by both methods are similar in magnitude.  

 

For other two time periods (before and after financial crisis) considered in this study, 

some interesting findings are noticed. The expected and observed number of violation in 

Bayesian showed exactly same values, therefore VaR ratios of 1 can be seen in these 

periods. The number of observed violation for QMLE are found smaller than the 

expected violations. In after crisis period the conditional coverage and DQ tests are also 

rejected by QMLE whereas non-significant values of these test statistics in Bayesian 

confirms independence of violations from their lags and past VaR. Finally, the AQL of 

Bayesian is also found smaller than the QMLE in both time periods meaning that the 

losses using Bayesian are less on average.  

 

 

Figure 2.   Trace plots (top), autocorrelations (middle) and  

histograms (bottom) of parameters 
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The result of in-sample VaR when Student-t distribution was assumed for errors showed 

similar trend. With Bayesian method outperforming the QMLE in terms of better VaR 

ratios, nonsignificant test statistics and lower AQL. Another feature that can be observed 

is that these results get slightly better than those in Gaussian case. This indicates that 

Student-t distribution is preferred for better risk forecasting in GARCH models. In 

summary, the Bayesian method provides reliable VaR forecasts than the QMLE and 

further improves the forecasts when heavy-tailed distribution is assumed for errors.    

4.2 Out-sample VaR analysis 

For policy and risk management, prediction and evaluation of VaR are considered more 

important. This subsection highlights the results of out-of-sample VaR forecats. To 

produce one-day-ahead forecast of VaR, a rolling window approach is used. More 

specifically, the model is fitted to the estimation period using in-sample part of K 

observations and one-day-ahead forecasts are obtained. Then the in-sample period is 

rolled forward by one day dropping the first observation. The model is re-estimated and 

again the next day forecasts are obtained. In this way out-of-sample VaR forecasts of 

approximately one year (250 days) are obtained for the forecast period using both 

methods.  

 

Table 3 reports the results of VaR forecasts. Starting with the number of expected and 

observed voilations, it is found that though QMLE produced VaR ratios close to 1 in full 

and pre crisis period, the higher value of   ̂   in after crisis period was observed. This is 

an indication that the QMLE understimated the market risk by producing number of 

voilations largert than the expected number of violation in a specific period. 

Understimated VaR is considered more risky than the overstimated VaR. All three tests 

are also rejected in this time period and average losses (AQL) are also on the higher side 

in case of QMLE. The Bayesian method again performed reasonbly well in predicting 

one-step-ahead VaR. In all time periods, the observed number of violations are found 

close to the expected numbers with smaller losses. Hence, it is conlcuded that this method 

provide better forecast of risk under different market conditions. 
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Table 2: In-sample VaR evaluation using GARCH model 

Periods Full Before crisis After crisis 

90% VaR Confidence level    

QMLE-N    

    ̂   1.0070 1.0154 1.0131 

       0.0003 0.0003 0.0001 

       3.5105
 

0.7572
 

4.3945
 

     4.4533
 

0.7241
 

5.8629
 

  AQL 0.1287 0.1202 0.1411 

QMLE-t    

    ̂   1.0070 1.0154 1.0192 

       0.0003 0.0003
 

0.0001 

       2.8090
 

0.5138
 

3.2260
 

     3.6540
 

0.5612
 

3.8511
 

  AQL 0.1290 0.1201 0.1341 

 Bayesian-N    

    ̂   1.0070 1.0000 1.0000 

       0.0003 0.0022
 

0.0045 

       3.5105
 

0.5731
 

3.4181
 

     4.2887
 

0.6142 4.4642
 

  AQL 0.1290 0.1191 0.1341 

Bayesian-t    

    ̂   1.0070 1.0004
 

1.0004 

       0.0003 0.0128
 

0.0016 

       2.1767
 

0.6415 0.3778
 

     2.4436 0.5024 0.4006 

  AQL 0.1285 0.1176 0.1200 

Note: Full period (03 January 2005 – 31 December 2011); Before crisis period (03 January 2005 – 30 

August 2007); After crisis period (01 September 2008 – 31 December 2013);    (Dynamic quantile 

statistic); AQL (Average quadratic loss); the smallest AQL is in bold type; For all three tests, >1 means 

rejection at 5% level. 

5.   Conclusion 

Maximum likelihood is a popular and widely-used method for the estimation of GARCH 

models. Bayesian methods can also provide a reasonably good estimates for GARCH 

models. In this paper, both these methods are fitted to the daily data of Karachi Stock 

Exchange returns before and after the global financial crisis. The estimates of in-sample 

and out-of-sample VaR are computed. Various evaluation measures and backtesting 

methods are applied to assess the accuracy of VaR forecast for both estimation methods. 

The result of the study showed that the Bayesian method can be safely used for the 

prediction of VaR as it provides reasonable VaR ratios and smaller losses. Bayesian 

methods in finance have gained a lot of attention of researchers. In Pakistan, this area of 

research is still lacking. The findings of this study may encourage researchers and 

academicians in Pakistan to adopt Bayesian paradigm for volatility and risk analysis of 

financial variables.  
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This study can be extended in following ways: The MCMC method used is very time 

consuming. New and efficient Bayesian methods such as Sequential Monte Carlo can be 

used for online estimation and prediction of GARCH models. A simple GARCH model is 

studied whereas other variants that consider asymmetry and jumps in volatility can be 

considered and may provide better risk forecasts.    

Table 3: Out-of-sample VaR evaluation using GARCH model 

Periods Full Before crisis After crisis 

90% VaR Confidence level    

QMLE-N    

    ̂   1.0000 0.8400 1.4800 

       0.0000 0.1947 1.4741 

       0.0150
 

0.1305
 

1.2190
 

     0.7059
 

0.3611
 

1.6112
 

  AQL 0.1252 0.1513 0.1849 

QMLE-t    

    ̂   1.1200 0.8400 1.9200 

       0.1006 0.1947
 

4.9613 

       0.0646
 

0.1305
 

3.2053
 

     0.6790
 

0.3634
 

3.0394
 

  AQL 0.1421 0.1481 0.2347 

 Bayesian-N    

    ̂   0.8400 1.0000 1.2000 

       0.1946 0.0000
 

0.2736 

       0.1882
 

0.1603
 

0.1907
 

     0.5256
 

0.4047 1.0139
 

  AQL 0.1010 0.1455 0.1476 

Bayesian-t    

    ̂   0.9200 0.1004 0.9600 

       0.0474 0.0000 0.2131 

       0.1562
 

0.1604
 

0.1441
 

     0.3848 0.4059 0.3983 

  AQL 0.1103 0.1447 0.1454 

Note: Full period (03 January 2005 – 31 December 2011); Before crisis period (03 January 2005 – 30 

August 2007); After crisis period (01 September 2008 – 31 December 2013);    (Dynamic quantile 

statistic); AQL (Average quadratic loss); the smallest AQL is in bold type; For all three tests, >1 means 

rejection at 5% level. 
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