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Abstract 

This paper suggests the use of the conditional probability integral transformation (CPIT) method as a 

goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the 

underlying distributional assumption in accelerated failure time (AFT) models. The CPIT method is based 

on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables 

and then applying a certain GOF technique to test the uniformity of the transformed random variables. In 

this paper, the CPIT method is used to validate each of the exponential and lognormal distributions' 

assumptions in an AFT model under constant stress and complete sampling. The performance of this 

method is investigated via a simulation study. Moreover, a real life example is presented to illustrate the 

application of it. Concluding comments about the good performance of the CPIT method are made.  

Keywords:  Accelerated life testing, Accelerated failure time model, Constant stress, 

Goodness of fit techniques, Conditional probability integral transformation method. 

1.   Introduction 

Accelerated life testing (ALT) is the key tool to assess the reliability and durability of 

high reliable manufactured products. Under ALT, test units are exposed to high stress 

conditions that are more severe than those encountered in reality. The goal is to 

accelerate failures of these units so that failure times can be obtained sooner and the 

results are then used in companion with extrapolation procedures to draw inference about 

the units at the normal stress conditions. The extrapolation procedures are based on 

physical models called accelerated life models (ALM) which relate the lifetime 

distribution to the stress. The difference between the ALM proposed in the literature is in 

the influence of the applied stress on the reliability (for more details, see Bagadonavičius 

and Nikulin (2002)). 

 

The majority of inference in ALT is built on an accelerated failure time (AFT) model. 

This model consists of two components; a lifetime distribution and a relationship between 
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life and the stress called life-stress relationship. Examples of this relationship are the 

Arrhenius and the inverse power law relationships (for more details, see Nelson (1990)). 

 

Although the importance of verifying the suitability of the models used in ALT, there is a 

lack in the studies presented in this area. Generally, these studies can be classified into 

two categories; the first one is concerning with goodness of fit (GOF) techniques 

proposed to assess the effect of the stress on the lifetime distribution, that is which ALM 

has the best fit for the data (see Bagadonavičius and Nikulin (2002); Bagadonavičius et 

al. (2004); Bagadonavičius et al. (2011); Balakrishnan et al. (2013)). 

 

The second category of studies handles the problem of validating the assumptions of the 

AFT models. These studies assumed that a certain AFT model holds and proposed a GOF 

technique to verify the underlying assumptions concerning the life-stress relationship and 

the lifetime distribution at each stress level. 

 

With respect to the life-stress relationship, Nelson (1990) used the F statistic to test the 

linear life-stress relationship for log-failure time variable (log )T , where T was assumed 

to have exponential and lognormal distributions. Lawless (2003) dealt with the same case 

but using the likelihood ratio test (LRT). Eguchi (1992) investigated the validity of the 

inverse power law relationship assuming a bivariate exponential distribution using a test 

statistic based on a projection method. Teng and Yeon (2002) proposed D-statistic based 

on the transformed Least Square (LS) estimation method to assess the validity of the log-

linear life-stress relationship against the log-quadratic one in case of step-stress ALT 

experiment under exponential type II censored data. 

 

Regarding testing for the underlying distribution at each stress level, Sethurman and 

Singpurwalla (1982) used Kolmogrov-Smirnov statistic to test whether the unknown 

distribution at different stress levels belong to a common parametric location-scale 

family. Nelson (1990) used the LRT for the same case and the same distributions. Wang 

(2009) proposed a procedure based on sample spacing to test the exponentiality of the 

lifetime distribution for each stress level. This procedure was based on type II censored 

k-stages step-stress ALT in the existence of the log linear life-stress relationship. 

Galanova et al. (2012) used modified nonparametric GOF tests to validate parametric 

(exponential, Weibull, Gamma, Generalized Gamma, and lognormal) AFT models based 

on an analysis of a sample of residuals. Bagadonavičius et al. (2013) investigated the 

appropriateness of exponential, Weibull, log-logistic and lognormal AFT model using 

modified chi-square statistic under right censoring. 

 

The novelty of this paper is to apply the conditional probability integral transformation 

(CPIT) method to examine the GOF of the log-location-scale family of distributions; 

specifically, the exponential and lognormal distributions, under the inverse power law 

AFT model. The case of constant stress and complete sampling is considered. 

 

The paper is organized as follows. Section 2 presents the theoretical basis of the CPIT 

method. In Section 3, some applications of the CPIT method are explained. Section 4 

clarifies how the CPIT method is used to test for the underlying distributions in AFT 

model with application on the exponential and lognormal distributions. A simulation 
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study is carried out in Section 5. A real life example is given in Section 6 to illustrate the 

applicability of the method. Finally, the paper is concluded in Section 7. 

2.   Conditional Probability Integral Transformation Method 

The CPIT method was introduced by O'Reilly and Quesenberry (1973). The idea of it is 

based on transforming the original set of n random variables into a smaller set of (n - p) - 

where p is the number of estimated parameters - i.i.d Uniform (0, 1) random variables by 

using certain conditional distributions obtained by conditioning on sufficient statistics. 

After transforming into Uniform (0, 1) random variables, tests of uniformity can be 

applied to the transformed set to assess whether to be i.i.d Uniform (0, 1) random 

variables. The theoretical basis of the method is explained as follows. 

 

Let 1 2, ,..., nT T T  be a set of i.i.d random variables with probability density function (pdf) 

);( tf  and corresponding absolutely continuous cumulative distribution function (CDF) 

);( tF . Let nS  be a p-component vector, that is the minimal sufficient statistic for

),...,,( 21 p  . Denote by ),...,,(
~

21 ntttF , the CDF of 1 2( , ,..., )nT T T  given the statistic

nS . O'Reilly and Quesenberry (1973) proved that the (n - p) random variables 

),(
~

11 TFU n ),|(
~

122 TTFU n   . . . , and ),,....,,|(
~

121   pnpnnpn TTTTFU
 

(2.1) 

are i.i.d Uniform (0, 1) random variables. 

 

This result does not require that nTTT ,...,, 21  are i.i.d random variables. If nTTT ,...,, 21  are 

i.i.d random variables and 1)( nnS is doubly transitive, then the (n – p) random variables 

),(
~

111  pp TFU ),(
~

222  pp TFU . . . ,    and ),(
~

nnpn TFU     (2.2) 

are i.i.d Uniform (0, 1). 

3.  Applying the CPIT Method 

The CPIT method has wide applications. O'Reilly and Quesenberry (1973) applied the 

CPIT for linear regression model as explained in sub-section 3.4. O'Reilly and Stephens 

(1982) used this method to transform from exponential distribution to uniform one as 

clarified in sub-section 3.1. While, Quesenberry et al. (1983) introduced the use of the 

CPIT method in testing the assumptions of analysis of variance (ANOVA) model. This 

will be explained in brief in sub-section 3.3. There were no applications of the CPIT 

method in case of lognormal distribution. Thus, applying the CPIT method for it, is 

explained in sub-section 3.2. 

3.1 In case of exponential distribution 

Let 1 2, ,..., nT T T  be a set of i.i.d random variables having exponential distribution with pdf 

given by 

1
( ; ) exp , 0, 0

t
f t t 

 

 
    

 
,      (3.1) 
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where   is the scale parameter. O'Reilly and Stephens (1982) transformed the sample 

order statistics using (2.1) into uniform random variables in the form 

 
 

.1,...,2,1,
.../)1(1

.../)1(1
1

)()()1(

)()()(





















ni
TTTin

TTTin
U

nii

nii

i
   (3.2) 

where )()2()1( ,...,, nTTT  are the sample order statistics and 0)0( T . Then, they stated that by 

testing the uniformity of these (n - 1) variables using a suitable GOF technique, the 

assumption of exponentiality can be validated. In this paper, we will use the modified 

Watson statistic as a GOF technique. 

3.2 In case of normal and lognormal distributions 

Let 1 2, ,..., nT T T  be a set of i.i.d random variables having normal distribution with pdf 

given by 

2

2

1 ( )
( ; , ) exp , , , 0

22

t
f t t


   

 

 
           

 
,  (3.3) 

where   and   are the location and scale parameters, respectively. 

 

The transformation from normal distribution to uniform one based on (2.2) was proposed 

by O'Reilly and Quesenberry (1973) and modified by D'Agostino and Stephens (1986) as 

follows 

2 2( ), 3,4,..., ,i i iU G A i n          (3.4) 

where    
1/2

1 11 / / ,i i i iA i i T T S      ,/
1

iTT
r

i

ri  
    ,1/

1

22  


i

r iri iTTS
 

and 

)(AGc  denotes a Student-t CDF with c degrees of freedom evaluated at A. 

 

In this paper, we try to apply the same technique on the case of lognormal distribution. 

To transform from lognormal distribution to uniform one, let 1 2, ,..., nT T T  be a set of i.i.d 

random variables having lognormal distribution with pdf given by 

2

2

1 (ln )
( ; , ) exp , , , 0

22

t
f t t

t


   

 

 
           

 
,  (3.5) 

where   and   are unknown parameters. 

 

The transformation TY ln  results in a new set of random variables nYYY ,...,, 21  
that 

have normal distribution with pdf given by (3.3). Then, the transformation to uniform 

distribution can be obtained by replacing nTTT ,...,, 21  
by nYYY ,...,, 21  in (3.4). By testing 

the uniformity of the (n - 2) U variables computed from (3.4), the assumption of 

normality can be validated. 
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3.3 In case of ANOVA model 

In this sub-section, the work of Quesenberry et al. (1983) to test the assumptions of 

ANOVA model using the CPIT method, is summarized as follows.  

 

Suppose that there are k mutually exclusive samples, ,ijT ,,...,2,1 jni  ,,...,2,1 kj   and 

the problem is to test 

 ,,~: 2

0  jij NTH ,,...,2,1 jni  1,2,..., .j k  

 

Let ,...21 knnnn  ,1... 11   jinnv jij ,/
1

iTT
rj

i

rij  


  ,
1

2

 


i

r ijrjij TTSS  and  
1/21/2 1

( 1) ( 1)1
1 / /

j

i j i j ij i j n r i jr
A i v i T T SS SS



  
             . 

 

The modification of the CPIT method under the assumptions of the ANOVA model was 

given by D'Agostino and Stephens (1986) as 

),( ijvij AGU
ij

          (3.6) 

for ,1j
13,4,..., ,i n and for 2, 3,..., ,j k 2,3,..., ,ji n  where )(AGc  is the same as in 

(3.4). By testing the uniformity of the (n - k - 1) U values computed from (3.6), the 

assumptions of ANOVA model can be verified. 

3.4 In case of linear regression model 

O'Reilly and Quesenberry (1973) introduced the transformation to Uniform (0, 1) random 

variables in the case of linear regression model. They used (2.1) to get the transformation. 

The null hypothesis  

 2

0 : ~ , ,n nH Y N X I   

is considered to test for the linear regression model in the form  

n nY X  ,
         (3.7) 

 

where nY  is a vector of n observations, nX  is an n q matrix,  is a vector of q 

parameters, and 2  is an another parameter to be estimated. Denoting the thi observation, 

1,2,...,i n  in nY
 
by iy  and the thi  row of nX  by ix , we can assume that iY

 
is an 1i  

vector which consists of the first i observations in nY  and iX be an qi  matrix consisting 

of the first i rows of nX . 

 

The transformation to the Uniform (0, 1) distribution under 0H  was proposed by O'Reilly 

and Quesenberry (1973) and was given by 

),( ipipi AGU   ,...,,2,1 nppi        (3.8) 
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where         
1/2

1/2 1 22/ 1 ,i i i i i i i i i i i iA i p y x b x X X x S y x b
         

 
  

1

i i i i ib X X X Y


 

is the LS estimator of   computed using the first i observations, and 

 
12

i i i i i i iS Y I X X X X Y
    

 
is the LS sum of squares of the residuals computed using 

the first i observations. 

 

By testing the uniformity of the (n - p) U variables, given by (3.8), the assumptions of the 

linear regression model can be checked. 

 

D'Agostino and Stephens (1986) recommended the use of the modified Watson statistic 

to test the uniformity of the U values. This statistic is referred to as 
2

MODU  and has the 

following form 

,
)(

8.0
1

)(

1.0

)(

1.0
2

22


























pnpnpn
UUMOD     (3.9) 

where 2U  is defined as 

       ,5.0
2

12

12

1
1

2

)(0

2

)(0

2  














n

i ii tFntF
n

i

n
U    (3.10) 

where    0 ( ) 0 ( )1
/

n

i ii
F t F t n


  and )(0 tF is the hypothesized distribution. The critical 

points for 
2

MODU  were given in D'Agostino and Stephens (1986). 

4.   Applying the CPIT Method in AFT Model 

D'Agostino and Stephens (1986) applied the CPIT method in the case of multi-sample 

problems, that is the case in which there exist k, k > 1 samples. The target was to validate 

the normality assumption. They transformed each sample separately using equation (3.4), 

then, the transformed values obtained from all samples were pooled together as one 

sample from Uniform (0, 1) distribution. Finally, this sample was used to verify the 

normality assumption of all samples. 

 

Under constant stress ALT, the units are tested at several high stress levels. We can 

assume that at each stress level, there is a different sample. To examine the underlying 

distributional assumption in this case, we will try to use the same technique of 

D'Agostino and Stephens (1986). It will be applied as follows. First, transform the failure 

times at each stress level separately into i.i.d. Uniform (0, 1) random variables. Then, the 

transformed random variables obtained at each stress level using the CPIT method are 

pooled together as one sample hypothesized to be drawn from Uniform (0, 1) distribution. 

Second, apply the modified Watson GOF technique on the pooled sample, the uniformity 

of the transformed variables and accordingly the adequacy of the hypothesized family of 

distributions can be judged.  

 

In the following sub-sections, we try to apply the CPIT method to test for both the 

exponential and lognormal distributions under the AFT model. 
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4.1 Exponential AFT model 

Under the exponential inverse power law AFT model, the experiment is conducted as 

follows. 

1. A random sample of size n units is put on test, and all run to failure. 

2. There are k test stress levels and jn  units are tested at stress level jV , 

1,2,..., ,j k  

3. The total number of test units is ....21 knnnn   

4. The stress jV  affects the scale parameter j , through the inverse power law 

relationship. This can be expressed as 

/ , 0P

j jC V C   .        (4.1) 

5. ijT denotes the failure time of the test unit i at stress level j. These failure times are 

assumed to have exponential distribution with pdf in the form 

1
( ; ) exp , 0, 0.

ij

ij j ij j

j j

t
f t t 

 

  
    

  

     (4.2) 

By substituting (4.1) in (4.2), the pdf of ,ijT ,,...,2,1 jni  ,,...,2,1 kj   takes the following 

form 

0,0,exp),;( 











 Ct

C

tv

C

v
PCtf ij

ij

P

j

P

j

ij .     (4.3) 

 

The CPIT method can be used to validate the assumption of the exponential distribution 

in AFT model regardless the inverse power law AFT relationship, as follows 

 The CPIT method is used to get the transformed U values from each sub- sample 

at each stress level separately regardless the inverse power law relationship as 

follows 

 
 ( 1)

1 ( 1) / ... 1,2,..., 1
1 ,

1,2,..., ,1 ( 1) / ...

j

j

j

n i

j ij ij n j j

ij

j i j ij n j

n i Z Z Z i n
U

j kn i Z Z Z





        
   

      

  (4.4) 

where ijZ  is the thi  order statistic from the thj  stress level, and 00 jZ . 

 The transformed (n - k) U values, obtained from all stress levels using (4.4), are 

pooled together to constitute one sample hypothesized to be drawn from Uniform 

(0, 1) distribution. 

 The 
2

MODU  statistic is applied on the pooled sample to verify the simple 

uniformity of the transformed U values which is equivalent to testing for the 

assumption of the exponential distribution at each stress level. 
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4.2 Lognormal AFT model 

Under the lognormal inverse power law AFT model, the experiment is conducted with 

the same first three assumptions of the exponential case defined above in addition to the 

following 

1. The stress jV  does not affect the shape parameter /1  of the lognormal 

distribution at each stress level. 

2. The scale parameter, )exp( j  is related to the stress through the inverse power 

law relationship as 

exp( ) / , 0,
P

j j
C C orV    

0 1 ,j jx             (4.5) 

where ,ln0 C ,1 P and .ln jj Vx   

3. The failure times at stress level jV , ijT , ,,...,2,1 jni  ,,...,2,1 kj   are assumed to 

have lognormal distribution with pdf given by 

.0,0,
2

)(ln
exp

2

1
),,;(

2

2

10

10 










 
 






 t

xt

t
tf

jij

ij

ij

  

(4.6) 

 

When dealing with the log-failure times, ,ln ijij TY  ,,...,2,1 jni  ,,...,2,1 kj  the 

lognormal inverse power law AFT model is reduced to the ordinary linear regression 

model since the following assumptions are satisfied. 

 The distribution of the log-lifetime variable (Y), at each stress level jV ,

1,2,..., ,j k  belongs to the normal family of distributions. 

 The scale parameter of the log-lifetime distribution, , is constant at each stress 

level. 

 The location parameter of the log-lifetime distribution, j , 1,2,..., ,j k at each 

stress level is related to the stress through the linear specification defined in (4.6). 

 

Thus, the transformed U values needed to validate the assumption of the normal 

(lognormal) distribution at each stress level can be obtained using 3 different CPIT 

methods as follows 

i. CPIT 1 method 

This method does not take into account neither the constancy of the scale 

parameter of the normal distribution at each stress level nor the linearity of the 

relationship between the location parameter and the transformed stress level. 

Using CPIT 1, the transformed U values are obtained as follows 

),(2)2( ijiji AGU   3,4,..., ,ji n
,,...,2,1 kj       (4.7) 



The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp369-387 377 

where      .//1 )1()1(

2/1

jijiijij SYYiiA    

This transformation results in (n-2k) pooled U values obtained from all stress 

levels.  

ii. CPIT 2 method 

This method transforms from normal distribution to uniform one and takes into 

consideration the constancy of the scale parameter of the normal distribution at 

each stress level but neglects the assumption of the linear relationship between the 

location parameter and the transformed stress level. Using CPIT 2, the 

transformed U values are obtained by 

),( ijvij AGU
ij

  for ,1j 13,4,..., ,i n and  

for 2,3,..., ,j k ,,...,3,2 jni      (4.8) 

where   
1/21/2 1

( 1) ( 1)1
1 / / .

l

j

i j i j i j i j n l i jl
A i v i Y Y SS SS



 
              

This transformation results in (n - k - 1) pooled U values obtained from all stress 

levels. 

iii. CPIT 3 method 

This method considers all the assumptions of the linear regression (lognormal 

inverse power law AFT) model when transforming from normal distribution to 

uniform one. Under CPIT 3, the transformed U values are obtained using 

),( ipipi AGU   ,,...,2,1 nppi       (4.9) 

 

where   
 

and ,ix 1,2,..., ,i n  are the values of the transformed stress levels that correspond 

to each ,iy 1,2,..., ,i n  in nY  as defined in (3.7). The transformation (4.9), results 

in (n - 3) pooled U values obtained from all stress levels. 

 

By applying the 
2

MODU  statistic on the pooled sample of U values obtained by either (4.7), 

(4.8), or (4.9), the uniformity of these U values and accordingly the assumption of the 

lognormal distribution at each stress level can be validated. 

5.  A Simulation Study 

5.1 Testing for the exponential distribution in AFT model 

For testing the assumption of exponentiality in AFT models, the 
2

MODU  statistic, given by 

equation (4.4) is used, and is called 
2

EMODU   in this case. The power of this statistic is 

then examined. 

        
1/2

1/2 1 22/ 1 ,i i i i i i i i i i i iA i p y x b x X X x S y x b
         

 
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The simulation study is conducted under the following experiment 

 There are k = 4 stress levels with values: ,241 V ,262 V ,283 V and 304 V . 

 Different sample sizes, n, and their division on the 4 stress levels, ,jn

1, 2, 3, 4,j  are arbitrary chosen as shown in Table 1. 

 Three different initial values of the parameters C and P in equation (4.1) are 

assumed to be 0.5, 1.5, 3.5  and 0.1, 0.5, 0.9 , respectively. Then, we consider nine 

different combinations of these values. Three different values of significance 

levels 0.1, 0.05, 0.01   are considered. 

 For each combination of (C, P, n), 1000 samples are generated using Mathcad 

program from the following distributions 

1- Exponential with pdf given by equation (4.3). 

2- Weibull with pdf given by  

1

( ; , ) exp , 0, , 0,
ij ij

ij j ij j

j j j

t t
f t t

 


   

  

      
          

     

,,...,2,1 jni    

        ,,...,2,1 kj  (5.1) 

where i jt , ,,...,2,1 jni  ,,...,2,1 kj  are the failure times. The shape parameter   

is assumed to be independent of the stress levels and is taken to be 0.5. But, the 

scale parameter j  is assumed to be affected by the stress levels through the 

inverse power law relationship given by equation (4.1). After substituting (4.1) in 

(5.1), the pdf will be in the form 

1

( ; , , ) exp , 0, , 0.

P P P

j j ij j ij

ij ij

v v t v t
f t C P t C

C C C

 


 

      
          

     

  (5.2) 

3- Lognormal with pdf given by equation (4.6), with shape parameter 

.5.0/1   

 For each sample, the MLE of the parameters of these distributions are obtained 

with tolerance value 00001.0 . Then, the 
2

EMODU   statistic is calculated and the 

power is estimated as: 

Power = Number of times rejecting 1000/0H , where 

ijTH :0  follows exponential distribution with pdf given by equation (4.3). 

:1H Not 0H . 
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The estimated power values of 
2

EMODU   statistic in testing the exponential distribution in 

AFT model are given in Table 2. From this Table, it is seen that the 
2

EMODU   statistic is 

powerful for testing the exponential distribution versus both the Weibull and lognormal 

alternatives. This is true whatever the sample size. When the sample size increases, the 

power of this statistic becomes much better. Sometimes, the power reaches 1. Thus, it 

could be said that the CPIT method performs well when testing the exponentiality of the 

AFT model. 

5.2 Testing for the lognormal distribution in AFT model 

In this sub-section, we examine the power of the 
2

MODU
 

statistic for testing the 

assumption of the lognormal distribution in AFT model. The 
2

MODU  statistic computed 

based on the CPIT 1, CPIT 2 and CPIT 3 methods, given by equations (4.7), (4.8), and 

(4.9) are denoted by 
*2

LMODU  , 
**2

LMODU   
and 

***2

LMODU  , respectively. 

 

The simulation study is conducted under the same experiment and procedures as for the 

exponential distribution, but the values of jn , 1,...,4,j   are different. Since all the log-

failure times occurring at the same stress level have the same transformed stress level 

value jx , and since CPIT 3 is based on omitting the first 3 observations, then in order to 

use this transformation, the number of units at the first stress level 1n , should not exceed 

three test units. This is to avoid the problem of singularity of the matrix ( i iX X ) 

computed from the matrix X. Thus, the total sample sizes used are redistributed to the 4 

stress levels as indicated in Table 1. The distribution of the total sample sizes on the 4 

stress levels is arbitrary chosen; taking into consideration that 31 n . In this case it is 

desired to test the following hypotheses 

ijTH :0  follows lognormal distribution with pdf given by equation (4.6). 

:1H  Not 0H . 

 

The estimated power of 
*2

LMODU  , 
**2

LMODU   and 
***2

LMODU   statistics in testing the lognormal 

distribution versus the alternatives, exponential, Weibull and lognormal distributions, are 

given in Table 3 under different values of C, P, and n. From this Table, it is seen that 

there are small differences between the power of these statistics. In the majority of cases, 
***2

LMODU   is better than 
**2

LMODU  , which is better than 
*2

LMODU  . It is also seen that, the powers 

of these statistics improve as the sample gets larger. In general, and whatever the sample 

size, we can see that all these three statistics are powerful in testing whether the lifetime 

distribution under AFT model is lognormal versus both the exponential and Weibull 

alternatives. 
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6.   A Real Life Example 

In this Section, we apply the CPIT method to investigate the distribution of times to 

breakdown of an insulating fluid under three elevated voltage stress. The data used is 

referred to in Nair (1982). This data represents the times to breakdown of an insulating 

fluid under three elevated voltage stresses. The data is presented in Table 4 and 

constitutes the first sixty observations at the three voltage levels. 

Nelson (1990) suggested the use of one of the exponential and lognormal distributions to 

describe the lifetime of insulating fluids. To check the appropriateness of using the 

lognormal distribution to represent the data given in Table 4, we will use the CPIT 

statistic, 
*2

LMODU  , which does not take into account neither the constancy of the shape 

parameter of the lognormal distribution nor the inverse power law relationship. First, the 

log-lifetimes are obtained and then the 
*2

LMODU   statistic is applied on these log-failures at 

each stress level separately. Second, the transformed U values are pooled together from 

all stress level, and then the 
*2

LMODU   statistic is applied on the pooled sample. It is found 

that, the computed value of 
*2

LMODU   statistic, (1.613) exceeds the corresponding critical 

value (0.187) at significance level 05.0 . This indicates that the lognormal 

distribution is not suitable to represent the lifetime distribution of the times to breakdown 

data given in Table 4. 

 

To test for the exponential distribution without taking into consideration the inverse 

power law relationship, the CPIT statistic, 
2

EMODU   is applied on the failure times 

in the same way as the 
*2

LMODU  . The results of using this test indicates that the 

exponential distribution gives good fit for the data since the computed value of 
2

EMODU   

statistic, (0.071) is less than the corresponding critical value (0.187) at significance level

05.0 . 

7.   Conclusions 

This paper presents the application of the CPIT method to investigate the validity of the 

underlying distribution in AFT model under constant stress and complete sampling. The 

choice of this method is based on its capability to combine the failure times from all 

stress levels to reach a conclusion about the adequacy of a certain distribution at each 

stress level. The method is based on transforming the original variables at each stress 

level into i.i.d U (0, 1) random variables. Then by pooling these transformed variables 

from all stress levels as one sample and using an appropriate GOF technique to assess the 

uniformity of the transformed variables, the adequacy of the hypothesized distribution at 

each stress level can be validated. In this paper, the CPIT method is applied to test for the 

exponential and lognormal inverse power law models. The advantage of this method is 
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that it tests for the underlying distribution regardless the other assumptions of the AFT 

model. 

 

A simulation study is carried out to explore the power of the CPIT method in validating 

the underlying distributions in AFT model. First, the CPIT method is used to test for the 

exponential distribution. Second, three versions of this method are used in testing for the 

lognormal distribution. It is concluded that the CPIT method is a powerful test in both 

cases of exponential and lognormal distributions whatever the sample sizes. 

 

Finally, the CPIT method is applied on a real life data that includes the times to 

breakdown of an insulating fluid to investigate the adequacy of both the lognormal and 

exponential inverse power law models. The results clarify that the exponential inverse 

power law model fits the times to breakdown of an insulating fluid better than the 

lognormal one. 

 

To summarize, the CPIT method is used to assess the GOF of the log-location-scale 

family of distributions in AFT model. As examples, both the exponential and lognormal 

lifetime distributions are considered. It is concluded that the CPIT method performs well, 

so it is recommended to be used in the field of ALT. As a future work, an extension may 

be made to treat the same problem under different types of censoring.  

Table 1:  Total sample sizes, n and sub-samples, nj, j=1, ..., 4 in the case of 

exponential and lognormal distributions 

n 

Lifetime Distribution 

Exponential Lognormal 

nj nj 

n1 n2 n3 n4 n1 n2 n3 n4 

33 3 5 10 15 3 5 10 15 

63 13 15 17 18 3 15 20 25 

103 18 20 30 35 3 25 35 40 

203 35 45 55 68 3 50 70 80 



Abdalla Abdel-Ghaly, Hanan Aly, Elham Abdel-Rahman 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp369-387 382 

Table 2:   Estimated values of the power for testing the exponential distribution  

C P n 

Alternative 

Exponential Weibull Lognormal 

 α   α   α  

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

0.5 0.1 33 0.111 0.066 0.010 0.852 0.779 0.631 0.898 0.857 0.759 

  63 0.112 0.059 0.014 0.993 0.983 0.946 0.993 0.992 0.980 

  103 0.088 0.040 0.007 1.000 0.999 0.996 1.000 1.000 1.000 

  203 0.094 0.050 0.012 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 0.5 33 0.107 0.056 0.015 0.844 0.781 0.624 0.909 0.875 0.796 

  63 0.117 0.063 0.014 0.980 0.970 0.920 0.992 0.987 0.969 

  103 0.107 0.061 0.013 0.998 0.998 0.992 1.000 1.000 1.000 

  203 0.100 0.049 0.015 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 0.9 33 0.111 0.066 0.010 0.831 0.756 0.613 0.892 0.846 0.743 

  63 0.097 0.041 0.012 0.984 0.965 0.915 0.995 0.992 0.979 

  103 0.093 0.035 0.008 1.000 0.998 0.991 1.000 1.000 1.000 

  203 0.102 0.053 0.019 1.000 1.000 1.000 1.000 1.000 1.000 

1.5 0.1 33 0.091 0.048 0.010 0.841 0.772 0.636 0.912 0.865 0.758 

  63 0.075 0.040 0.011 0.981 0.969 0.920 0.999 0.995 0.980 

  103 0.096 0.051 0.012 1.000 1.000 0.995 1.000 1.000 1.000 

  203 0.102 0.051 0.015 1.000 1.000 1.000 1.000 1.000 1.000 

1.5 0.5 33 0.110 0.048 0.015 0.863 0.781 0.662 0.912 0.860 0.765 

  63 0.098 0.052 0.012 0.988 0.980 0.933 0.996 0.993 0.982 

  103 0.104 0.056 0.015 1.000 1.000 0.992 1.000 1.000 1.000 

  203 0.103 0.046 0.015 1.000 1.000 1.000 1.000 1.000 1.000 

1.5 0.9 33 0.113 0.058 0.017 0.837 0.777 0.632 0.917 0.863 0.761 

  63 0.100 0.052 0.009 0.984 0.966 0.917 0.996 0.991 0.971 

  103 0.109 0.052 0.012 1.000 0.999 0.998 1.000 1.000 1.000 

  203 0.108 0.055 0.017 1.000 1.000 1.000 1.000 1.000 1.000 

3.5 0.1 33 0.100 0.054 0.012 0.865 0.789 0.631 0.901 0.865 0.742 

  63 0.093 0.045 0.013 0.981 0.968 0.926 0.996 0.996 0.983 

  103 0.096 0.046 0.011 0.998 0.995 0.989 1.000 1.000 0.999 

  203 0.095 0.045 0.017 1.000 1.000 1.000 1.000 1.000 1.000 

3.5 0.5 33 0.106 0.053 0.012 0.822 0.768 0.629 0.894 0.846 0.755 

  63 0.096 0.054 0.011 0.977 0.967 0.913 0.992 0.987 0.977 

  103 0.102 0.047 0.009 1.000 1.000 0.994 1.000 1.000 0.999 

  203 0.103 0.046 0.017 1.000 1.000 1.000 1.000 1.000 1.000 

3.5 0.9 33 0.100 0.061 0.020 0.856 0.785 0.638 0.907 0.868 0.760 

  63 0.100 0.058 0.016 0.987 0.978 0.936 0.996 0.992 0.982 

  103 0.103 0.052 0.015 1.000 1.000 0.992 1.000 1.000 1.000 

  203 0.097 0.054 0.008 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 3:   Estimated values of the power for testing the lognormal distribution 

C P 

A
lt

er
n

at
iv

e 

n 

Statistics 

2*

MOD LU 
 

2**

MOD LU 
 

2***

MOD LU 
 

α α α 

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

0.5 0.1 

E
x

p
o

n
en

ti
al

 33 0.198 0.121 0.044 0.259 0.178 0.073 0.266 0.176 0.066 

  
63 0.349 0.252 0.132 0.407 0.286 0.160 0.460 0.343 0.179 

  
103 0.547 0.427 0.245 0.583 0.480 0.307 0.611 0.487 0.301 

  
203 0.854 0.765 0.591 0.864 0.803 0.631 0.877 0.805 0.666 

  

W
ei

b
u

ll
 

33 0.190 0.104 0.043 0.237 0.149 0.067 0.280 0.187 0.068 

  
63 0.360 0.258 0.129 0.414 0.315 0.161 0.468 0.336 0.162 

  
103 0.533 0.420 0.261 0.591 0.477 0.293 0.615 0.507 0.301 

  
203 0.845 0.778 0.625 0.857 0.791 0.630 0.881 0.811 0.666 

  

L
o

g
n

o
rm

al
 33 0.079 0.040 0.012 0.111 0.055 0.015 0.102 0.048 0.015 

  
63 0.089 0.049 0.016 0.115 0.053 0.014 0.100 0.052 0.014 

  
103 0.090 0.045 0.012 0.117 0.053 0.016 0.083 0.047 0.013 

  
203 0.103 0.050 0.010 0.100 0.045 0.016 0.109 0.052 0.017 

0.5 0.5 

E
x

p
o

n
en

ti
al

 33 0.207 0.131 0.050 0.276 0.180 0.083 0.249 0.155 0.056 

  
63 0.354 0.240 0.120 0.410 0.305 0.157 0.433 0.321 0.153 

  
103 0.557 0.435 0.266 0.571 0.459 0.282 0.606 0.506 0.297 

  
203 0.853 0.775 0.601 0.865 0.793 0.637 0.893 0.831 0.693 

  

W
ei

b
u

ll
 

33 0.197 0.122 0.051 0.255 0.176 0.074 0.273 0.172 0.064 

  
63 0.364 0.246 0.116 0.409 0.289 0.142 0.474 0.360 0.194 

  
103 0.567 0.439 0.271 0.585 0.473 0.299 0.620 0.521 0.311 

  
203 0.849 0.758 0.602 0.855 0.789 0.642 0.865 0.789 0.637 

  

L
o

g
n

o
rm

al
 33 0.090 0.045 0.010 0.119 0.059 0.017 0.092 0.043 0.010 

  
63 0.105 0.055 0.012 0.114 0.060 0.020 0.095 0.039 0.012 

  
103 0.091 0.051 0.008 0.099 0.052 0.018 0.091 0.056 0.019 

  
203 0.090 0.049 0.017 0.109 0.052 0.011 0.093 0.055 0.014 

0.5 0.9 

E
x

p
o

n
en

ti
al

 33 0.197 0.125 0.042 0.254 0.152 0.066 0.276 0.174 0.069 

  
63 0.357 0.248 0.112 0.413 0.311 0.150 0.430 0.316 0.155 

  
103 0.568 0.433 0.251 0.586 0.479 0.297 0.627 0.501 0.307 

  
203 0.847 0.782 0.613 0.871 0.800 0.630 0.906 0.834 0.674 

  

W
ei

b
u

ll
 

33 0.201 0.124 0.036 0.248 0.160 0.071 0.249 0.168 0.064 

  
63 0.371 0.259 0.116 0.421 0.305 0.163 0.504 0.361 0.192 

  
103 0.566 0.435 0.276 0.601 0.487 0.300 0.621 0.509 0.309 

  
203 0.846 0.759 0.590 0.869 0.808 0.644 0.889 0.821 0.671 

  

L
o

g
n

o
rm

al
 33 0.095 0.041 0.010 0.107 0.052 0.017 0.098 0.053 0.009 

  
63 0.106 0.047 0.015 0.099 0.053 0.013 0.109 0.054 0.016 

  
103 0.092 0.045 0.012 0.106 0.052 0.015 0.106 0.052 0.016 

  
203 0.103 0.047 0.013 0.098 0.052 0.013 0.103 0.061 0.015 
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Table 3: Estimated values of the power for testing the lognormal distribution (Cont.) 

C P 

A
lt

er
n

at
iv

e 

n 

Statistics 

2*

MOD LU 
 

2**

MOD LU 
 

2***

MOD LU 
 

α α α 

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

1.5 0.1 
E

x
p

o
n

en
ti

al
 33 0.196 0.128 0.050 0.246 0.156 0.066 0.252 0.165 0.073 

  
63 0.375 0.260 0.124 0.413 0.298 0.162 0.443 0.337 0.169 

  
103 0.527 0.397 0.226 0.598 0.479 0.294 0.637 0.500 0.323 

  
203 0.858 0.778 0.596 0.882 0.811 0.651 0.890 0.820 0.670 

  

W
ei

b
u

ll
 33 0.218 0.136 0.047 0.256 0.150 0.066 0.267 0.181 0.068 

  
63 0.354 0.238 0.115 0.403 0.286 0.150 0.485 0.380 0.202 

  
103 0.542 0.409 0.233 0.587 0.468 0.299 0.675 0.547 0.343 

  
203 0.865 0.790 0.620 0.881 0.814 0.653 0.866 0.796 0.645 

  

L
o
g
n
o
rm

al
 33 0.092 0.040 0.009 0.115 0.055 0.018 0.111 0.055 0.010 

  
63 0.111 0.059 0.014 0.099 0.055 0.017 0.089 0.037 0.010 

  
103 0.094 0.044 0.011 0.104 0.053 0.021 0.095 0.049 0.012 

  
203 0.106 0.051 0.017 0.099 0.062 0.016 0.090 0.047 0.015 

1.5 0.5 

E
x
p
o
n
en

ti
al

 33 0.191 0.118 0.035 0.241 0.147 0.060 0.235 0.137 0.054 

  
63 0.346 0.232 0.113 0.405 0.291 0.140 0.456 0.322 0.142 

  
103 0.543 0.431 0.250 0.584 0.472 0.275 0.641 0.520 0.326 

  
203 0.843 0.762 0.595 0.875 0.799 0.637 0.902 0.843 0.694 

  

W
ei

b
u
ll

 33 0.207 0.125 0.052 0.230 0.153 0.056 0.279 0.170 0.078 

  
63 0.360 0.256 0.110 0.424 0.296 0.163 0.496 0.369 0.211 

  
103 0.584 0.414 0.239 0.594 0.474 0.289 0.656 0.547 0.347 

  
203 0.857 0.788 0.613 0.882 0.820 0.655 0.888 0.816 0.669 

  

L
o
g
n
o
rm

al
 33 0.096 0.046 0.013 0.118 0.056 0.013 0.092 0.047 0.012 

  
63 0.098 0.052 0.015 0.116 0.061 0.013 0.099 0.051 0.009 

  
103 0.108 0.058 0.010 0.112 0.053 0.018 0.091 0.040 0.014 

  
203 0.104 0.049 0.016 0.109 0.048 0.011 0.106 0.054 0.016 

1.5 0.9 

E
x
p
o
n
en

ti
al

 33 0.201 0.134 0.051 0.256 0.169 0.069 0.262 0.174 0.065 

  
63 0.371 0.264 0.120 0.384 0.280 0.148 0.435 0.331 0.169 

  
103 0.528 0.412 0.241 0.583 0.456 0.273 0.654 0.523 0.325 

  
203 0.839 0.762 0.600 0.877 0.813 0.657 0.890 0.832 0.695 

  

W
ei

b
u
ll

 33 0.202 0.122 0.053 0.238 0.145 0.060 0.264 0.163 0.065 

  
63 0.356 0.255 0.121 0.392 0.279 0.136 0.493 0.347 0.179 

  
103 0.552 0.432 0.270 0.583 0.463 0.289 0.653 0.543 0.327 

  
203 0.843 0.759 0.590 0.874 0.809 0.646 0.870 0.791 0.632 

  

L
o
g
n
o
rm

al
 33 0.100 0.044 0.009 0.120 0.060 0.018 0.110 0.054 0.014 

  
63 0.108 0.054 0.013 0.102 0.049 0.014 0.086 0.044 0.010 

  
103 0.104 0.059 0.020 0.102 0.060 0.015 0.108 0.044 0.007 

  
203 0.099 0.041 0.007 0.108 0.057 0.013 0.103 0.044 0.011 
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Table 3:  Estimated values of the power for testing the lognormal distribution (Cont.) 

C P 

A
lt

er
n

at
iv

e 

n 

Statistics 

2*

MOD LU 
 

2**

MOD LU 
 

2***

MOD LU 
 

α α α 

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

3.5 0.1 

E
x

p
o
n

en
ti

al
 33 0.184 0.115 0.039 0.224 0.151 0.055 0.269 0.191 0.075 

  
63 0.355 0.251 0.122 0.385 0.283 0.143 0.441 0.326 0.172 

  
103 0.549 0.416 0.256 0.600 0.486 0.291 0.647 0.514 0.327 

  
203 0.834 0.757 0.588 0.888 0.817 0.625 0.888 0.831 0.686 

  

W
ei

b
u

ll
 33 0.176 0.100 0.040 0.259 0.178 0.073 0.267 0.173 0.061 

  
63 0.367 0.269 0.123 0.407 0.286 0.160 0.486 0.366 0.204 

  
103 0.545 0.436 0.262 0.583 0.480 0.307 0.650 0.535 0.358 

  
203 0.840 0.767 0.581 0.864 0.803 0.631 0.896 0.822 0.662 

  

L
o
g
n
o
rm

al
 33 0.092 0.049 0.013 0.111 0.060 0.014 0.091 0.050 0.011 

  
63 0.092 0.046 0.014 0.107 0.061 0.021 0.114 0.050 0.013 

  
103 0.092 0.047 0.015 0.095 0.048 0.010 0.108 0.054 0.013 

  
203 0.092 0.036 0.010 0.116 0.052 0.015 0.103 0.048 0.008 

3.5 0.5 

E
x
p
o
n
en

ti
al

 33 0.175 0.111 0.040 0.259 0.178 0.073 0.267 0.175 0.067 

  
63 0.327 0.226 0.109 0.407 0.286 0.160 0.425 0.318 0.156 

  
103 0.555 0.438 0.247 0.583 0.480 0.307 0.615 0.489 0.290 

  
203 0.844 0.763 0.584 0.864 0.803 0.631 0.899 0.825 0.660 

  

W
ei

b
u
ll

 33 0.179 0.120 0.044 0.272 0.175 0.065 0.265 0.180 0.060 

  
63 0.330 0.230 0.115 0.416 0.308 0.155 0.486 0.370 0.209 

  
103 0.558 0.443 0.258 0.573 0.469 0.288 0.643 0.521 0.326 

  
203 0.834 0.754 0.608 0.865 0.788 0.644 0.879 0.808 0.665 

  

L
o
g
n
o
rm

al
 33 0.091 0.041 0.009 0.113 0.053 0.012 0.092 0.045 0.010 

  
63 0.092 0.046 0.011 0.104 0.058 0.014 0.101 0.049 0.016 

  
103 0.113 0.059 0.012 0.116 0.049 0.017 0.105 0.059 0.011 

  
203 0.099 0.049 0.010 0.115 0.055 0.011 0.093 0.046 0.011 

3.5 0.9 

E
x
p
o
n
en

ti
al

 33 0.201 0.114 0.040 0.276 0.180 0.083 0.265 0.176 0.079 

  
63 0.344 0.254 0.114 0.403 0.295 0.163 0.464 0.337 0.184 

  
103 0.544 0.410 0.253 0.606 0.505 0.314 0.634 0.534 0.323 

  
203 0.847 0.755 0.603 0.868 0.806 0.647 0.888 0.825 0.687 

  

W
ei

b
u
ll

 33 0.197 0.127 0.050 0.284 0.181 0.079 0.262 0.173 0.064 

  
63 0.339 0.243 0.120 0.397 0.293 0.143 0.508 0.393 0.205 

  
103 0.535 0.438 0.247 0.605 0.482 0.304 0.660 0.553 0.360 

  
203 0.858 0.760 0.589 0.874 0.814 0.643 0.892 0.823 0.677 

  

L
o
g
n
o
rm

al
 33 0.103 0.048 0.012 0.113 0.061 0.015 0.083 0.038 0.009 

  
63 0.090 0.044 0.014 0.104 0.051 0.018 0.106 0.050 0.012 

  
103 0.096 0.047 0.012 0.098 0.047 0.013 0.091 0.045 0.012 

  
203 0.092 0.040 0.011 0.097 0.054 0.017 0.103 0.061 0.015 
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Table 4:   Observed times to breakdown in minutes of an insulating fluid* 

Voltage levels 

34 KV 35 KV 36 KV 

0.13 21.95 0.32 2.68 0.89 0.04 1.89 1.99 8.11 

0.15 1.16 12.45 3.09 2.32 11.15 4.03 0.64 3.17 

0.04 7.46 7.25 4.5 4.47 1.37 1.54 2.15 5.55 

2.93 1.75 8.09 0.64 0.02 3.17 0.31 1.08 0.8 

1.44 4.36 0.57 4.95 3.63 1.82 0.66 2.57 0.2 

17.49 6.34 0.4 2.36 5.16 1.41 1.7 0.93 1.13 

5.76 0.3 12.01 5.2 7.63 0.08 2.17 4.75 6.63 

1.73 6.66 0.73 0.37 1.64 5.06 1.82 0.82 1.08 

0.2 6.78 5.73 2.03 1.49 1.86 9.99 2.06 2.44 

0.55 8.88 2.52 2.57 0.55 1.45 2.24 0.49 0.78 

2.22 2.24 2.37 0.54 3.17 3.19 1.3 1.17 2.12 

0.63 4.67 8.75 0 1.78 2.77 2.75 3.87 3.97 

4.77 2.45 4.66 3.04 3.97 14.09 0 2.8 1.56 

7.38 5.23 7.69 10.88 0.37 0 2.17 0.7 1.34 

0.43 11.22 4.86 3.93 1.63 13.57 0.66 3.82 1.49 

4.63 2.49 4.27 5.34 0.01 5.82 0.55 0.02 8.71 

4.68 0 1.28 0.47 1.45 7 0.18 0.5 2.1 

5.43 0.35 2.89 0.62 10.52 0.18 10.6 3.72 7.21 

2.83 0.22 16.9 1.65 3.54 1.36 1.63 0.06 3.83 

5.19 0.95 1.51 0.79 8.93 1.21 0.71 3.57 5.13 

* Source: Nair (1982). 
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