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Abstract 

Researchers in various quality control procedures consider the possibility of measurement error effect on 

the power of control charts as an important issue. In this paper the effect of measurement errors on the 

power curve of standardization procedure will be studied for doubly truncated normal distribution. A 

method of obtaining the expression of the power of control chart for doubly truncated normal distribution is 

being proposed. The effect of truncation will be shown accordingly. To study the sensitivity of the 

monitoring procedure, average run length ( ARL ) is also considered.  
 

Keywords: Power, Doubly-truncated normal distribution (DTND), Measurement error, 

Average run length ( ARL ). 

1.   Introduction  

The truncated distributions are quite important and widely used by researchers. Kendall 

and Stuart (1979) have discussed an interesting example of a practical application of 

various types of truncated distributions: Suppose the underlying variate x  simply cannot 

be observed in part or parts of its range. For example, if x  is the distance from the centre 

of a vertical circular target for fixed radius R  on a shooting target, we can only observe 

x  for shots actually hitting the target. If we have no knowledge of how many shots were 

fired at the target (say n ) we simply have to accept m  values of x  observed on the 

target as coming from a distribution ranging from 0 to R . We then say that x  is 

truncated on the right at R . Similarly, if we define Y  in this example as the distance of a 

shot from the vertical line through the centre of the target, Y  may range from R  to R  

and its distribution is doubly truncated. Similarly, we may have a variate truncated on the 

left i.e. if observations below a certain value are not recorded. 

 

The normal distribution in statistical quality control (process control) arises because 

observations of a measurable quality characteristic vary under large number of small 

random disturbances. And it varies similarly on both sides of the average. X  and R  

charts are the typical statistical control charts for variables where normal distribution is 

employed to control the location and dispersion of the characteristic under consideration. 

However, there are some practical situations where truncated form of a normal 

distribution may provide better approximation to the actual distribution. 
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Since Cohen's initial contribution in the 1940s, several studies have looked at the various 

aspects of the truncated normal distributions. See, for example, Cohen (1949, 1950, 

1991), Schneider (1986), Johnson (2001), Johnson and Thomopoulos, (2004), Horrace 

(2015). A number of authors used truncated normal distribution in statistical quality 

control. Rai (1966) constructed CUSUM for truncated normal distribution. Schneider 

(1985) studied the performance of the standard sampling plans when the variable 

understudy is distributed as truncated normal distribution. He showed how variable 

sampling plans can be designed when the truncation points and the normal population 

standard deviation   are known. The case of unknown   was also discussed by him. 

Kakoty and Chakraborty (1990) studied continuous inspection sampling plan based 

CUSUM chart for controlling the mean of a doubly truncated normal distribution. They 

used Fredholm integral equation to obtain Type C-OC curve. Recently, Cox (2009) 

applied truncated normal distribution to derive integral equations for the average run 

length (ARL), a key measure of the performance of a control chart.  

 

In this paper the effect of errors on the power curve of standardization procedure will be 

studied for DTND and the effect of truncation will be shown accordingly along with the 

calculation of average run length ( ARL ). 

Measurement Error 

Measurement errors, which often exist in practice, may considerably affect the 

performance of control charts (Ryan, 2011). The sources of error may be due to inherent 

variability in the process and the error due to measurement instrument. The efficiency 

and the ability of the control chart to detect the shift of the process level will be affected 

if the measurement error is large relative to the process variability (Chakraborty and 

Khurshid 2013 b). Sankle et al. (2012) discussed the cumulative sum control charts for 

the truncated normal distribution under measurement error. Chakraborty and Khurshid 

(2013 a) and Khurshid and Chakraborty (2014) also studied measurement error effect on 

the power of control charts for various truncated distributions. For the consequences of 

measurement error on the actual performance of various control charts see Chakraborty 

and Khurshid (2013 b) and references therein.  

2.   Doubly Truncated Normal Distribution 

A random variable X  has doubly truncated normal distribution if its probability density 

function is given by 
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where )(  and )(  are probability density function and cumulative distribution 

function of standardized normal variate respectively. If A  is replaced by   or B  by  

 , the distribution is singly truncated from above or below respectively.  
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The mean and variance of this doubly truncated normal variable X  are given by 
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We refer an interested reader to Schneider (1986), Johnson, Kotz and Balakrishnan 

(1994), Patel and Read (1996), Khasawneh et al. (2005 a, b), Cha, Cho and Sharp (2013), 

Ahsanullah et al. (2014), Cha and Cho (2014), for overview of the truncated normal 

distributions, their properties and applications and exhaustive updated bibliography. 

3.   Assumptions and Notations 

In the development of the power of the control chart and ARL  for equation (1), the 

following assumptions are made and notations are used:  

i.  The measurement of items is considered to ascertain the magnitude of the variable 

characteristics in the lot. 

ii.  The process has doubly truncated normal distribution with mean t  and variance 

2

p ; 

iii.  The applied measurement process (which is independent of the manufacturing 

process) has a variance 
2

m . Thus, the overall variability is given by ;222

mp    

iv.  Measurements of the items are taken to classify the produced units into defective 

and non-defective ones; 

v.  The process is in a state of statistical control at the time of determining the control 

limits and the same measuring instrument is used for later measurements;  

vi.  When the process parameter shifts, the data still comes restricted from DTND, 

however, with mean t   and variance )( 22

mp    where 
2

p  is the process variance 

when the process parameter shifts (For details see Chakraborty and Khurshid, 2013 

a, b).  

 

Thus, considering the above assumptions, exact Shewhart control limits will be 

.22

mpt K    Normally we choose 3K  as it will give no false alarm with 

probability of at least 99.73% (Montgomery, 2013) and n  is the size of sample. The 

power of detecting the change of process parameter is given by 

   nXPnXPP mptmptd )(3)(3 2222     (4) 
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4.   Power of control chart for standardized doubly truncated normal distribution 

Instead of plotting measurement values in the control chart, we can standardize the 

variables as given below and plot accordingly (Khurshid and Chakraborty, 2014). This 

standardization procedure not only stabilizes the variables, but also stabilizes the 

resulting control chart. In this case the control limits as well as central lines are invariant 

with sample size .n  

 

Thus, equation (4) can be expressed in terms of standardized normal variable Z  (when 

sample size is large and varies): 
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Now, following Kanazuka (1986), Chakraborty and Khurshid (2013 b) and using 

equation (5), when the process parameter changes from t  to t  , the power of the 

control chart for equation (1) is 
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Using Equation (6), the power of the control chart dP  can be obtained easily by solving 

)(z  for different combinations of ,d  
2K  and 

2R , as shown in Tables 1-6. 

5.   Average Run Length ( ARL ) for DTND under measurement error 

To study the sensitivity of the monitoring procedure, one can also study ARL  which is 

the average number of points that must be plotted before a point indicates an out of 

control condition when operating is statistical control (Khurshid and Chakraborty, 2014).  

 

For any Shewhart control chart, the 1][  PARL  where P  is the probability that a single 

point exceeds the control limits. Thus instead of drawing conclusion based on 
X

P , one 

can interpret the results of the power of control chart in terms of ARL  just by reversing 

equation (6) i.e., in this case  
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The values of ARL  are shown in Table 7. 

6.   Concluding Remarks 

The effects of truncation as well as measurement errors on the power of detecting the 

changes in the process parameters by 3  control limits with the control chart for DTND 

are shown in Tables 1-7. 

 

It has been observed from Table 1 that as we go on increasing the shift of the process 

parameter t  to t   there is an increase in the power of control chart dP  for fixed values 

of n ,  , , m  and truncation points A  and .B  It can also be concluded that as the ratio 

between t  to t   decrease there is an increasing trend in the values of dP  the power of 

control chart. 

 

Unlike other discrete distributions, as studied by Khurshid and Chakraborty (2014), the 

smaller values of 
2K  corresponds to the smaller values of dP . 

 

From the Tables 1 and 2, it has been observed that the values of dP  considerably increase 

as we go on increasing the values of n  for fixed  , , m  and truncation points A  and 

.B  

 

Tables 2 and 3 show that the values of dP  decrease as we go on increasing the values of 

m  for fixed n ,  ,   and truncation points A  and .B  

 

For fixed d , Table 4 shows the values of dP  which increases as the ratio to t  to t   

decreases.  

 

From the Tables 1 and 5, it has been observed that as we increase the range of 

truncations, there is a decrease in the values of dP  when the ratios of t  to t   are same. 

 

Table 6 shows the values of dP  corresponds to the value of .  As we go on increasing   

there is an increasing trend in the values of dP . However the values of dP  are more 

relevant if the ratio of t  to t   is much smaller. 

 

It has also been observed from the above tables that relative measurement errors ( 2R ) 

tend to increase as we increase the values of m . The corresponding values of dP  

decreases when the values of 2R  increase. 

 

Table 7 gives the values of ARL . It has been observed from the table that ARL  values 

increase as there is an increase in the range of truncation. Also ARL  values increase as 

there is an increase in the values of 2R  for fixed   and .  
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Table 1:   Values of dP  for controlling the parameter   

When 15A , 40B , 5n , 5.0 , 10 , 2m , 46.24t , 135.6p , 

11.02 R  

t   p   ))( pttd     2K  )(M  )(N  
dP  

25.0 6.20 0.09 1.02 0.0027 0.0008 0.0035 

25.5 6.30 0.17 1.05 0.0049 0.0005 0.0054 

26.0 6.40 0.25 1.08 0.0084 0.0003 0.0087 

26.5 6.50 0.33 1.12 0.0146 0.0001 0.0147 

27.0 7.00 0.41 1.30 0.0294 0.0004 0.0253 

Table 2:   Values of dP  for controlling the parameter   

When 15A , 40B , 10n , 20 , 10 , 2m , 46.24t , 135.6p , 

11.02 R  

t   p   ))( pttd     2K  )(M  )(N  
dP  

25.0 6.20 0.09 1.02 0.0034 0.0006 0.0040 

25.5 6.30 0.17 1.05 0.0075 0.0004 0.0079 

26.0 6.40 0.25 1.08 0.015 0 0.015 

26.5 6.50 0.33 1.12 0.028 0 0.028 

27.0 7.00 0.41 1.30 0.059 0 0.059 

Table 3:   Values of dP  for controlling the parameter   

When 15A , 40B , 10n , 20 , 10 , 4m , 46.24t , 135.6p , 

43.02 R  

t   p   ))( pttd     2K  )(M  )(N  
dP  

25.0 6.20 0.09 1.02 0.0019 0.0011 0.0030 

25.5 6.30 0.17 1.05 0.0060 0.0003 0.0063 

26.0 6.40 0.25 1.08 0.0087 0 0.0087 

26.5 6.50 0.33 1.12 0.0207 0 0.0207 

27.0 7.00 0.41 1.30 0.0409 0 0.0409 

Table 4:   Values of dP  for controlling the parameter   

When 15A , 40B , 5n , 20 , 10 , 2m , 46.24t , 

11.02 R ,   09.0))(   pttd   

t   p  2K  )(M  )(N  
dP  

25.0 6.20 1.02 0.0027 0.0008 0.0035 

25.5 6.30 1.05 0.0030 0.0009 0.0039 

26.0 6.40 1.08 0.0034 0.001 0.0044 

26.5 6.50 1.12 0.0038 0.0021 0.0059 

27.0 7.00 1.30 0.0064 0.0023 0.0087 
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Table 5:   Values of dP  for controlling the parameter   

When 15A , 40B , 5n , 20 , 10 , 2m , 30.22t , 47.8p , 

06.02 R  

t   p   ))( pttd     2K  )(M  )(N  
dP  

22.79 8.560 0.06 1.02 0.0023 0.0001 0.0024 

23.25 8.698 0.11 1.05 0.0027 0.0006 0.0033 

23.70 8.836 0.17 1.08 0.0055 0.0006 0.0061 

24.16 8.994 0.22 1.12 0.0087 0.0005 0.0092 

24.62 9.664 0.27 1.30 0.0166 0.0008 0.0174 

Table 6: Values of dP  for controlling the parameter   

When 15A , 40B , 5n , 25 , 10 , 2m , 45.26t , 45.6p , 

096.02 R  

t   p   ))( pttd     2K  )(M  )(N  
dP  

27.0339 6.5183 0.090 1.02 0.0027 0.0008 0.0035 

27.5746 6.6235 0.170 1.05 0.0049 0.0005 0.0054 

28.1153 6.7286 0.258 1.08 0.0091 0.0003 0.0094 

28.6560 6.8337 0.342 1.12 0.0154 0.0001 0.0155 

29.1966 7.3594 0.426 1.30 0.0322 0.0003 0.0325 

Table 7:   Values of ARL  

15A , 40B , 20 , 10  

d  2K  
2R  n  ARL  

0.09 1.02 0.11 10 250 

  0.11 5 285.71 

  0.43 10 333.33 

     

10A , 40B , 25 , 10  

0.06     

 1.02 0.06 5 416.67 

 


