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Abstract 

The present investigation deals with the problem of estimation of population variance in presence of 

random non-response in two-phase (double) sampling. Using information on two auxiliary variables, two 

general classes of estimators have been suggested in two different situations of random non-response and 

studied their properties under two different set up of two-phase sampling. It is shown that several 

estimators may be generated from our proposed classes of estimators. Proposed classes of estimators are 

empirically compared with some contemporary estimators of population variance under the similar realistic 

situations and their performances have been demonstrated through numerical illustration and graphical 

interpretation which are followed by suitable recommendations. 
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1.   Introduction 

The problem of estimation of population variance arises in many practical situations. For 

example, a physician needs a full understanding of variations in the degree of human 

blood pressure, body temperature and pulse rate for adequate prescription. An 

agriculturist needs an adequate understanding of the variations in climatic factors 

especially from place to place (or time to time) to be able to plan on when, how and 

where to plant his crop. The variance estimation technique using auxiliary variable was 

first considered by Das and Tripathi (1978). Further this was extended by Srivastava and 

Jhaji (1980), Isaki (1983), Singh (1983), Upadhyay and Singh (1983), Tripathi et al. 

(1988), Singh and Joarder (1998) and Ahamed et al. (2003) among others. In many 

situations, information on an auxiliary variable may be readily available on all unit of the 

population; for example, tonnage (or seat capacity) of each vehicle or ship is known in 

survey sampling of transportation and number of beds in different hospitals may be 

known in hospital surveys.  

 

However in some practical situations, it is common experience in sample surveys that 

data cannot always be collected from all the units selected in the sample. For example, 

the selected families may not be at home at the first attempt and some of them may refuse 
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to cooperate with the interviewer even if contacted. As many respondents do not reply, 

available sample of returns is incomplete. The resulting incompleteness is called non-

response and is sometimes so large that can completely vitiate the results. Statisticians 

have long known that failure to account for the stochastic nature of incompleteness can 

damage the actual conclusion. An obvious problem, that one needs to justify, arises when 

ignoring the incomplete mechanism. Rubin (1976) advocated three concepts: missing at 

random (MAR), observed at random (OAR), and parameter distribution (PD). Rubin 

defined: “The data are MAR if the probability of the observed missingness pattern, given 

the observed and unobserved data, does not depend on the value of the unobserved data”. 

Singh and Joarder (1998) studied the properties of ratio type estimator of population 

variance suggested by Isaki (1983) under two different situations of random non-response 

(MAR) advocated by Tracy and Osahan (1994) when (i) random non-response on both 

the study and auxiliary variables and (ii) only on the study variable. Singh et al. (2012) 

revisited the family of estimators of population variance suggested by Srivastava and 

Jhajj (1980) under the above situations of random non-responses.  

 

It is worth to be mentioned that all the above recent works of estimation of population 

variance in presence of random non-response are discussed on the assumption that either 

population mean or both population mean and variance of the auxiliary variable are 

known and even if they are unknown, it is assumed that no non-response situations occur 

on the auxiliary variable in the sampled unit. This may not often be the case. In such 

situations, it is more generously advisable to draw a large preliminary sample in which 

auxiliary variable alone is measured. This technique is known as double sampling or two-

phase sampling. Two-phase sampling happens to be a powerful and cost effective 

(economical) technique for obtaining the reliable estimate in first-phase (preliminary) 

sample for the unknown population parameters of the auxiliary variables. Motivated with 

these arguments and using information on two auxiliary variables, we have proposed two 

general classes of estimators of population variance in two-phase sampling applicable for 

two different realistic situations of random non-response and studied their properties 

under two different set up of two-phase sampling. It is shown that several estimators may 

be generated as member of the proposed classes of estimators. The superiorities of the 

proposed classes of estimators over some contemporary estimators of population variance 

under the similar realistic conditions have been established through numerical illustration 

and graphical interpretation. Suitable recommendations have been put forward to the 

survey statistician. 

2.   Formulation of Estimators   

2.1. Two-Phase Sampling Structure 

Consider a finite population 1 2 NU = (U , U , . . ., U ) of N units, y, x and z are the variables 

under study, first auxiliary variable and second auxiliary variable respectively with 

population means Y, X  and Z. Let ky ,  kx  and kz  be the values of y, x and z for the k-th 

(k = 1, 2, . . ., N) unit in the population. We wish to estimate the population variance 
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N
2 2 2

y y i

i = 1

1
S S = (y -Y)  

N-1

 
 
 

  of the study variable y in the presence of the auxiliary 

variables x and z, when the population variance 2

x S
N

2 2

x i

i = 1

1
S = (x -X)

N-1

 
 
 

  of x is 

unknown but the information on z is available for all the units of population.  To estimate 
2

yS , a first phase sample Sof size n is drawn by simple random sampling without 

replacement scheme (SRSWOR) from the entire population U and observed for  the 

auxiliary variables x and z to estimate 2

x S .  Again a second-phase sample S of size m (m 

< n) is drawn according to the following cases by SRSWOR scheme to observe the 

characteristic y and x. 

 

Case I: Second phase sample is drawn as a subsample of the first phase sample

  i. e. S S .  

Case II: Second phase sample S is drawn independently of the first phase sample S .  

 

Hence onwards, we use the following notations:  

m m n y , x , z :  Sample means of the respective variables based on the sample sizes shown 

in suffices.  

 
N

-12 2

z i

i =1

S = N - 1 (z - Z) : Population variance of the auxiliary variable z. 

 
m

m
-12 2

x i m

i =1

s = m - 1 (x - x ) :  Sample variance of the auxiliary variable x based on sample 

of size m.  

m n n

2 2 2

y x z s , s and  s : Sample variances of the respective variables based on sample sizes 

shown in suffices.  

 

We assume that no non-response situations occur at the first phase sample S  while 

random non-response situations occur either on both the variables y and x or on the 

variable y alone in the second phase sample S. We have considered that the occurrences 

of random non-response situation follow the discrete probability distribution as presented 

below.  

2.2. Non-Response Probability Model 

If random non-response situations occur at the second phase sample S of size m and r

 r = 0, 1, 2, . . ., (m - 2)
 
denotes the number of sampling units on which information 

could not be collected due to random non-response, then the observations of the 

respective variables on which random non-response occur can be taken from the 

remaining (m − r) units of the second phase sample. It is assumed that r is less 

than (m − 1), that is, 0  r (m - 2).   We also assume that if p denotes the probability of 
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a non-response among the (m − 2) possible values of non-response, then r has the 

following discrete distribution 

 
 

  m - 2 r m - 2 - r

r

m - r
P r = C  p q ,  r = 0, 1, 2, . . ., (m - 2)

mq + 2p
   (1) 

where q = 1- p  and m - 2

rC
 
denote the total number of ways of obtaining r non-responses 

out of the (m − 2) total possible non-responses, for instance, see Singh and Joarder 

(1998).  

 

It is to be noted, the probability model, defined in equation (1), is free from actual data 

values; hence, can be considered as a model suitable for MAR situation. 

 

We have defined following variables based on the responding part of the sample as 
m - r m - r

* *

m i m i

i = 1 i = 1

1 1
 x = x , y = y :

m - r m - r
 

 

Sample means of the respective variables based on the 

responding part of the second phase sample S.  

 
m

m - r
-1*2 * 2

x i m

i = 1

s = m - r - 1 (x - x ) :  Sample variance of the variable x based on the responding 

part of the second phase sample S. 

m

*2

y s : Sample variance of the study variable y based on the responding part of the second 

phase sample S. 

2.3. Proposed Estimation Strategies 

Utilizing information on an auxiliary variable x with unknown 2

xS  and following the work 

of Isaki (1983), one may propose the ratio type estimator of population variance 
2

yS   in 

two-phase sampling as  

n

m

m

2

x2

R y 2

x

s
t = s

s
         (2) 

 

Similarly, if X  and 2

xS  both are unknown, then following the work of Srivastava and 

Jhajj (1980), one may define a general class of estimators of population variance 
2

yS  in 

two-phase sampling set up as  

 
m

2

g yt = g s , u, v         (3) 

where m

n

x
u = ,

x

m

n

2

x

2

x

s
 v = 

s
 and  

m

2

yg s , u, v is a parametric function that satisfies similar 

regularity conditions as given in Srivastava and Jhajj (1980) and is such that 

 2 2

y yg S , 1, 1 = S . 
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Motivated with the work of Singh and Joarder (1998) and Singh et al. (2012), one may 

propose the estimators 
Rt  and 

gt  for two different situations of a random non-response at 

the second phase sample S as presented below. 

 

(i) If random non-response occurs on both the variables y and x, the estimators Rt  and gt

may be considered as  

n

m

m

2

x* *2

R y *2

x

s
t = s

s
         (4) 

and   
m

* *2 * *

g yt = g s , u , v         (5) 

where  
*

* m

n

x
u  =

x
and m

n

*2

x*

2

x

s
 v  = .

s
 

(ii) If random non-response occurs only on the study variable y, then the estimators  

Rt  and gt  may be consider as  

n

m

m

2

x** *2

R y 2

x

s
t = s

s
          (6) 

and   
m

** *2

g yt = g s , u, v         (7) 

 

Motivated with the above suggestions and assuming that the population variance 2

x S  of 

the auxiliary variable x is unknown, we have proposed two general classes of estimators 

of population variance 
2

yS  in two-phase sampling set up applicable for two different 

situations of random non-response and presented below.  

Situation I: In this situation, we assume that random non-response conditions occur on 

both the study variable y and the auxiliary variable x at the second phase sample S and 

also the population variance 2

zS  of the auxiliary variable z is known. Accordingly, we 

have suggested the general class of estimators of population variance 
2

yS  in two-phase 

sampling set up as  

  
m m n n

*2 *2 2 2

1 y x 1 x zT = f s , s , h s , s        (8) 

where  
n n

2 2

1 x zh s , s  is a class of estimators of  2

xS   using information on 
n n

2 2

x zs  and s , such 

that   

 2 2 2

1 x z xh S , S = S .        (9) 
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We consider the composite function  
m m n n

*2 *2 2 2

y x x zf s , s , s , s as one-to-one function of 

m m n n

*2 *2 2 2

y x x zs , s , s  and s   denoted by   
m m n n

*2 *2 2 2

1 y x x zT = F s , s , s , s  such that 

 
 

 

m m n n

m 2 2 2 2
y x x z

*2 *2 2 2

y x x z2 2 2 2 2

y x x z y *2

y
S , S , S , S

F s , s , s , s
F S , S , S , S = S   = 1

s





   

(10)

 
with  2 2 2 2

y x x zS , S , S , S  and  
m m n n

*2 *2 2 2

y x x zF s , s , s , s satisfy the following regularity conditions:

 
1.  Whatever be the chosen samples,  

m m n n

*2 *2 2 2

y x x zs , s , s , s assume values in a closed 

convex subspace, 4R of the four dimensional real space containing the point

 2 2 2 2

y x x zS , S , S , S .  

2. The function  
m m n n

*2 *2 2 2

y x x zF s , s , s , s is continuous and bounded in 4R .  

3.  The first, second and third order partial derivatives of  
m m n n

*2 *2 2 2

y x x zF s , s , s , s exist 

and are continuous and bounded in 
4R .  

 

It can be observed from equation (8) that the class of estimators 1T  is very wide in the 

sense for any parametric function,   
m m n n

*2 *2 2 2

y x 1 x zf s , s , h s , s satisfying above regularity 

conditions with  2 2 2 2 2

y x x z yF S , S , S , S = S  may generate an estimators of 2

yS . For examples, 

the following ratio, product, regression and exponential type estimators of 2

yS are the 

members of the class 1T . 

   in m in m

m m m in m m

m in in m

2 *2 2 *2

x x x x*2 *2 *2 2 *2 *2

1i y 2i y 3i y 1 x x 4i y*2 2 2 *2

x x x x

s s s - s
t =s ,  t =  s , t =  s + b s - s ,  t =  s exp ; i = 1, 2, . . ., 4

s s s + s

 
 
 
 

 

where  n n

n n n n n n n n n

n n

2 2 22
z z z2 2 2 2 2 2 2 2 2 2z

1x x 2x x 3x x 2 z z 4x x2 2 2 2

z z z z

s S - sS
s = s , s = s , s = s  + b S - s , s = s exp

s S S + s

 
 
 
 

 and 

1 2b , b  are the real scalars.   

Situation II: In this case, we assume that random non-response situation occurs only on 

the study variable y while the complete information on the auxiliary variable x is 

available at the second phase sample S and also the population variance 2

zS  is known. 

Considering this aspect, we have proposed the general class of estimators of population 

variance 
2

yS  in two-phase sampling set up as 

 
  

m m n n

*2 2 2 2

2 y x 1 x zT = g s , s , h s , s .        (11) 
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We consider the composite function  
m m n n

*2 2 2 2

y x x z g s , s , s , s  as one-to-one function of 

m m

*2 2

y xs , s ,
n

2

x s and 
n

2

zs  denoted by  
m m n n

*2 2 2 2

2 y x x zT = G s , s , s , s  such that  

 
 

 

m m n n

m 2 2 2 2
y x z

*2 2 2 2

y x x z2 2 2 2 2

y x z y *2

y
S , S , S , S

G s , s , s , s
G S , S , S , S = S   = 1

s
x

x





  

(12)

 
with  2 2 2 2

y x zS , S , S , Sx  and  
m m n n

*2 2 2 2

y x x zG s , s , s , s
 
satisfy the similar regularity conditions as 

given for  2 2 2 2

y x x zS , S , S , S  and  
m m n n

*2 *2 2 2

y x x zF s , s , s , s  in equation (10).   

 

Proceeding as above, it may be found that the class of estimators 2T  is also very wide and 

we present below some estimators of 2

yS  which are members of the class 2T .  

   in m in m

m m m in m m

m in in m

2 2 2 2

x x x x*2 *2 *2 2 2 *2

1i y 2i y 3i y 3 x x 4i y2 2 2 2

x x x x

s s s -  s
t = s ,  t =  s , t =  s + b s - s ,  t =  s exp ; i = 1, 2, . . ., 4

s s s + s

 
     

 
 

 

where 3b  is a real scalar.   

3.   Bias and Mean Square Errors of the Proposed Classes of Estimators 1 2T  and T   

The bias and mean square errors (M. S. E.s) of our proposed classes of estimators 

1 2T  and T  are derived up to first order of approximations under large sample assumptions 

and using the following transformations: 

   
m m

*2 2 *2 2

y y 0 x 1s = S 1+ e , s = S 1+ e ,x      
n n m

2 2 2 2 2 2

z 2 x 3 x 4s = S 1+ e , s = S 1+ e ,  s = S 1+ e .z x x  

 

Such that ie  < 1   (i = 0, 1, . . ., 4).  

 

We have derived the bias and mean square errors of the proposed classes of estimators 

1 2T  and T separately for the cases I and II of the two-phase sampling structure defined in 

section 2.1 and present them below. 

3. 1 Bias and Mean Square Errors of the Proposed Classes of Estimators under Case I 

In this section, we have considered that the second phase sample S of size m is drawn as 

a subsample from of the first phase sample Sof size n and we have the following results.  

           

       

         

2 * 2 2 * 2 2 2 2 2 2 2 *

0 0 1 1 2 2 2 3 2 1 4 1 1 0 1 01 0 1

0 2 2 02 0 2 0 3 2 01 0 1 0 4 1 01 0 1 1 2 2 12 1 2

2 2

1 3 3 4 2 1 1 4 1 1 2 3 2 4

E e = f C , E e = f C , E e = f C , E e = f C , E e = f C , E e e = f ρ C C ,

E e e = f ρ C C , E e e = f ρ C C , E e e = f ρ C C , E e e = f ρ C C , 

E e e = E e e = f C ,  E e e = f C ,  E e e =E e e 2 12 1 2= f ρ C C ,





  

(13) 

where  
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* 1 1
f =  - ,

mq + 2p N

 
 
 

1

1 1
f =  - ,

m N

 
 
 

2

1 1
f =  - ,

n N

 
 
 

3

1 1
f =  - ,

m n

 
 
 

1 1
f  =  - ,

mq + 2p n

 
  
 

 

N
a b c

abc i i i

i = 1

1
μ  = (y  - Y) (x  - X) (z  -Z) ;

N
  (a, b, c) being non negative integers,  

 
a b c

2 2 2
abc abc 200 020 002λ  =  μ μ   μ   μ ,

0 400 1 040 2 004C  = (λ - 1), C  = (λ  - 1), C  = (λ  - 1),

 01 220 400 040ρ  = λ  - 1 (λ  - 1)(λ  - 1) ,  02 202 400 004ρ  = λ - 1 (λ  - 1)(λ  - 1) ,

 12 022 040 004ρ  = λ  - 1 (λ  - 1)(λ  - 1) .  

 

From the above expectations, it is to be noted that:  

(a)  If p = 0 (there is no non-response), the above expected values of the sample 

statistics on which random non-responses occur coincide with the usual results.  

(b)  01ρ  is the correlation between  
2

y - Y
 

and  
2

x - X .  Similarly 12ρ  is the 

correlation between  
2

x - X
 
and  

2

z - Z
 
and 02ρ  is the correlation between 

 
2

y - Y and  
2

z - Z ;  see for instance Upadhyaya and Singh (2006).  

 

Now, to express the class of estimators 1T  in terms of e‟s, we expand  
m m n n

*2 *2 2 2

y x x zF s , s , s , s  

about the point  2 2 2 2

y x x zS , S , S , S in a third order of Taylor‟s series expansions and we have 

           
m m n n m m n n

*2 *2 2 2 2 2 2 2 *2 2 *2 2 2 2 2 2

y x x z y x x z 1 y y 2 x x 3 x x 4 z zF s , s , s , s = F S , S , S , S +d s - S +d s - S +d s - S d s -S
 

(14) 

        m m n n

2 2 2 2
*2 2 *2 2 2 2 2 2

11 y y 22 x x 33 x x 44 z z

1
d s - S + d s - S + d s - S +d s - S

2
  

        
m m m n m n

*2 2 *2 2 *2 2 2 2 *2 2 2 2

12 y y x x 13 y y x x 14 y y z z+2d s - S s - S +2d s - S s - S +2d s - S s - S  

        
m n m n n n

*2 2 2 2 *2 2 2 2 2 2 2 2

23 x x x x 24 x x z z 34 x x z z+2d s - S s - S +2d s - S s - S + 2d s - S s - S  

         
m m n n m m n n

m m n n

3

*2 2 *2 2 2 2 2 2 *2 *2 2 2

y y x x x x z z y x x z*2 *2 2 2

y x x

1
s -S + s -S s -S s -S  F s , s , s , s

6 s s s sz

     
      

     

 

where 

 
 

 
 

m m n n m m n n

2 2 2 2 2 2 2 2m m
y x x z y x x z

*2 *2 2 2 *2 *2 2 2

1 y x x z 2 y x x z*2 *2

y x
S , S , S , S S , S , S , S

d = F s , s , s , s ,  d = F s , s , s , s ,
s s

 

 
 

 
 

 
 

m m n n m m n n

2 2 2 2 2 2 2 2n n
y x x z y x x z

*2 *2 2 2 *2 *2 2 2

3 y x x z 4 y x x z2 2

x z
S , S , S , S S , S , S , S

d = F s , s , s , s ,  d = F s , s , s , s
s s

 

 
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and  11 22 33 44 12 13 14 23 24 34d , d , d , d , d , d , d , d , d , d are the second order partial derivatives of 

 
m m n n

*2 *2 2 2

y x x zF s , s , s , s at the point  2 2 2 2

y x x zS , S , S , S
 

and  
m m

*2 2 *2 2

y y y ys = S + θ s - S ,  

 
m m

*2 2 *2 2

x x x xs = S + θ s - S ,   
n n

2 2 2 2

x x xs = S + θ s - Sx
 ,  

m m

2 2 2 2

z zs = S + θ s - Sz z
  for  0 < θ < 1 .

 
 

In the light of the conditions mentioned for  
m m n n

*2 *2 2 2

y x x zF s , s , s , s  in equation (10), it is 

noted that  

 
 

 
 

m m n n

2 2 2 2m
y x x z

2
2 2 2 2 2 *2 *2 2 2

y x x z y 1 11 y x x z2
*2

y
S , S , S , S

 F S , S , S , S = S  d = 1 and d = F s , s , s , s = 0.
s






 

(15) 

 

Since the population variance 
2

xS  of the auxiliary variable x is unknown, therefore, we 

have to impose the constraint as 

2 3d = - d .         (16) 

 

Thus, expressing  
m m n n

*2 *2 2 2

y x x zF s , s , s , s  in terms of e‟s and neglecting the terms of e‟s having 

power greater than two we get  

       

 

m m n n

*2 *2 2 2 2 2 2 4 2 2 4 2

1 y x x z y 0 2 x 1 3 4 z 2 x 22 1 33 3 23 1 3 44 z 2

2 2 2 2 2 2

y x 12 0 1 13 0 3 14 y z 0 2 x z 24 1

1
T  = F s , s , s , s = S 1+e +d S e - e + d S e + S d e +d e +2d e e +d S e      (17)

2

                                          +2S S d e e +d e e +2d S S e e +2S S d e 2 34 2 3e +d e e
 

Similarly, expressing 2T  in terms of e‟s we have 

       

 

m m n n

*2 2 2 2 2 2 2 4 2 2 4 2

2 y x x z y 0 2 x 4 3 4 z 2 x 22 4 33 3 23 3 4 44 z 2

2 2 2 2 2 2

y x 12 0 4 13 0 3 14 y z 0 2 x z 24

1
T = G s , s , s , s = S 1+e + c S e - e + c S e + S c e +c e +2c e e + c S e      (18)

2

                                          +2S S c e e + c e e +2c S S e e +2S S c e 2 4 34 2 3e +c e e
   

 

where  

 
 

 
 

 
m m n n m m n n

2 2 2 2 2 2 2 2m n
y x x z y x x z

*2 2 2 2 *2 2 2 2 2

2 y x x z y x x z x2 2

x x
S , S , S , S S , S , S , S

 c = G s , s , s , s  = - G s , s , s , s as S  is unknown ,
s s

 

 

 
 

m m n n

2 2 2 2n
y x x z

*2 2 2 2

4 y x x z2

z
S , S , S , S

c = G s , s , s , s
s




 

and  22 33 44 12 13 14 23 24 34c , c , c , c , c , c , c , c , c  are the 

second order partial derivatives of  
m m n n

*2 2 2 2

y x x zG s , s , s , s  at the point  2 2 2 2

y x x zS , S , S , S . 

 

Taking expectations on both sides of the equations (17), (18) and using the results in 

equation (13), we obtain the expressions for bias B(.) and mean square errors M(.) of the 

proposed classes of estimators 1 2T  and T  to the first order of approximations as  

   
   

 

4 2 * 2 2 *

x 1 22 33 2 23 2 y x 12 13 2 01 0 1

1 1
4 2 2 2 2 2

44 2 z 2 14 2 y z 02 0 2 2 24 34 x z 12 1 2

S C d f +d f +2d f +2S S d f + d f ρ C C1
B T =E T -Y = ,

2 + d f S C +2d f S S ρ C C + 2f d +d S S ρ C C

 
 
 
   

(19) 
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   
   

 

4 2 2 2

x 1 22 1 33 2 23 2 y x 12 1 13 2 01 0 1

2 2 4 2 2 2 2 2

44 2 z 2 14 2 y z 02 0 2 2 24 34 x z 12 1 2

S C c f +c f +2c f +2S S c f + c f ρ C C1
B T =E T -Y = ,

2 + c f S C +2c f S S ρ C C + 2f c + c S S ρ C C

 
 
    

(20) 

   
2 * 4 2 2 4 2 2 4 2 2 2 2 2

1 1 y 0 2 x 1 4 2 z 2 2 x y 01 0 1 4 2 y z 02 0 2M T =E T -Y = f S C + d S f  C + d f S C + 2d f  S S ρ C C + 2d f S S ρ C C        (21)

                                

 

   
2 * 4 2 2 4 2 2 4 2 2 2 2 2

2 2 y 0 2 3 x 1 4 2 z 2 2 3 x y 01 0 1 4 2 y z 02 0 2M T =E T -Y =f S C + c f S C + c f S C +2c f S S ρ C C + 2c f S S ρ C C           (22)

                                 

3. 2 Bias and Mean Square Errors of the Proposed Classes of Estimators under Case II

 

If the second phase sample S is drawn independently of the first phase sampleS , then we 

have the following results. 

         
       

           

2 * 2 2 * 2 2 2 2 2 2 2

0 0 1 1 2 2 2 3 2 1 4 1 1

* 2

0 1 01 0 1 0 4 1 01 0 1 1 4 1 1 2 3 2 12 1 2

0 2 0 3 1 3 3 4 2 4 1 2

E e = f C , E e = f C , E e = f C , E e = f C , E e = f C ,

E e e = f ρ C C , E e e = f ρ C C , E e e = f C , E e e f ρ C C , 

E e e = E e e = E e e = E e e =E e e =E e e = 0





 



 (23)  

 

Proceeding as section 3.1 and using the results in equation (23), we have derived the 

expressions for bias B(.) and mean square errors M(.) of the proposed classes of 

estimators 1 2T  and T  to the first order of approximations as  

     4 2 * 4 2 * 2 2 2 2

1 1 x 1 22 33 2 44 2 z 2 12 x y 01 0 1 34 2 x z 12 1 2

1
B T =E T -Y = S C d f +d f +d f S C +2d f S S ρ C C +2d f S S ρ C C ,

2
 
 

 
(24)

 
     4 2 4 2 2 2 2 2

2 2 x 1 22 1 33 2 44 2 z 2 12 1 x y 01 0 1 34 2 x z 12 1 2

1
B T =E T -Y = S C c f +c f +c f S C +2c f S S ρ C C +2c f S S ρ C C ,

2
  

 
(25) 

     
2 * 4 2 2 4 * 2 2 4 2 * 2 2 2 2

1 1 y 0 2 x 2 1 4 2 z 2 2 x y 01 0 1 2 4 2 x z 12 1 2M T =E T -Y =f S C +d S f +f C +d f S C +2d f S S ρ C C -2d d f S S ρ C C ,
 

(26) 

and 

     
2 * 4 2 2 4 2 2 4 2 2 2 2 2

2 2 y 0 2 x 1 2 1 4 2 z 2 2 1 x y 01 0 1 2 4 2 x z 12 1 2M T =E T -Y = f S C +c S f +f C +c f S C +2c f S S ρ C C -2c c f S S ρ C C . (27)  

Remark 3.1.   

 The bias and mean square errors of the various estimators (indicated in section 2.3) 

belonging to the classes of estimators 1T  and 2T  can be easily obtained by substituting 

the suitable values of the derivatives in equations (19)-(22) and (24)-(27) as suggested by 

Singh et al. (2007) and Singh and Vishwakarma (2007).  

4.   Minimum M. S. E.s of the Proposed Classes of Estimators 1T and 2T  

It is obvious from the equations (21), (22), (26), (27) and remark 3.1 that the mean square 

errors of the proposed classes of estimators  iT i = 1, 2  depend on the different values of 

the derivatives 2 4 2 4d , d , c  and c . Therefore, we desire to minimize the mean square 

errors of the proposed classes of estimators iT  separately for two different cases of two-

phase sampling set up considered in this work and shown below:  
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Case I 

When second phase sample S is drawn as a sub sample of the first phase sample S , the 

optimality conditions under which proposed classes of estimators  iT i = 1, 2 have 

minimum M. S. Es are obtained as   
2 2

y 0 y 0

2 2 01 4 4 022 2

x 1 z 2

S C S C
d = c  = - ρ , d = c  = -  ρ

S C S C





      (28) 

 

Substituting these optimum values of the derivatives in equations (21) and (22), we have 

the minimum M. S. E.s of the classes of estimators  iT i = 1, 2 as  

   * 2 2 2 4

1 01 2 02 0 yMin. M T = f - f ρ - f ρ C S        (29) 

and     * 2 2 2 4

2 3 01 2 02 0 yMin. M T = f - f ρ - f ρ C S  .     (30) 

Case II 

When second phase sample S is selected independently of the first phase sample S ,  the 

optimality conditions which minimize the mean square errors of the proposed classes of 

estimators 1T and 2T  are obtained as   

       

* 2 * 2 2 2

01 y 0 01 12 y 0 1 01 y 0 1 01 12 y 0

2 4 2 42 2* 2 * 2
1 2 x 1 1 2 z 22 x 1 2 z 2

f ρ S C f ρ ρ S C f ρ S C f ρ ρ S C
d  = - , d = - ,  c  = - , c =  - 

f +f S C f +f S Cf +f S C f +f S C



  

(31) 

 

Substituting these optimum values of the derivatives 2 4 2 4d , d , c  and c in equations (26) 

and (27), we have the expressions of minimum M. S. E. of the classes of estimators 

 iT i = 1, 2 as  

 
 
 

 

 

2 2
* *

01 01 12* 2 4

1 2 0 y2* *
2 2

f ρ f ρ ρ
Min. M T = f - - f C S

f + f f + f

 
 
 
  

     (32) 

and   
 

 

 

 

2 2

1 01 1 01 12* 2 4

2 2 0 y2

1 2 1 2

f ρ f ρ ρ
Min. M T = f - - f C S .

f + f f + f

  
 
  

    (33) 

Remark 4.1: It is to be noted from optimality conditions in equations (28) and (31) that 

the optimum values of derivatives of the proposed classes of estimators  iT i = 1, 2

depend on unknown population parameters such as 0 1 2 C , C , C , 01 12 02ρ , ρ , ρ , 2 2

y xS  and S . 

Thus, to use such estimators one has to use guessed or estimated values of them. Guessed 

values of population parameters can be obtained either from past data or experience 

gathered over time; for instance see Murthy (1967) and Tracy et al. (1996). If the guessed 

values are not known then it is advisable to use sample data to estimate these parameters 

as suggested by Singh et al. (2007) and Gupta and Shabbir (2008). It could be seen that 

the minimum mean square errors of the classes of estimators remain same up to the first 
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order of approximations, even if population parameters are replaced by their respective 

sample estimates.    

5.   Efficiency Comparisons of the Proposed Classes of Estimators 1T and 2T  

To examine the performances of the proposed classes of estimators under two different 

cases of two-phase sampling set up as suggested in this paper, we have compared their 

efficiencies with some other estimators of population variance such as 
m

*2

ys
 

(sample 

variance estimator in presence of random non-response), *

Rt , 
*

gt , **

Rt  and 
**

gt .  Proceeding 

as sections 3 and 4, the M. S. E.s/ minimum M. S. E.s of these estimators are derived up 

to the first order of approximations under the Cases I and II of the two phase-sampling set 

up and presented below.  

Case I:  

* 4 * 2 2

R y 0 1 01 0 1M(t ) = S f C + f C - 2f ρ C C            (34) 

Min. * 4 * 2 2 2 2 2

g y 0 1 x 2 1 1 210 x 2 01 0 1 1 2 030 xM(t ) = S f C + w f  C + w f  C  +2w f  λ C + 2w f ρ C C + 2w w f  λ C        
(35) 

** 4 * 2 2

R y 0 3 1 3 01 0 1M(t ) = S f C + f C - 2f ρ C C           (36) 

Min. ** 4 * 2 2 2 2 2

g y 0 1 3 x 3 2 1 3 1 210 x 2 3 01 0 1 1 2 3 030 xM(t ) = S f C + w f C + f w C +2f w λ C + 2w f ρ C C + 2w w f λ C   (37) 

Case II:  

 * 4 * 2 * 2 *

R y 0 2 1 01 0 1M(t ) = S f C + f + f C - 2f ρ C C 
 

       (38) 

     * 4 * 2 2 * 2 2 * 2 * * *

g y 0 1 2 x 2 2 1 1 210 x 2 01 0 1 1 2 2 030 xMin. M(t )= S f C +w f +f C +w f +f C +2w f λ C +2w f ρ C C +2w w f +f λ C      
     

(39) 

 ** 4 * 2 2

R y 0 1 2 1 1 01 0 1M(t ) = S f C + f +f C - 2f ρ C C           (40) 

Min.      ** 4 * 2 2 2 2 2

g y 0 1 1 2 x 2 1 2 1 1 1 210 x 2 1 01 0 1 1 2 1 2 030 xM(t ) = S f C + v f +f C + v f +f C +2v f λ C +2v f ρ C C +2v v f +f λ C    
(41) 

where 

x
x

S
C = 

X
, 

 

 
 030 01 0 210 1 1 030 210 01 0 1

1 2 2 22 2
1 030x 1 030

λ ρ C  - λ C C λ λ  - ρ C C  
w = , w = ,

C - λC C - λ

 

   

*

030 01 0 210 1 1

1 * 2 2

2 x 1 030

f λ ρ C  - λ C C
w = ,

f + f C C - λ
  

 

  

*

030 210 01 0 1

2 * 2 2

2 1 030

f λ λ  - ρ C C  
 w = 

f +f C - λ
 , 

 

   
1 030 01 0 210 1 1

1 2 2

1 2 x 1 030

f λ ρ C  - λ C C
v = 

f +f C C - λ
 and 

 

  
1 030 210 01 0 1

2 2 2

1 2 1 030

f λ λ  - ρ C C  
v = .

f + f C - λ
 

 

The variance of 
m

*2

ys  can be obtained to the first order of approximation as   

 
m

*2 * 2 4

y 0 yV s = f C  S .             (42) 
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The performances of the proposed classes of estimators 
1T  and 

2T  under their respective 

optimality conditions are compared with the other estimators considered in this paper and 

their dominance have been shown by empirical and graphical means of comparisons.  

5.1. Numerical Illustration  

We have chosen four natural population data sets to illustrate the efficacious 

performances of the proposed classes of estimators 1T and 2T . The source of the 

populations, the nature of the variables y, x, z and the values of the various parameters 

are given as follows. 

Population I-Source: Cochran (1977, Page- 182)  

y: Number of „placebo‟ children. 

x: Number of paralytic polio cases in the placebo group. 

z: Number of paralytic polio cases in the „not inoculated‟ group.  

N= 34, n = 20, m = 12, 0C  2.32188, 1C  1.82685, xC = 1.2333, 01ρ = 0.6661,  

02ρ = 0.5657,     12ρ = 0.6005, 030λ =  1.5224 and 210λ = 1.4083. 

Population II-Source: Murthy (1967, Page- 399) 

y: Area under wheat in 1964. 

x: Area under wheat in 1963. 

z: Cultivated area in 1961.  

N= 34, n = 20, m= 12, 0C   1.6510, 1C   1.3828, xC = 0.7205, 01ρ =  0.9218, 02ρ =  

0.8914,  12ρ =  0.9346, 030λ =   0.9345 and 210λ =  1.0196.  

Population III- Source: Sukhatme (1970, Page- 185) 

y: Area under wheat in 1937. 

x: Area under wheat in 1936. 

z:Total cultivated area in 1931. 

N= 34, n = 20, m= 12, 0C   1.5959, 1C   1.5105, xC = 0.7678, 01ρ =  0.6251, 02ρ =  

0.8007,  12ρ =  0.5342, 030λ =  1.0982 and 210λ =  0.8886.   

Population IV-Source: Murthy (1967, Page- 288) 

y: Output. 

x: Fixed Capital 

z: Number of workers. 

N= 80, n = 60, m= 40, 0C   1.1255, 1C   1.6065, xC = 0.9485, 01ρ =  0.7319, 02ρ =  

0.7940,  

12ρ =  0.9716, 030λ =  1.2761 and 210λ =  0.5461. 
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For different choices of non-response rate p, the performances of the proposed classes of 

estimators
iT (i = 1, 2)  under their respective optimality conditions are compared with the 

other estimators considered in this work. The performances of the proposed classes of 

estimators iT (i = 1, 2)  have been shown in terms of the percent relative efficiencies and 

presented in Tables 1-2. The percent relative efficiencies of the proposed classes of 

estimators iT  with respect to an estimator t is defined as  

 i

M(t)
PRE = ×100

Min. M(T )
        (43) 

where

 

M(t) denotes the M. S. E./ minimum M. S. E. of an estimator t. 

Table 1:  PREs of the class of estimators 1T  with respect to other estimators when 

non-response situations occur on the study variable y as well as on the 

auxiliary variable x at the second phase sample 

Population I 

 

Estimators 

Case I Case II 

m

*2

ys  
*

Rt  
*

gt  
m

*2

ys  
*

Rt  
*

gt  

p = 0.05 166.5081 120.6259 118.1392 155.7111 123.3882 103.8387 

P = 0.10 167.2997 119.5488 116.9608 156.8451 122.0540 103.7100 

P = 0.15 168.0647 118.5078 115.8219 157.9718 120.7777 103.6017 

P = 0.20 168.8045 117.5012 114.7207 159.0911 119.5555 103.5122 

Population II 

 

Estimators 

Case I Case II 

m

*2

ys
 

*

Rt
 

*

gt
 m

*2

ys
 

*

Rt
 

*

gt
 

p = 0.05 588.3309 269.9376 267.2372 434.57853 177.4551 162.5814 

P = 0.10 592.7544 260.4811 257.6631 446.62791 175.1699 162.3549 

P = 0.15 597.0525 251.2929 248.3605 458.74101 172.8349 162.1025 

P = 0.20 601.2304 242.3616 239.3180 470.88961 170.4416 161.8155 

Population III 

 

Estimators 

Case I Case II 

m

*2

ys  
*

Rt  *

gt  
m

*2

ys  
*

Rt  *

gt  

p = 0.05 192.4331 156.9049 141.3974 144.8091 149.5909 100.7661 

P = 0.10 190.3244 153.9273 138.0406 145.7102 147.5202 100.6426 

P = 0.15 188.3483 151.1370 134.8949 146.6061 145.5357 100.5384 

P = 0.20 186.4927 148.5168 131.9409 147.4967 143.6320 100.4520 

Population IV 

 

Estimators 

Case I Case II 

m

*2

ys  
*

Rt  *

gt  
m

*2

ys  
*

Rt  *

gt  

p = 0.05 229.5861 221.2544 139.8620 200.5576 313.9710 114.2487 

P = 0.10 228.2167 219.6065 135.4945 202.2888 305.3023 113.3906 

P = 0.15 226.9754 218.1129 131.5356 203.8629 297.1642 112.5688 

P = 0.20 225.8451 216.7528 127.9307 205.2914 289.5040 111.7785 
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Table 2:  PREs of the class of estimators 
2T  with respect to other estimators when 

non-response situation occurs only on the study variable y at the second 

phase sample 

5.2. Graphical Interpretation 

For different choices of correlations 01ρ ,  02ρ  and 12ρ ,  we have demonstrated the 

performances of our proposed classes of estimators by pictorial representation. This could 

not only improve the readability of the results but also allow the comparison of a much 

denser grid for different correlation values. For different values of 01 02 12ρ , ρ , ρ , N = 500, 

n = 200, m= 100 and p = 0.10, the PREs of the classes of estimators 1T  and 2T  are derived 

with respect to 
m

*2

ys  and shown in Figures 1-4. 

Population I 

 

Estimators 

Case I Case II 

m

*2

ys  
**

Rt  **

gt  
m

*2

ys  
**

Rt  **

gt  

p = 0.05 159.1079 119.5632 117.4200 149.4356 122.4523 103.5997 

P = 0.10 153.2846 117.6359 115.7038 144.8337 120.3623 103.2646 

P = 0.15 148.0951 115.9182 114.1743 140.6857 118.4783 102.9626 

P = 0.20 143.4411 114.3779 112.8027 136.9275 116.7715 102.6889 

Population II 

 

Estimators 

Case I Case II 

m

*2

ys  
**

Rt  **

gt  
m

*2

ys  
**

Rt  **

gt  

p = 0.05 447.4754 229.0520 227.1995 351.2661 162.0725 148.8398 

P = 0.10 365.7847 198.7121 197.2952 302.4260 150.0071 139.3465 

P = 0.15 311.3616 178.4995 177.3726 266.8959 141.2298 132.4404 

P = 0.20 272.5062 164.0686 163.1489 239.8874 134.5576 127.1906 

Population III 

 

Estimators 

Case I Case II 

m

*2

ys  
**

Rt  **

gt  
m

*2

ys  
**

Rt  **

gt  

p = 0.05 183.7342 153.1377 139.7829 140.0319 147.1906 100.8178 

P = 0.10 174.3510 147.1832 135.3248 136.5194 143.0499 100.7461 

P = 0.15 166.2233 142.0253 131.4633 133.3175 139.2755 100.6807 

P = 0.20 159.1150 137.5144 128.0860 130.3869 135.8209 100.6208 

Population IV 

 

Estimators 

Case I Case II 

m

*2

ys  
**

Rt  **

gt  
m

*2

ys  
**

Rt  **

gt  

p = 0.05 206.5460 200.0258 136.3308 182.3425 286.3165 112.6068 

P = 0.10 188.2745 182.8725 130.1004 169.6207 257.5310 110.6591 

P = 0.15 174.1499 169.6122 125.2841 159.4229 234.4563 109.0978 

P = 0.20 162.9042 159.0548 121.4495 151.0657 215.5464 107.8183 
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       Figure 1:   PRE of 
1T  under Case I                         Figure 2:  PRE of 

2T  under 

Case I 

              

      Figure 3:  PRE of 1T  under Case II  Figure 4:  PRE of 2T  under Case II 

              

Note: r 01, r 02 and r 12 denote 01 02ρ , ρ and 12ρ  respectively in the Figures 1- 4. 

6.   Conclusions  

The following conclusions can be read-out from the present study. 

1.  From Tables 1 and 2, it is observed that 

(a)  For high positive values of the correlation coefficients 01 02ρ , ρ and 12ρ
 
(specially 

for the populations II and IV), the proposed class of estimators 1T  yields 

impressive gains in efficiency over the other estimators  
m

*2

ys , *

Rt and 
*

gt  and this 

behavior is visible from both the cases of the two-phase sampling set up as 
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suggested in this work. Similar situations are also observed for the class of 

estimators 2T  when it dominates the estimators 
m

*2

ys , **

Rt and 
**

gt .   

(b) For the different choices of non-response rate p, proposed classes of estimators

 iT i = 1, 2  are more efficient than the other estimators considered in this work. 

 

2.  From Figures 1-4, it is noticed that 

(a)  The percent relative efficiencies of iT (i = 1, 2)  are increasing with the increasing 

values of the correlation coefficients 01 02ρ , ρ  and 12ρ . This phenomenon indicates 

that the proposed classes of estimators perform more precisely, if information on 

high positively correlated auxiliary variables is available.  

 

Thus it is clear that the uses of auxiliary variables are highly rewarding in terms of the 

proposed classes of estimators. Hence, the propositions of the classes of estimators in the 

present study are highly justified as they unify several results. Therefore, the suggested 

classes of estimators are more attractive in comparison with the previous work of similar 

nature.   

7.   Recommendations of the Proposed Work for Real life Applications 

In real life survey it may be found that the character of interest is sensitive or stigmatizing 

such as drinking alcohol, gambling habit, drug addiction, tax evasion, history of induced 

abortions etc. Hence, a direct survey is likely to yield unreliable responses because 

presence of random non – response situations in the sampled units. The suggested 

estimation strategies for estimating the character of interest are recommended to the 

survey statisticians to handle these realistic situations.  

Acknowledgements: Authors are thankful to the reviewer for his valuable and 

constructive suggestions.   
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