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Abstract 

Traditional Statistical analysis of lognormal distribution have been proposed for precisely defined crisp 

data. But there are many other situations in which measurement results from continuous quantities are not 

precise numbers but more or less fuzzy. This article presents the statistical inference on the shape parameter 

of lognormal distribution involving experiment whose observations are described in terms of fuzzy data. 

The maximum likelihood procedure are developed for estimating the unknown parameter. Asymptotic 

distribution of maximum likelihood estimator is used to construct approximate confidence interval. Also, 

Bayes estimate and the corresponding highest posterior density credible interval of the unknown parameter 

are obtained by using Markov Chain Monte Carlo technique. In addition, we describe an estimation method 

based on moments of lognormal distribution. Extensive simulations are performed to compare the 

performances of the different proposed methods.  

Keywords:  Fuzzy data analysis, Lognormal distribution, Maximum likelihood principle, 

Bayesian estimation, Credible interval. 

1.   Introduction 

Lognormal distribution is one of the distributions commonly used for modeling lifetimes 

or reaction-times, and is particularly useful for modeling data which are long-tailed and 

positively skewed. It has been discussed extensively by many authors including Johnson 

et al. (1994), and Rukhin (1984). Let Y  be the original lifetime variable that follows a 

lognormal distribution with parameters   and  . The density of Y  is given by 
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where   and   are the scale and shape parameters, respectively. In the analysis of 

lifetime data, it is more convenient to work with the equivalent model for the log-

lifetimes. Consider the random variable logYX = . Then, the variable X  is normally 

distributed with density 
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Several authors have addressed inferential issues for the scale and shape parameters of 

lognormal distribution; Among others, Basak et al. (2009) considered the estimation of 

the parameters of lognormal distribution from progressively censored data. Inference for 

lognormal data with left truncation and right censoring is studied by Balakrishnan and 

Mitra (2011). Several estimators of the expectation, median and mode of the lognormal 

distribution are derived by Longford (2009). Krishnamoorthy and Mathew (2003) 
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presented exact inference procedures (hypotheses tests and confidence intervals) 

concerning the mean of lognormal distribution by using generalized p-values. 

 

The above inference techniques for estimating the parameters of lognormal distribution 

are based on precisely defined crisp data. However, in many practical situations we face 

data which are not only random but vague as well. Randomness involves only 

uncertainties in the outcomes of an experiment; vagueness, on the other hand, involves 

uncertainties in the meaning of the data. As an example, consider an opinion poll during 

which a number of individuals are questioned on their perception of the relative length of 

different line segments with respect to a fixed longer segment that was used as a standard 

for comparison. The answers given by the individuals may be vague statements such as 

“approximately lower than 45 ”, “approximately 50  to 55 ”, “approximately 60  to 65  

but near to 65”, “approximately higher than 70 ”, and so on. In this situation, 

randomness occurs when the individuals are selected at random and vagueness is due to 

meaning of the answer. Classical statistical procedures are not appropriate to deal with 

such imprecise cases. Fuzzy numbers are well used to model the imprecision of data. A 

fuzzy number is a subset, denoted by x~ , of the set of real numbers (denoted by  ) and is 

characterized by the so called membership function (.)~x . For more details about the 

fuzzy numbers and probability measures of fuzzy sets, one can refer to Dubois and Prade 

(1980) and Singpurwalla and Booker (2004). 

 

In recent years, many papers on generalization of classical statistical methods to analysis 

of fuzzy data have been published. Wu (2004) discussed the Bayesian estimation on 

lifetime data under fuzzy environments. Gil et al. (2006) presented a backward analysis 

on the interpretation, modelling and impact of the concept of fuzzy random variable. 

Viertl (2006) studied generalization of classical statistical inference methods for 

univariate fuzzy data. Zarei et al. (2012) considered the Bayesian estimation of failure 

rate and mean time to failure based on vague set theory in the case of complete and 

censored data sets. Very recently, Pak et al. (2013) have developed inferential procedures 

for the parameters of Weibull distribution in the fuzzy environment. They have derived 

the estimates of parameters using maximum likelihood and Bayesian procedures. In this 

paper, we follow a pattern very similar for lognormal distribution to discuss different 

estimation procedures for the shape parameter   when the available information are 

described by means of fuzzy numbers. We first describe the construction of fuzzy data 

from imprecise observations, and then discuss the computation of maximum likelihood 

estimate (MLE) of the parameter  . Based on fuzzy data, there is no closed form for the 

MLE; therefore, we employ Newton-Raphson algorithm to determine the maximum 

likelihood estimate of  . We also construct the approximate confidence interval of the 

unknown parameter by using the asymptotic distribution of the MLE. We further 

consider the Bayesian inference of the shape parameter of lognormal distribution. Since 

the Bayes estimate cannot be obtained in explicit form, we use a Markov Chain Monte 

Carlo technique to compute the Bayes estimate and construct the highest posterior density 

(HPD) credible interval of the parameter  . In addition, the estimation via method of 

moments is provided by using an iterative process. 
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The rest of this paper is organized as follows. In Section 2, we obtain the maximum 

likelihood estimate of the parameter   and also construct the approximate confidence 

interval by using asymptotic normality of the MLE. The Bayesian analyses are presented 

in Section 3. In Section 4, the estimation via method of moments is provided. Extensive 

simulations are performed in Section 5 to compare the performances of the MLE, Bayes 

and moment estimates. 

2.   ML estimation and confidence interval 

Suppose that n  identical units are placed on a life test with the corresponding lifetimes 

nXX ,...,1 . It is assumed that these variables are independent and identically distributed 

with density given in (2). Consider the situation where the available information about 

the lifetime of these experimental units can not be exactly perceived, but that rather it 

may be assimilated with fuzzy numbers nxx ~,...,~
1  with the corresponding membership 

functions (.)(.),..., ~
1

~
n

xx  . Based on the fuzzy numbers nxx ~,...,~
1  and by using Zadeh’s 

definition of the probability of a fuzzy event (Zadeh (1968)), we can obtain the likelihood 

function of   as  
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Thus, the corresponding log-likelihood function )~,...,~;(log=)( 1
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The maximum likelihood estimate of the parameter   can be carried out by maximizing 

the observed-data log-likelihood (4). Equating the derivative of the log-likelihood )(* L  

with respect to   to zero, we have 
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To achieve estimation via ML method, it is not easy to solve the equation (5), directly. 

However, similar to the proof of Theorem 1 in Pak et al. (2014), one can easily check that 

the likelihood equation (5) has a unique solution. In this case, an iterative numerical 

search can be used to obtain the MLE. Recently, Denoeux (2011) has used the EM 

algorithm to obtain the estimates of the parameters of normal distribution in presence of 

fuzzy data. Another viable alternative to the EM algorithm is the well-known Newton-

Raphson algorithm which can be implemented easily. By using this method, we can also 

compute the asymptotic variance of the MLE and construct its asymptotic confidence 

interval. Therefore, in the following, we describe the Newton-Raphson method to 

determine the maximum likelihood estimate of the parameter  . 
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In the Newton-Raphson algorithm, the solution of likelihood equation (5) is obtained 

through an iterative procedure. In each iterative step, the correction   to the previous 

estimate 0  produces new estimate ̂  as  0=ˆ . The iteration method is based on 

Taylor series expansion of the estimating equation (5) in the neighborhood of the 

previous estimate. Neglecting power of   above the first order and using Taylor’s 

theorem, we get the following equation which needs to be solved for  : 
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where the notation 0|A , for any partial derivative A , means the partial derivative 

evaluated at 0 . The second-order derivative of the log-likelihood with respect to the 

parameter, required for proceeding with the Newton-Raphson method, is obtained as 
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The maximum likelihood estimate of   via Newton-Raphson algorithm is thereafter 

refereed as “ NR̂ ” in this paper. Once the maximum likelihood estimate of   is obtained, 

we can use the asymptotic normality of the MLEs to construct the approximate 

confidence interval. It is known that the asymptotic distribution of the MLE of   is 

given by, see Miller (1981), 
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Here, the asymptotic variance )(Var  can be approximated as 
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Thus, the approximate )%100(1   confidence interval for the parameter   can be 

computed as: 

  .)ˆ(ˆ=ˆ,ˆ
2

NRNRUL Varz    

where 
2

z  is an upper percentile of the standard normal variate. 

3.   Bayesian estimation 

In this section we describe the Bayes estimate of the unknown parameter as well as the 

corresponding highest posterior density credible interval. we re-parameterize the model 
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as follows: 
22

1
=


 . Based on the new parametrization, we consider the Bayesian 

estimation of  . In this case, the likelihood function (3) can be reexpressed as  
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In many practical situations, it is observed that the behavior of the parameters 

representing the various model characteristics cannot be treated as fixed constant 

throughout the life testing period. Therefore, it would be reasonable to assume that the 

parameters involved in the model behave as random variables with distribution 

commonly known as prior probability distribution. Keeping in mind this fact, we conduct 

a Bayesian study by assuming the following gamma prior for  : 
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By combining (8) with (9), the joint density function of the data  and   becomes 
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Thus, the posterior density function of   given the data  can be obtained as 
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It is well established that the Bayes estimate of any function of  , say  =)(h , under 

squared error loss function is the posterior mean which is obtained by 
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The Eqs. (11) and (12) do not simplified to nice closed forms due to the complex form of 

the likelihood function. Therefore, we propose a Markov Chain Monte Carlo (MCMC) 

technique to compute the Bayes estimate of   and also construct its HPD credible 

interval. Note that the density function )~,...,~|( 1 nxx  is not known, but by 

experimentation, we observed that it is similar to normal distribution. So to generate 

random samples from posterior density )~,...,~|( 1 nxx , we can use the Metropolis–

Hastings algorithm with normal proposal distribution. Thus, the algorithm of MCMC is 

as follows: 

Step 1) Start with an initial guess 0  and set set 1=j . 
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Step 2) Generate j  from )~,...,~|( 1 nxx  using Metropolis-Hastings algorithm with the 

proposal distribution ,1)ˆ(0)>()(  NIg  , where (.)I  is the indicator function and ̂  

is the MLE of  , as follows: 

(a) Let 1= j . 

(b) Generate   from the proposal distribution g . 

(c) Let 
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(d) Accept   with probability ),( p  or accept   with probability  ),(1 p . 

Step 3) Repeat Step 2, M  times and obtain j  and )(= jj h   for Mj 1,...,= . 

Step 4) The Bayes estimate of  , say B̂ , with respect to squared error loss function can 

be obtained as 
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Step 5) Arrange j  for Mj 1,...,= , say )((1) <...< M  and consider the following 

)%100(1   credible intervals of  : 
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Then, following Chen and Shao (1999), the HPD credible interval can be obtained by 

choosing the interval which has the shortest length. 

4.   Moment estimation 

Let nxx ~,...,~
1  denote a fuzzy sample of size n  from the population given in (2) with 

(.)(.),..., ~
1

~
n

xx   being the corresponding membership functions. Then, by equating the 

second sample moment to the corresponding population moment, the following equation 

can be used to find the estimate of   based on moment method: 
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Note that Eq. (13) cannot be computed analytically; therefore, in the following, we 

describe an iterative numerical process to obtain the parameter estimate: 

1.  Given initial estimate of  , say (0) . 
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2 .  Starting from 0=h , in the 1)( h th iteration, the solution for  , say 1)( h , can 

be obtained through the following equation 
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3 .  Checking convergence, if the convergence occurs then the current 1)( h  is the 

estimate of   by the method of moments; Otherwise set 1= hh  and go to Step 

2. The resultant estimate of   is thereafter refereed as “ MME” in this paper. 

5.   Simulation study and comparisons 

In this section we present some simulation results to compare the performances of the 

different methods proposed in the previous sections. We mainly compare the 

performances of the MLE, Bayes and moment estimates of the unknown parameter, in 

terms of their average biases and mean squared errors. We also compare the average 

lengths of the confidence and credible intervals and their coverage percentages. All the 

computations are performed on R 2.11.0. 

 

For simulation purposes, we have considered different choices of sample sizes n  and 

fixed value of the parameter, namely 1= . In each case, we have generated fuzzy 

random sample from the distribution given in (2) by using the algorithm given in Pak et 

al. (2014) which involves the following steps:   

1)  Generate n  independent and identically distributed (iid) random numbers 

1( ,..., )nu u from uniform distribution (0,1)U . 

2)  Set 1( )i ix u , 1,...,i n , where   is the cumulative distribution function of 

normal distribution. Now, 1( ,..., )nx x  is a sample of size n  from standard normal 

distribution.  

3)  Consider the fuzzy information system shown in Fig.1, corresponding to the 

membership functions 
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4)  For each generated sample in step 2, select the membership function that best 

describes the realization ix . 

 

Then, the estimate of the parameter   for the fuzzy sample were computed using the 

maximum likelihood method, Bayesian procedure and moment method. In computing the 

MLE, we have used the true value of   as the initial guess value of   in the Newton-

Raphson algorithm. For computing the Bayes estimate, we have assumed  

non-informative gamma prior, i.e. 0== ba , and also informative gamma prior, i.e. 

2== ba . We replicate the process 10000 times and report the average biases (AB) and 

mean squared errors (MSE) of the estimates in Tables 1 and 2. 

 

 

 

 

 

 

 

 

 

Figure  1: Fuzzy information system used to encode the simulated data 
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We have also computed approximate 95%  confidence interval and the HPD credible 

interval of the unknown parameter. Criteria appropriate to the evaluation of the two 

methods under scrutiny include: closeness of the coverage probability to its nominal 

value and expected interval width. For each simulated sample, we have computed 

confidence/credible intervals and checked whether the true value of the parameter lay 

within the intervals and recorded the length of the intervals. The estimated coverage 

probability was computed as the number of intervals that covered the true value divided 

by 10000 while the estimated expected width of the intervals was computed as the sum of 

the lengths for all intervals divided by 10000. The coverage probabilities and the 

expected widths for different sample sizes are presented in Tables 1 and 2. 

Table 1:  Averages biases and mean squared errors of the ML and moment 

estimates of  , coverage probabilities and expected width of the 

confidence interval 

n  

   

 MLE   MME   Confidence interval 

 AB   MSE   AB   MSE   Coverage Length  

15 0.0619 0.0385 0.0620 0.0386 0.9345 0.7640 

20 0.0537 0.0329 0.0539 0.0330 0.9437 0.6783  

30 0.0488 0.0273 0.0488 0.0273 0.9482 0.5545  

50 0.0353 0.0214 0.0355 0.0215 0.9504 0.4266 

70 0.0281 0.0158 0.0282 0.0159 0.9516 0.3617 

100 0.0244 0.0136 0.0244 0.0136 0.9534 0.2978 

Table 2:  Averages biases and mean squared errors of the Bayes estimates of  , 

coverage probabilities and expected width of the credible interval for 

different priors 

 

n 

    

Non-informative prior 0)==( ba    Informative prior 2)==( ba  

 Bayes estimate   Credible interval   Bayes estimate Credible interval 

 AB   MSE   Coverage Length  AB   MSE   Coverage Length  

15  0.0612 0.0379 0.9374 0.7491 0.0544 0.0331 0.9431 0.7265 

20  0.0528 0.0327 0.9450 0.6637 0.0485 0.0308 0.9472 0.6513  

30  0.0473 0.0272 0.9493 0.5405 0.0356 0.0229 0.9503 0.5284  

50  0.0346 0.0210 0.9508 0.4118 0.0298 0.0174 0.9518 0.3825 

70  0.0279 0.0158 0.9523 0.3459 0.0243 0.0125 0.9537 0.2991 

100 0.0242 0.0131 0.9539 0.2813 0.0218 0.0106 0.9556 0.2676 

 

From the experiments, the following general observations can be made. As we expected, 

the performances of all estimators are improved when the sample size increases. From the 

experiments, we found that using the Newton-Raphson or MME algorithm for computing 

the estimate of   give similar estimation results, but MME is computationally slower. 

Because these two procedures have different features in the complexity of the iterative 

numerical search, we let users choose which to use based on their preferences. The 

performances of the Bayes estimates with non-informative prior assumption and the 

maximum likelihood estimates are identical in terms of ABs and MSEs; however, it is 

observed that the Bayes estimates with informative prior are uniformly better. 
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Now considering the confidence and credible intervals, it is observed that the asymptotic 

results of the MLE work quite well, even when the sample size is small. It can maintain 

the coverage percentages in most of the cases. The widths of the confidence/credible 

intervals narrow down with an increase in the sample size n . The performance of the 

credible intervals are satisfactory and their coverage percentages are close to the 

corresponding nominal level. Moreover, it is seen that an informative prior distribution 

improves the performance of the Bayesian credible interval compared to the one using 

non-informative prior. 

6.   Conclusion 

In this paper, we have developed inferential procedures for the shape parameter of 

lognormal distribution when the available observations are fuzzy and are assumed to be 

related to underlying crisp realization of a random sample. In particular, we have used the 

Newton-Raphson algorithm to determine the maximum likelihood estimate of the 

parameter. For computing the Bayes estimate, we have used Markov Chain Monte Carlo 

method with different types of prior information. Also, the estimation via moments 

method has been presented by an iterative process. We have further constructed 

approximate confidence interval and HPD credible interval of the unknown parameter. 

The performances of the different methods have been compared by Monte Carlo 

simulations. Based on the results of the simulation study, we see clearly that, the 

performances of the ML and moment estimates are very similar in all aspects. Also, the 

Bayes estimates based on non-informative prior and maximum likelihood estimates give 

similar estimation results; however, the Bayes estimates with informative prior have 

smaller MSE, showing that additional prior information about the parameter   provides 

an improvement in the estimates. The AB and MSE of all the estimators decrease 

significantly as the sample size n  increases, as one would expected. It can be further 

observed that, in most of the cases, the coverage probabilities of confidence/credible are 

close to the nominal level and theier average lengths also decrease as n  increases. 

Finally, it should be mentioned that Bayes estimates are more computationally expensive 

than the MLEs and MMEs. 
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