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Abstract 

In this paper, a generalized exponential-cum-exponential estimator is proposed utilizing the two auxiliary 

variables based on average values of the networks in adaptive cluster sampling. The exponential ratio-cum- 

exponential ratio, exponential product-cum- exponential product, exponential ratio-cum- exponential 

product and exponential product-cum- exponential ratio type estimators are the special cases of proposed 

estimator using simple random sampling without replacement in adaptive cluster sampling. The expressions 

for the mean square error and bias of the proposed estimator have been derived. The class of special cases 

of proposed estimator may be used for estimating the finite population mean and comparable with 

estimators in case of high correlation but also useful when the correlation between study variable and 

auxiliary variables is low in the adaptive cluster sampling. The simulation studies have been carried out to 

demonstrate and compare the efficiencies of the estimators. It is shown that the proposed estimators are 

more efficient as compared to the mean per unit estimator in adaptive cluster sampling, modified ratio and 

modified product, exponential ratio and exponential product estimators in adaptive cluster sampling, under 

given conditions. 

Keywords: Transformed Population, Simulated Population, Expected Final Sample Size, 

Within Network Variance, Within Network Variances, Estimated Mean Squared Error, 

Comparative Percentage Relative Efficiency, Unlikely Assumption. 

1. Introduction 

The Adaptive Cluster Sampling (ACS) is suitable and efficient for the rare and clustered 

population. Examples of such clustered population includes: animals and plants of rare 

and endangered species, fisheries, uneven minerals exploration, pollution concentrations, 

epidemiology of sporadic diseases, noise problems, drug users, HIV and AIDS patients, 

criminals and hot spot investigations. The field studies for nature is a primary aspect of 

the motivation for expanding the studies of adaptive sampling designs. Adaptive cluster 

sampling method revealed the efficient estimation in contrast to the existing sampling 

designs for the rare and clustered population. For the rarely available clustered form 

population without showing any pattern, it is difficult to sample the nature. The 

environmental populations, such as plants and animals having patchy distribution of units 

have been the motivation for adaptive cluster sampling designs. Adaptive cluster 

sampling designs can make efficient outcome to guesstimate the mass of disease affected 

plants in particular cultivated region. The use of auxiliary information might be 

constructive to get better the efficiency of an estimator in adaptive cluster sampling case. 

For example, in an ornithological survey, it is likely to obtain improved results using 
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ACS to grasp a rare and clustered species. The count of a particular species in a locality is 

the study variable then changes in food availability, habitat, or temperature would be the 

auxiliary variables. Another example may be, the count of disease affected plants is the 

study variable in an agricultural survey and the auxiliary variable(s) might be the fertility 

of the ground, the cultivable region or the climate conditions. 

 

In adaptive cluster sampling the initial sample is selected by a conventional sampling 

design such as simple random sampling then the neighbourhood of each unit selected is 

considered if the value of the study variable from the sampled unit meet a  pre-defined 

condition C usually y > 0. The neighbouring unit is added and examined if the condition 

is satisfied and the process continues until the new unit meets the condition. The final 

sample comprises all the units studied and the initial sample. A network consists of those 

units that meet the predefined condition. The units that do not meet the specified 

condition are known as edge units. A cluster is a combination of network and edge units.  

The neighbourhood can be defined by social and institutional relationships between units. 

The first-order neighbourhood consists of the sampling unit itself and four adjacent units 

denoted as east (above), west (below), north (right), and south (left). The second-order 

neighbourhood consists of first-order neighbouring units and the units including 

northeast, northwest, southeast, and southwest units i.e. diagonal quadrats.  

 

Thompson (1990) first introduced the idea of the adaptive cluster sampling to estimate 

the rare and clustered population and proposed four unbiased estimators in adaptive 

cluster sampling. Smith et al (1995) studied the efficiency of adaptive cluster for 

estimating density of wintering water fowl and found that the efficiency is highest as 

compare to simple random sampling design when the within network variance is close to 

population variance. Dryver (2003) found that ACS performs well in a univariate setting. 

The simulation on real data of blue-winged and red-winged results shows that Horvitz-

Thompson type estimator was the most efficient estimator using the condition of one type 

of duck to estimate that type of duck. For highly correlated variables the ACS performs 

well for the parameters of interest. Chao (2004) proposed the ratio estimator in adaptive 

cluster sampling and showed that it produces better estimation results than the original 

estimator of adaptive cluster sampling. Dryver and Chao (2007) suggested the classical 

ratio estimator in adaptive cluster sampling (ACS) and proposed two new ratio estimators 

under ACS. Chutiman and Kumphon (2008) proposed a ratio estimator in adaptive 

cluster sampling using two auxiliary variables. Chutiman (2013) proposed ratio 

estimators using population coefficient of variation and coefficient of kurtosis, regression 

and difference estimators by using single auxiliary variable. 

2. Some Estimators in Simple Random Sampling 

Let a sample of size n is selected by using simple random sampling without replacement 

from the total number of units in the population N. The variable of interest and auxiliary 

variable are denoted by y and x with their population means   and   , population 

standard deviation Sy and Sx, coefficient of variation Cy and Cx respectively. Also ρxy 

represent population correlation coefficient between X and Y,  
1 1

n N
    and 
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j
jk jk

k

C
H

C
  , j k . The following estimators are available in simple random 

sampling: 

 

Cochran (1940) and Robson (1957) proposed the classical ratio and product estimators, 

respectively, for estimating the population mean as 

 
1

X
t y

x

 
  

 

,          (2.1) 

and 
2

x
t y

X

 
  

 
,          (2.2) 

The mean square error (MSE) of the estimators of (1) and (2) are 

 

   MSE ( 1t ) = 2 2 2 2y x xy x yY C C C C    
 

.    (2.3)  

and        MSE ( 2t ) = 2 2 2 2y x xy x yY C C C C    
 

.     (2.4) 

respectively.  

 

Bahl and Tuteja (1991) proposed the exponential ratio and exponential product estimators 

to estimate the population mean.  

3t exp
X x

y
X x

 
   

,       (2.5) 

4t exp
x X

y
X x

 
   

,        (2.6) 

The mean square error and bias of the exponential ratio estimator 3t  are 

 MSE( 3t ) 
2

2 2

4

x
y xy x y

C
Y C C C

 
   

 

.      (2.7) 

 2
3

3
( )

8 2

xy x y
x

C C
Bias t Y C

 
  

 

.      (2.8) 

The mean square error and bias of the exponential product estimator 4t  are 

MSE( 4t )
2

2 2

4

x
y xy x y

C
Y C C C

 
    

 

.      (2.9) 

 2
4

1
( )

8 2

xy x y
x

C C
Bias t Y C

 
   

 

.      (2.10) 

 

Upadhyaya et al. (2011) suggested generalized exponential ratio-type estimator using a 

real constant a  as  

 
5 exp

( 1)

X x
t y

X a x

 
  

  
.       (2.11) 

The several estimators may be deduced for different values of a . The Bahl and Tuteja 

(1991) estimator is a special case of (11) for a =2. 



Muhammad Shahzad Chaudhry, Muhammad Hanif 

Pak.j.stat.oper.res.  Vol.XI  No.4 2015  pp553-574 556 

The mean square error of 5t  is  

 MSE( 5t )  
2

2 2

2
1 2x

y yx

C
Y C aH

a

 
    

 
.     (2.12) 

which is minimum for a  = 
1

yxH
.  

The bias of 5t  is  

  
2

5 2
( ) 2 1 1

2

x
yx

Y C
Bias t a H

a


   
 

       (2.13) 

5t  
will be more efficient than classical ratio estimator if 

1

2 yx

a
H

 . 

Upadhyaya et al. (2011) also suggested generalized exponential product-type estimator 

for single-phase sampling using a real constant b  as  

 
6 exp

( 1)

x X
t y

X b x

 
  

  
.       (2.14) 

 

The mean square error of 6t  is  

 MSE ( 6t )  
2

2 2

2
1 2x

y yx

C
Y C bH

b

 
    

 
.     (2.15) 

which is minimum for 
1

yx

b
H

  . 

The bias of 6t  is  

 

2

6 2
( ) 3 2 2

2

x
yx

Y C
Bias t b bH

b


     .     (2.16) 

6t  
will be more efficient than classical product estimator if 

1

2 yx

b
H

  . 

3. Some Estimators in Adaptive Cluster Sampling 

Suppose a finite population of size N is labelled as 1,2,3,…,N  and  an initial sample of n 

units is selected with a simple random sample without replacement. Let 
yiw , xiw and 

ziw  denotes the average y-value , average x-value and average z-value in the network 

which includes unit i such that, 1

i

yi j
j Ai

w y
m 

  , 1

i

xi j
j Ai

w x
m 

   and  

1

i

zi j
j Ai

w z
m 

   respectively. Adaptive cluster sampling can be considered as simple 
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random sampling without replacement when the averages of networks are considered 

(Thompson, 2002; Dryver and Chao, 2007). Consider the notations 
yw , 

xw  and 
zw are 

the sample means of the study and auxiliary variables in the transformed population 

respectively, such that, 

1

1 n

y yi
i

w w
n 

  ,

1

1 n

x xi
i

w w
n 

  and 

1

1 n

z zi
i

w w
n 

  . Let Cwy, 

Cwx and Cwz represent population coefficient of variations of the study and auxiliary 

variables respectively. Let ρwxwy and ρwzwy represent population correlation coefficients 

between wx and wy  and wz and wy respectively. Define the following error terms, 

y
wy

w Y
e

Y


 ,  x

wx

w X
e

X


 , and z

wz

w Z
e

Z


 .   (3.1) 

 

Here 
wye , 

wxe  and 
wze are the sampling errors of the study and auxiliary variables 

respectively such that:  

      0wy wx wzE e E e E e         (3.2) 

 

 wx wy wxwy wx wyE e e C C    and  wz wy wzwy wz wyE e e C C   (3.3) 

 

 2 2
wy wyE e C    ,    2 2

wx wxE e C   and  2 2
wz wzE e C     (3.4) 
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wy

S
C

i
 , 

wij
wij

wi wj

S

S S
  , wi

wij wij
wj

C
H

C
  . 

, ,

, ,

i x y z

j x y z i j



 
 (3.5) 

 

Thompson (1990) developed an unbiased estimator for population mean in ACS based on 

a modification of the Hansen-Hurwitz estimator which can be used when sampling is 

with replacement or without replacement:   

7
1

1 n

yi y
i

t w w
n 

          (3.6) 

 
2

7
1

( )
1

N

yi
i

Var t w Y
N 


 


 .      (3.7) 

 

Dryver and Chao (2007) proposed a modified ratio estimator for the population mean 

keeping in view ACS:  

0

0

8
ˆ

yi
i s

xi
i s

w

t X RX

w





 
 
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 
 
 





        (3.8) 

 
2

8
1

( )
1

N

yi xi
i

MSE t w Rw
N 


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
 .     (3.9) 
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Shahzad and Hanif (2014) proposed modified product and exponential product estimators 

for the population mean keeping in view adaptive cluster sampling  using one auxiliary 

variable is: 

 9t x
y

w
w

X
 .         (3.10) 

10t exp x
y

x

w X
w

w X

 
  

 

.       (3.11) 

 

The bias and mean square error of these estimators are  

Bias 9t =  8 .wxwy wx wyE t Y Y C C         (3.12) 

MSE 9t =    2 2 2 2
8 2 .wy wx wxwy wx wyE t Y Y C C C C        (3.13) 

and 

Bias 10t =  
2

9 .
8 2

wxwy wx wywx
C CC

E t Y Y
  

     
 

   (3.14) 

MSE 10t =  
2

2 2 2
9 .

4

wx
wy wxwy wx wy

C
E t Y Y C C C

 
     

 

  (3.15) 

respectively. 

4. Proposed Generalized Exponential-Cum-Exponential Estimator in Adaptive 

Cluster Sampling 

Thompson (1990) first introduced the idea of the adaptive cluster sampling and modified 

Hansen-Hurwitz (1943) and Horvitz-Thompson (1952) type estimators. A variety of 

subsequent research efforts on adaptive cluster sampling was launched from Thompson 

(1990). However, how those adaptive design factors including the predefined condition 

(or magnitude of critical value), definition of neighbourhood affect the efficiency of ACS 

in comparison with the non-adaptive design (simple random sampling) and possible 

challenges arising from case to case are not concretely touched. The appended derivation 

process of ACS estimators for the specific design from Thompson (1990) can be used as 

a helpful reference for the development of the estimators for the other modifications of 

ACS. Chao (2004) proposed the ratio estimator, Dryver and Chao (2007) discussed 

classical ratio estimator in adaptive cluster sampling (ACS) and proposed two new ratio 

estimators under ACS, one of which is unbiased for ACS designs. Chutiman and 

Kumphon (2008) proposed a ratio estimator, and Chutiman (2013) proposed ratio 

estimators using population coefficient of variation and coefficient of kurtosis, regression 

and difference estimators by using single auxiliary variable. There is still need to address 

the efficiency issues and proposed better and better estimators suitable for the adaptive 

design. 

 

Following the Upadhyaya et al. (2011), the generalized form of the proposed exponential-

cum-exponential estimator utilizing two auxiliary variables may be written as 

GEt exp exp
( 1) ( 1)

x z
y

x z

X w Z w
w

X a w Z b w

    
     

     
.

        

(4.1) 
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Where, ,   and ,a b  are generalizing and optimization constants, respectively. In 

order to derive the bias and mean square error expressions, we may proceed as follows   

 GEt exp .
( 1) ( 1)

x z
y

x z

X w Z w
w

X a w Z b w

  
    

         

(4.2) 

5. The Bias and Mean Square Error of the Proposed Estimator 

Using the notations (3.1), we may rewrite the estimator (4.3) as 

GEt  
 

 
 

 

1 1
1 exp

( 1) 1 ( 1) 1

wx wz
wy

wx wz

X X e Z Z e
Y e

X a X e Z b Z e

    
     

      
,

 

(5.1) 

or 

GEt  
   

1 exp
1 ( 1) 1 1 ( 1) 1

wx wz
wy

wx wz

X X Xe Z Z Ze
Y e

X a e Z b e

    
     

             

, (5.2) 

or  

GEt  
       

1 exp
1 1 1 1 1 1 1 1

wx wz
wy

wx wx wz wz

e e
Y e

a e e b e e

  
   

               

, (5.3) 

or  

GEt  
   

1 exp wx wz
wy

wx wx wz wz

e e
Y e

a ae e b be e

  
   

    
,

    

(5.4) 

or 

GEt  1 exp
1 1

1 (1 ) 1 (1 )

wx wz
wy

wx wz

e e
Y e

a e b e
a b

 
  
   
       

                 

,

  

(5.5) 

or  

GEt  
1 1

1 1
1 exp 1 1 1 1wx wz

wy wx wz

e e
Y e e e

a a b b

         
             

        

,

 

(5.6) 

or 

GEt  
1 1

1 exp 1 1 1 1wx wz
wy wx wz

e e
Y e e e

a a b b

        
             

       
, (5.7) 

or  

GEt  
2 21 1

1 exp 1 1 .wx wx wz wz
wy

e e e e
Y e

a a a b b b

       
          

        

(5.8) 
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Expanding the exponential function (5.8) and ignoring the terms with power three or 

greater as 

 GEt  
2 21 1

1 1 1 1wx wx wz wz
wy

e e e e
Y e

a a a b b b

         
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      
 

           

2
2 21 1 1

1 1
2

wx wx wz wze e e e

a a a b b b
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(5.9) 

or  
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Taking expectation on both sides of (5.11), we get 
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   

(5.12) 

or 

 
2 22 2 21 1

1 1
2 2

wy wxy wy wzywx wz wz wxz
GE

C H C HC C C H
E t Y Y

a a b b ab a b

       
            

       

(5.13) 

or 

 
2 2 2

21 1
1 1

2 2

wxy wzywx wz wz wxz
GE wy

H HC C C H
Bias t Y C

a a b b ab a b

        
                      

(5.14) 
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The mean square error of GEt  is derived using (5.8). Ignoring the terms with power two 

or greater we get, 

 GEt  1 exp .wx wz
wy

e e
Y e

a b

   
     

  
    (5.15) 

 

Opening the exponential function in (5.15), ignoring the terms with power two or greater 

as 

 GEt  1 1 wx wz
wy

e e
Y e

a b

   
     

  
,     (5.16) 

or  

 GEt .wx wz
wy

e e
Y Y e

a b

  
    

 
     (5.17) 

 

Taking square and expectation on the both sides of (5.17) 

 
 

2
2 2 .wx wz

GE wy

e e
E t Y Y E e

a b

  
    

 
    (5.18) 

 

Using the notations (3.2-3.4), the (5.18) is obtained as  

 
2 2 2 2

2 2 2

2 2

2 wxwy wx wywx wz
GE wy

C CC C
E t Y Y C

aa b

  
     

  

   

2 2
.

wywz wwy z wxwz wx wz
C C C C

b ab

 
  

   

(5.19) 

 

After simplifications and using the notation in (3.5), the mean square error of GEt
 
is  

   
2 2

2 2

2 2

2
2 2 .wx wz

GE wy wyx wyz wxz

C C b
MSE t Y C aH bH H

aa b

     
            

    

 (5.20) 

 

In order to determine the optimum values of constants a  and b , after partial 

differentiation of (5.20) with respect to a and equating to zero, we get 

 

2 2 2 2
2

3 2 2

2 2 2
0wx wx wz

wyx wxz

C C C
Y H H

a a a b

    
    

 
   (5.21) 

or  

 .
wzx

wyx

a
H

H
b



 

  

       (5.22) 
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Partially differentiate (5.20) with respect to b  and equating to zero, we get 

 

2 2 2 2
2

3 2 2

2 2 2
0wz wz wz

wyz wxz

C C C
Y H H

b b ab

    
    

 
   (5.23) 

or  

 
wxz

wyz

b
H

H
a



 

  

.       (5.24) 

 

Solving (5.22) and (5.24) simultaneously, the optimum values of a  and b  are obtained 

as 

wyx wzx

a
H H M



  

.          where,     
2

wyz wyx wxz

wxwz

H H H
M

 


 
 (5.25) 

1
b

M
 .         (5.26) 

 

Substituting the values of ‘a’ and ‘b’ in (5.20), we get 

 MSE
minGEt  

2
2 2 2 2

wy wx wyx wzxY C C H MH
  

       
 

   2 2 2 .wz wxz wyx wzx wyzC M H H MH H M     


  (5.27) 

 

In ACS the initial simple random sample of suitable size is drawn and if any unit of interest 

intersect with this first sample first the neighbourhood of this firstly intersected unit of 

interest should be adapted for more units, the values of the population parameters can be 

estimated from these firstly intersect units. In other words, the values of the first network 

found can be used as sample estimates of the population parameters. That is,  

ˆ .
ˆ

ˆ
ˆ
wzx

wyx

a
H

H
b



 

 
 

       (5.28) 

1ˆ
ˆ

b
M

          (5.29) 

 

For rare and clustered populations, it is not possible for the investigator to deduce the values 

of the constants a and b by utilize all the resources. In rare situations the values of a and b 

may be estimated from the previous surveys.  

6.   Special Cases of Proposed Generalized Estimator 

The special cases of the proposed generalized estimator may be obtained by using the 

different values of the constants. 
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6.1   Exponential Ratio-Cum-Ratio Estimators 

The generalized ratio-cum-ratio estimator in the exponential form may be obtained for 

1 1and  
 
as  

 
GERRt exp

( 1) ( 1)

x z
y

x z

X w Z w
w

X a w Z b w

  
  

    
.

    

(6.1) 

 

For, 1, 1, 1 1a and b     , the estimator GEt  is given by,   

11t exp x z
y

X w Z w
w

X Z

  
  

 
.

     

(6.2) 

 

For, 1, 1, 1 2a and b     , the estimator GEt  is given by,   

12t exp x z
y

z

X w Z w
w

X Z w

  
  

 
.

     

(6.3) 

 

For, 1, 1, 2 1a and b     , the estimator GEt  is given by, 

13t exp x z
y

x

X w Z w
w

X w Z

  
  

 
.

     

(6.4) 

 

For, 1, 1, 2 2a and b     , the estimator GEt  is given by, 

14t exp x z
y

x z

X w Z w
w

X w Z w

  
  

  
.

     

(6.5) 

 

The bias  and mean square error  expressions of GERRt , 11t , 12t , 13t  and 14t may be 

obtained by using the different values of generalizing and optimization constants in 

(5.14) and (5.20) respectively.

  

6.2   Exponential Product-Cum-Product Estimators 

The product-cum-product estimator in the exponential form may be obtained for 

1 1and     as  

GEPPt exp
( 1) ( 1)

x z
y

x z

w X w Z
w

X a w Z b w

  
  

    
.

   

(6.6) 

 

For, 1, 1, 1 1a and b       , the estimator GEt  may be obtained as 

 15t exp x z
y

w X w Z
w

X Z

  
  

 
.      (6.7) 
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For, 1, 1, 1 2a and b       , the estimator GEt  may be obtained as 

 16t exp x z
y

z

w X w Z
w

X Z w

  
  

 
 .     (6.8) 

 

For, 1, 1, 2 1a and b       , the estimator GEt  may be obtained as 

 17t exp x z
y

x

w X w Z
w

X w Z

  
  

 
.      (6.9) 

 

For, 1, 1, 2 2a and b       , the estimator GEt  may be obtained as 

          18t exp x z
y

x z

w X w Z
w

X w Z w

  
  

  
.      (6.10) 

 

The bias and mean square error and expressions of GEPPt , 15t , 16t , 17t  and 18t may be 

obtained by using the different values of generalizing and optimization constants in 

(5.14) and (5.20) respectively.

  

6.3   Exponential Ratio-Cum-Product Estimators 

The ratio-cum-product estimators in the exponential form may be obtained for 

1 1and    as  

GERPt exp
( 1) ( 1)

x z
y

x z

X w w Z
w

X a w Z b w

  
  

    
.

   

(6.11) 

 

For, 1, 1, 1 1a and b      , the estimator GEt  may be obtained as 

 19t exp x z
y

X w w Z
w

X Z

  
  

 
.      (6.12) 

 

For, 1, 1, 1 2a and b      , the estimator GEt  may be obtained as 

 20t exp x z
y

z

X w w Z
w

X Z w

  
  

 
 .     (6.13) 

 

For, 1, 1, 2 1a and b      , the estimator GEt  may be obtained as 

 21t exp x z
y

x

X w w Z
w

X w Z

  
  

 
.      (6.14) 
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For, 1, 1, 2 2a and b      , the estimator GEt  may be obtained as 

22t exp x z
y

x z

X w w Z
w

X w Z w

  
  

  
.

     

(6.15)

 

 

The bias and mean square error bias expressions of GERPt , 19t , 20t , 21t and 22t may be 

obtained by using the different values of generalizing and optimization constants in 

(5.14) and (5.20) respectively.

 

6.4   Exponential Product-Cum-Ratio Estimators 

The product-cum- ratio estimators in the exponential form may be obtained for 

1 1and    as  

GEPRt exp
( 1) ( 1)

x z
y

x z

w X Z w
w

X a w Z b w

  
  

    
.

   

(6.16) 

 

For, 1, 1, 1 1a and b      , the estimator GEt  may be obtained as 

 23t exp x z
y

w X Z w
w

X Z

  
  

 
 .     (6.17) 

 

For, 1, 1, 1 2a and b      , the estimator GEt  may be obtained as 

 24t exp .x z
y

z

w X Z w
w

X Z w

  
  

 
      (6.18) 

 

For, 1, 1, 2 1a and b      , the estimator GEt  may be obtained as 

 25t exp x z
y

x

w X Z w
w

X w Z

  
  

 
.      (6.19) 

 

For, 1, 1, 2 2a and b      , the estimator GEt  may be obtained as 

26t exp .x z
y

x z

w X Z w
w

X w Z w

  
  

        

(6.20)

 

 

The bias and mean square error bias expressions of GEPRt , 23t , 24t , 25t and 26t may be 

obtained by using the different values of generalizing and optimization constants in 

(5.14) and (5.20) respectively.
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6.5   Exponential Estimators Using Single Auxiliary Information 

The proposed generalized estimator may be used to obtain many of the exponential 

estimators by using the different values of the constants. Few examples are as follows: 

 

For 0 0and   , the estimator may be obtained as 7t yw . 

For 1 0and   , the estimator GEt  may be obtained as 

GERt exp
( 1)

x
y

x

X w
w

X a w

 
  

  
.      (6.21) 

For 1, 0, 1and a    , the estimator GEt  may be obtained as 

27t exp x
y

X w
w

X

 
  

 
.       (6.22) 

For 1, 0, 2and a    , the estimator GEt  may be obtained as 

28t exp x
y

x

X w
w

X w

 
  

 
.       (6.23) 

 

For 0 1and   , the estimator GEt  may be obtained as 

 GERt exp
( 1)

z
y

z

Z w
w

Z b w

 
  

  
.

      

(6.24) 

 

For, 0, 1, 1and b    , the estimator GEt  may be obtained as 

 29t exp z
y

Z w
w

Z

 
  

 
.       (6.25) 

 

For, 0, 1, 2and b    , the estimator GEt  may be obtained as 

 30t exp z
y

z

Z w
w

Z w

 
  

 
.       (6.26) 

 

For, 0, 1and    , the estimator GEt  may be obtained as 

 GEPt exp
( 1)

z
y

z

w Z
w

Z b w

 
  

  
.       (6.27) 

 

For, 0, 1, 1and b     , the estimator GEt  may be obtained as 

31t exp z
y

w Z
w

Z

 
  

 
.

       

(6.28)
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For, 0, 1, 2and b     , the estimator GEt  may be obtained as 

32t exp z
y

z

w Z
w

Z w

 
  

 
.

       

(6.29)

 

 

The bias and mean square error expressions of GERt , 29t , 30t , GEPt , 31t  and 32t may be 

obtained by using the different values of generalizing and optimization constants in 

(5.14) and (5.20) respectively. 

7. Simulation Study 

To compare the efficiency of proposed estimators with the other estimators, a simulated 

population is used and performed simulations for the study. The condition C for added 

units in the sample is y > 0. The y-values are obtained and averaged for keeping the 

sample network according to the condition and for each sample network x-values and z -

values are obtained and averaged. For the simulation study ten thousands iteration was 

run for each estimator to get accuracy estimates with the simple random sampling 

without replacement and the initial sample sizes of 5,10,15,20 and 25. 

 

In adaptive cluster sampling, the final sample size is usually greater than the initial 

sample size. Let, E(v) denotes the expected final sample size in ACS, is sum of the 

probabilities of inclusion of all quadrats,  

1

( )
N

i
i

E v


  .         (7.1) 

 

In the adaptive cluster sampling the expected final sample size varies from sample to 

sample. For the comparison, the sample mean from a srswor based on E(v) has variance 

using the formula 

2
* ( ( ))

( )
( )

N E v
Var y

NE v

 
 .       (7.2) 

 

The estimated mean squared error of the estimated mean is 

 
^

2
* *

1

1
( )

r

i

MSE t t Y
r 

  .       (7.3) 

Where *t  is the value for the relevant estimator for the sample i and r is the number of 

iterations. 

 

The percentage relative efficiency is  

 

 

*

^

*

( )
100

Var y
PRE

MSE t

   .      (7.4) 
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7.1  Population  

In this population, we consider a pair of auxiliary variables. The pair has been taken from 

smith et al. (1995), the total area for original data is 5000 km
2
, which has been divided 

into 50 100-km
2
 quadrats in central Florida. In the pair, blue-winged teal data in (Table 

7.1) and Green- winged teal data in (Table 7.2) has been used as auxiliary variable x  and 

z  respectively.  

Table 7.1:   Blue-Winged Teal x (Smith et al., 1995) for Population  

0 0 3 5 0 0 0 0 0 0 

0 0 0 24 14 0 0 10 103 0 

0 0 0 0 2 3 2 0 13639 1 

0 0 0 0 0 0 0 0 14 122 

0 0 0 0 0 0 2 0 0 177 

Table 7.2:   Green-Winged Teal z (Smith et al., 1995) for Population  

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 35 75 0 

0 0 0 0 0 0 0 0 2255 13 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 24 

 

Dryver and Chao (2007) generated the values for the variable of interest using the 

following two models: 

 4 ii iy x                 where           i ~  0, iN x     (7.5) 

 4i xi iy w                where              i ~  0, xiN w     (7.6) 

 

The variability of the study variable is proportional to the auxiliary variable itself in 

model (7.5) whereas it is proportional to the within-network mean level of the auxiliary 

variable in model (7.6). Consequently, the within network variances of the study variable 

in the two networks consisting of more than one units are much larger in the population 

generated by model (7.5). 
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To evaluate the performance of proposed estimators, we simulate the values for variable 

of interest using the model (7.7), x  and z  have been used as auxiliary variables. Let, iy , 

ix  and iz denote the ith value for the variable of interest y, auxiliary variables x and z.      

 4 4i i i iy x z       where  i ~  0, i iN x z   (7.7) 

 

In simulated population (Table 7.3) the variance of study variable is proportional to the 

sum of the auxiliary variables itself. Thus, within network variances of the study variable 

in the networks consisting of more than one unit are expected to be much larger in the 

population generated by model (7.7). The variability will remain low if the study variable 

is simulated by utilizing the within-network mean level of the auxiliary variables. The 

adaptive cluster sampling is more suitable for the situation when within-network 

variances are sufficiently large. The model (7.7) provides the larger within network 

variances to ensure the better performance of estimators in adaptive cluster sampling. 

Table 7.3:   Simulated Values of y  under Model (7.7) using Pair-I 

0 0 12 20 0 0 0 0 0 0 

0 0 0 93 54 0 0 173 713 0 

0 0 0 0 8 11 9 0 63770 4 

0 0 0 0 0 0 0 0 52 486 

0 0 0 0 0 0 7 0 0 820 

 

According to the condition of interest there found 3 networks, from these 1 networks is of 

size one while the network (12,20,93,54,8,11,9) and network 

(173,713,63770,52,4,486,820) are of size 7 each. The within network variance of the 

study variable for the network (12,20,93,54,8,11,9)  is 1042.286,  while for the network 

(173,713,63770,52,4,486,820) the variance is 574239554.1. The overall variance of the 

study variable is 81231457. The within network variance accounts a large portion of 

overall variance. Thus, adaptive estimators are expected to perform better and more 

efficient than the comparable usual estimators. The conventional estimators are more 

efficient than the adaptive estimators if within-network variances do not account for a 

large portion of the overall variance (Dryver and Chao 2007). 
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Table 7.4:   Average values of Blue-Winged Teal (Smith et al., 1995) 

0 0 
7.57 7.57 

0 0 0 0 0 0 

0 0 0 
7.57 7.57 

0 0 
2009.4 2009.4 

0 

0 0 0 0 
7.57 7.57 7.57 

0 
2009.4 2009.4 

0 0 0 0 0 0 0 0 
2009.4 2009.4 

0 0 0 0 0 0 2 0 0 2009.4 

Table 7.5:   Average values of Green-Winged Teal (Smith et al., 1995)  

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
343.14 343.14 

0 

0 0 0 0 0 0 0 0 
343.14 343.14 

0 0 0 0 0 0 0 0 
343.14 343.14 

0 0 0 0 0 0 0 0 0 343.14 

Table 7.6:   Average Values of y  under Model (7.7)  

0 0 
29.57 29.57 

0 0 0 0 0 0 

0 0 0 
29.57 29.57 

0 0 
9429.7 9429.7 

0 

0 0 0 0 
29.57 29.57 29.57 

0 
9429.7 9429.7 

0 0 0 0 0 0 0 0 
9429.7 9429.7 

0 0 0 0 0 0 7 0 0 9429.7 

 

There found a very high correlation 0.999 between the study variable and auxiliary 

variables and this correlation remains same in the transformed population (Tables 7.4 -

7.6) as well. Thus, there is a high correlation between the sampling unit level as well as 

network (region) level. Dryver and Chao (2007) showed that usual estimators in srswor 

perform better than adaptive cluster sampling estimators for strong correlation at unit 

level but performs worse when having the strong correlation at network level.   
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Thompson (2002) investigated that adaptive cluster sampling is preferable than the 

comparable conventional sampling methods if the within network variance is sufficiently 

large as compared to overall variance of the study variable and presented the condition 

when the modified Hansen-Hurwitz estimator for adaptive cluster sampling have lower 

variance than variance of the mean per unit for a simple random sampling without 

replacement of size ( )E v  if and only if, 

 2 2

1

1 1
( )

( ) ( 1)
i

K

y i i
k i A

N n
S y w

n E v Nn N  

  
   

 
  ,   (7.8) 

or 2 2( )[ ]

[ ( ) ] Dy wy

E v N n
S S

N E v n





.      (7.9) 

 

Where within network variance is defined by  

2 2

1

1
( )

( 1)D

i

K

wy i i
k i A

S y w
N  

 


  .     (7.10) 

 

The overall variance of the study variable is 81231457 while in the transformed 

population this variance reduced to 10912964. Let us apply the condition (7.9) we have, 

Table 7.7:   Efficiency Condition for Population  

Sample Sizes Thompson Efficiency Condition 

n  ( )E v  2
yS  

2

DwyhS  

5 18.90 81231457 86046296 

10 28.76 81231457 86229699 

15 34.13 81231457 87818019 

20 37.44 81231457 90568533 

25 39.91 81231457 94096949 

 

It is clear from the efficiency conditions given in the table 7.7 that the Hansen-Hurwitz 

estimator in adaptive cluster sampling will have lower variance than the mean per unit 

estimator in the simple random sampling without replacement for the all initial sample 

sizes. In general, adaptive cluster sampling is preferable than the comparable sampling 

method if the within-network variance is sufficiently high as compared to the overall 

variance (Thompson2002). 
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Table 7.8a:   Comparative Percentage Relative Efficiencies for the Population  

( )E v  y  1t  2t  3t  4t  7t  8t  9t  10t  

18.90 100 *  0.97   453.2 18.97  133.9 * 12.24  49.89  

28.76 100 * 3.62   328.6 25.12  136.7 * 21.47  58.25  

34.13 100 * 7.66  261.8 32.05  148.6 0.01 28.01  64.90  

37.44 100 * 13.30  217.4 39.15  164.5 49708.7 33.35  75.42  

39.91 100 3541 20.26 185.9 47.46 187.8 177606.5 43.31 85.98 

Table 7.8b:   Comparative Percentage Relative Efficiencies for the Population  

11t  12t  13t  14t  15t  16t  17t  18t  19t  20t  21t  

245.50 287.84  282.75 352.37 0.00  0.09 0.08  16.85  130.99 324.39 1.18 

205.08 283.34 236.68 389.34 0.07 1.62 0.05  23.13  136.47 326.83 12.53 

230.30 405.77  303.64 736.78 0.68 5.03 1.47  30.67  144.75 364.51 25.61 

268.73 651.33  399.16 1538.82 2.69 10.46 4.73  37.42  166.99 427.11 42.14 

293.07 955.57 484.34 3984.26 6.42 16.74 9.93 44.04 189.33 479.40 61.25 

Table 7.8c:   Comparative Percentage Relative Efficiencies for the Population  

22t  23t  24t  25t  26t  27t  28t  29t  30t  31t  32t  

135.51 139.45 1.26 321.95 137.32 309.32 274.05 297.64 272.97 0.28  49.00  

139.03 139.49 11.40 214.16 134.97 339.82 281.67 347.27 282.63  4.49  57.44  

147.86 148.98 27.28 240.57 149.94 543.29 359.87 492.33 357.21 10.76 66.32  

169.47 165.93 43.34 271.33 168.39 879.07 460.38 807.57 457.90  

20.76  

76.41  

186.37 189.84 64.26 323.17 185.98 1347.11 592.46 1381.40 598.13 31.99  83.87 

 

The result of simulation studies are given in Table (7.8 a,b,c) for 32 different estimators 

including four estimators from srswor and twenty eight estimators from adaptive cluster 
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sampling for transformed population. The results of relative efficiencies under the 

comparable sample sizes in Table 7.8 (a, b, c) have shown the worse performance of 

conventional estimators under srswor because of the large variances of the networks of 

the study variable. Table 7.8 (a,b,c) indicates the better performance of adaptive cluster 

sampling estimators as compare to conventional estimators because of strong correlation 

between study variable and auxiliary variable at the network (region) level. The adaptive 

cluster sampling estimators will perform better than conventional estimators for a strong 

correlation at network level but week correlation at unit level (Dryver and Chao, 2004; 

Chao at el., 2010). 

 

Dryver and Chao (2007) assumed 0/0 as zero for the ratio estimator. The usual ratio 

estimator and ratio estimator in ACS did not perform and return no value (*) for the all 

the sample sizes. In this simulation study 0/0 is not assumed 0. The use of exponential 

estimators is better in adaptive cluster sampling than assuming an unlikely assumption for 

the ratio estimator in adaptive cluster sampling. 

8. Conclusion  

In adaptive cluster sampling estimators, the proposed estimators GEt are more efficient as 

compare to Dryver and Chao (2007) ratio estimator 8t  . The exponential estimators for 

two auxiliary variables are efficient as compared to other estimator. The exponential 

ratio-cum-ratio estimator 14t  gave maximum percentage relative efficiency which 

increases with the increase in sample size.  The performance of exponential ratio 

estimators remains better than all the other estimators and ratio estimators 1t  and 8t  did 

not perform in the usual sampling as well as adaptive cluster sampling at lower sample 

sizes. The adaptive exponential estimators perform better and better as initial sample size 

increases. Thus, it is proposed that for rare and clustered populations, like HIV patients in 

a locality, a rare type of monkeys in the forest, blind dolphins of river Sindh etc. the 

exponential estimators should be employed. The proposed estimators may be used when 

there are mild and moderate correlations between study and auxiliary variables and a 

simulation study is further needed in this respect. 
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Table 6:   Descriptive Measures of the Populations 

282.42X   
2 3716168x   6.8258    xC   0.999xz   

48.04Z   
2 101576.1z   6.6343zC   0.999xy   

1324.64Y   
2 81231457y 

 
6.8040yC   0.999yz   

282.42xw   2 495449.3wx   2.4923wxC 
 

0.999wxwz   

48.04zw   2 14465.82wz   2.5036wzC 
 

0.999wxwy   

1324.439yw   
2 10912964wy 

 
2.4943wyC 

 
0.999wywz   

 


