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Abstract 

Utilizing a simple relationship between two truncated moments as well as certain functions of the     and 

of the      order statistics, we characterize three extended classes of distributions proposed in (2015). 
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1.   Introduction 

The recent literature has suggested several ways of extending well know distributions. In 

a general way, generalized distributions provide a flexible framework for modeling a 

large range of data, that is, these models provide a rather flexible mechanism for fitting a 

wide spectrum of real world lifetime data in biology, medicine, engineering, economics, 

sports and other areas.  In what follows we consider three generalized families of 

distributions introduced in 2015. 

 

1) Nasiru and Luguterah (2015) proposed a New Weibull-Pareto (NWP) family of 

distributions with probability density function (pdf) given (in their own notation) by 
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and cumulative distribution function (cdf) in the form 
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where            are all positive parameters. 

 

2)  Afify et al. (2015a) introduced the Exponentiated Transmuted Generalized Rayleigh 

(ETGR) family of distributions. The pdf of the ETGR family (in their own notation) takes 

the form (   ) 
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whereas the cdf is given by (   ) 
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where        all positive and  | |    are parameters. 
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3) Afify et al. (2015b) proposed a new family of distributions called the Transmuted 

Weibull Lomax (TWL) family of distributions. The pdf and cdf of the TWL family (in 

their own notation) are given, respectively, by (   ) 
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where          , all positive and  | |     are parameters. 

 

It is widely known that the problem of characterizing a distribution is an important issue 

which has attracted the attention of many researchers. Thus, various characterizations 

have been established in many different directions. For example, we can refer to 

Galambos and Kotz (    ), Glänzel et al.(1984), Glänzel (1987, 1988, 1990), Hamedani 

(1993, 2002, 2006), Glänzel and Hamedani (2001), Bairamov et al. (2005), Ahsanullah 

and Hamedani (2007), Tavangar and Asadi (2007), Beg and Ahsanullah (2007), Bieniek 

(2007), Baratpour et al. (2007, 2008), Nevzotov et al. (2007), Su et al. (2008), Ahmadi 

and Fashandi (2009), Haque et al. (2009), Akhundov and Nevzorov (2010), Khan et al. 

(2010), Hamedani and Ahsanullah (2011), Yanev and Ahsanullah (2012), among others.  

The goal of this note is to provide characterizations of the NWP, ETGR and TWL 

families of distributions described above.  These characterizations are based on: ( ) a 

simple relationship between two truncated moments , (  ) certain functions of the      

order statistic, (   ) certain functions of the     order statistic. 

 

Although in many applications an increase in the number of parameters provides a more 

suitable model, in characterization problems a lower number of parameters (without 

seriously affecting the suitability of the model) is mathematically more appealing (see 

Glänzel and Hamedani 2001). In the applications where the underlying distribution is 

assumed to be NWP or ETGR or TWL distribution, the investigator needs to verify that 

the underlying distribution is in fact the NWP or ETGR or TWL distribution.  To this end 

the investigator has to rely on the characterizations of these distributions and determine if 

the corresponding conditions are satisfied. Thus, the problem of characterizing these 

families of distributions become essential. As we mentioned earlier, our objective here is 

to present characterizations of the NWP, ETGR and TWL families of distributions.  We 

shall do this in three different directions as discussed in Section 2 below. 
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2.   Characterization Results 

The NWP, ETGR and TWL classes of distributions provide tools to obtain new 

parametric distributions from existing ones and have applications in many fields of study, 

in particular in lifetime modeling.  So, an investigator will be vitally interested to know if 

their model fits the requirements of NWP or ETGR or TWL distribution.  To this end the 

investigator riles on characterizations of these distributions, which provide conditions 

under which the underlying distribution is indeed a NWPor ETGR or TWL distribution.  

In this section we will present various characterizations of these distributions.  First, we 

will consider characterizations based on two truncated moments.  Next, characterizations 

based on truncated moments of certain functions of the     order statistic and after that 

based on the     order statistic. 

2.1.  Characterizations based on two truncated moments 

In this subsection we present characterizations of the NWP, ETGR and TWL families of 

distributions in terms of a simple relationship between two truncated moments.  The 

results derived here will employ an interesting theorem due to Glänzel (1987), which is 

given below. 

 

Theorem 1.   Let  (    )  be a given probability space and let    [   ]  be an interval 

for some       (                              )   Let         be a 

continuous random variable with the distribution function     and let     and     be two 

real functions defined on     such that 
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is defined with some real function      Assume that         ( )       ( )  and    is 

twice continuously differentiable and strictly monotone function on the set    Finally, 

assume that the equation      has no real solution in the interior of    Then   is 

uniquely determined by the functions      and     particularly 
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where the function     is  a solution of the differential equation     
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Remarks 1.   ( )  In Theorem G, the interval     need not be closed.  ( )  The goal is to 

have the function     as simple as possible.  ( )  It is possible to state Theorem 1 based on 

two functions     and     by setting   ( )    as we intend to do in the following 

Proposition. 

 

Proposition 1.   Let      (   )  be a continuous random variable and let   ( )    

and   ( )     (
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Proof.  Let     have pdf  ( )   then 
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Conversely,  if     is given as above, then 
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Now, in view of Theorem 1,     has cdf ( )  and pdf  ( )   
 

Corollary 1.  Let      (   )  be a continuous random variable and let   ( )  be as in 

Proposition 1   The pdf of     is  ( )  if and only if there exist functions     and     

defined in Theorem 1 satisfying the differential equation 

 
  ( )

 ( )   ( )
 

  

 
(
 

 
)
   

             

 

Remarks 2.  ( ) The general solution of the differential equation in Corollary 1 is 
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where   is a constant.  One set of appropriate functions is given in Proposition 1 with  

     
 

( )  Clearly there are other triplets of functions  (     ) satisfying the conditions of 

Theorem 1.  We presented one such triplet in Proposition 1. 

 

The proofs of the following two Propositions are similar to that of Proposition 1 and 

hence will be omitted. 

 

Proposition 2.   Let      (   )  be a continuous random variable and let  ( )  
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2.2.  Characterizations based on truncated moment of the     order statistic 

Let                      be the corresponding order statistics from a random sample 

of size   of a continuous cdf    We briefly discuss here two characterization results based 

on functions of the       order statistic.  We have the following proposition. 

 

Proposition 4.   Let      (   )  be a continuous random variable with cdf   .  Let    

and   be two differentiable functions on  (   )  such that   
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Proof.  If  ( )  holds, then using integration by parts on the left hand side of  ( )  and the 

assumption          ( )[ ( )]   , we have 
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Differentiating both sides of the above equation with respect to   , we arrive at 
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Now, integrating  ( )  from     to   , we have, in view of ∫  
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Remarks 3. ( ) Taking, for instance,  ( )   *{    (  ) }
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 ( ) in Proposition 4, from equation ( ) we will have a cdf 
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Proposition 4, from equation  ( ) we will have a cdf   given by ( )  ( )  Clearly there 

are other pairs of functions (   )  which satisfy conditions of Proposition 4. 

3.   Characterizations based on truncated moment of the 1
st
 order statistic 

We state here a characterization base on certain functions of the     order statistic. We 

like to mention here that the proof of Proposition 5 below is straightforward extension of 

that of  Theorem 2.2 of Hamedani (2010).  We give a short proof of it here for the sake of 

completeness. 

 

Proposition 5.   Let      (   )  be a continuous random variable with cdf  .  Let   

 ( )  and   ( )  be two differentiable functions on  (   )  such that 
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Remark 4.  Taking, for instance,   ( )      (
 

 
)
 

 and    ( )  
 

 
 ( ) in Proposition 

5, from equation (  ) we will have a cdf   given by ( ). 
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