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Abstract 

Receiver Operating Characteristic (ROC) Curve is used for assessing the ability of a biomarker/screening 

test to discriminate between non-diseased and diseased subject. In this paper, the parametric ROC curve is 

studied by assuming two-parameter exponential distribution to the biomarker values. The ROC model 

developed under this assumption is called bi-exponential ROC (EROC) model. Here, the research interest 

is to know how far the biomarker will make a distinction between diseased and non-diseased subjects when 

the gold standard is available using parametric EROC curve and its Area Under the EROC Curve (AUC).  

Here, the standard error is used as an estimate of the precision of the accuracy measure AUC. The 

properties of EROC curve that explains the behavior of the EROC curve are also discussed. The AUC 

along with its asymptotic variance and confidence interval are derived.   

Keywords:  Two parameter bi-exponential ROC model, AUC and variance of AUC, 

Monte Carlo simulation. 

1.   Introduction 

1.1  Diagnostic Accuracy 

In a medical diagnosis, a subject is categorized into either non-diseased or diseased group 

(a binary classification) by using some clinical measurement based on the selected cut-off 

t. If the clinical measurement is „greater than or equal to‟ t, then the subject is labeled as 

diseased and if the measurement is „less than‟ t, then the subject is labeled as non-

diseased. The clinical measurements are often called as test results or test scores or 

Biomarker. The accuracy of a biomarker is defined as “its ability to distinguish the 

diseased group from non-diseased group”. The purpose of evaluating the potentiality of a 

biomarker in diagnosing a disease is to filter out the patients as those belonging to „high 

risk‟ and „no risk‟ for disease during the initial stage of medical diagnosis/screening 

process, because it is not necessary for all the in-patient to undergo a gold standard test 

(e.g. endoscopy) as it proves to be a costly, time consuming process and invasive.  

1.2  ROC curve and Diagnostic Accuracy 

The accuracy of a binary classification can be visualized as well as quantified by a 

renowned statistical technique called Receiver Operating Characteristic (ROC) curve. It 

is a plot of two probabilities namely Sensitivity versus 1- Specificity for various threshold 

t where the sensitivity can be defined as likelihood of classifying a diseased subject 

correctly and the specificity can be defined as likelihood of classifying a non-diseased 

subject correctly. The measure of accuracy explained by the plotted ROC curve is 
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quantified by Area Under the ROC curve (AUC). Hence, the ROC plot reports the 

accuracy visually and the AUC reports the accuracy numerically. 

1.3  Nomenclature 

Let the biomarker values of diseased subject by the random variable Y with Probability 

Density Function (PDF), ( )Yg y  and Cumulative Distribution Function (CDF), ( )YG y . 

Similarly, let the biomarker values of non-diseased subject by the random variable X with 

PDF, (x)Xf  and CDF, (x).XF Assume that X and Y are independent, continuous and Y > X  

this is due to the fact that higher values of the biomarker indicates a condition of disease 

in an individual which in turn implies mean of Y is greater than mean of X  for a better 

discrimination of subjects. 

 

Sensitivity of the biomarker can be evaluated using, ( ) ( ),YG t P Y t   which is the 

probability of correctly categorizing a diseased subject when a cut-off t for the 

classification is given. It is also known as “True Positive Rate” (TPR). Similarly, the 

Specificity of the biomarker can be evaluated using, F ( ) ( ),X t P X t   which is the 

probability of correctly categorizing a non-diseased subject for a given t. and it is also 

known as False Negative Rate (FNR). 1- Specificity is called as “False Positive Rate”  

(FPR). 

 

Then ROC curve is defined as a plot of TPR, ( )YG t  on the vertical axis versus the FPR, 

( )XF t  on the horizontal axis for different values of t, where t .     In other words, 

the mathematical model representing the ROC curve takes the form 

( ) ( );


   
1

Y XROC p G F p 0 p 1        (1.1) 

 

For an appropriate diagnostic test, the ROC curve should lie very close to upper left 

corner of the unit square.  

1.4  Properties 

Once the ROC curve is plotted, it is important to study the properties of it, in order to 

highlight some key understanding from the plot. It is known that a typical parametric 

ROC curve must satisfy the basic three properties viz. monotonicity, invariance to 

monotone increasing transformation and the slope defined at a particular threshold t 

(Krzanowski and Hand, 2002). Recently, Hughes and Bhattacharya (2013) have given a 

quite interesting property known as asymmetry property of the ROC curve for few ROC 

models viz. Bi-Exponential, Bi-Normal and Bi-Gamma. In this section, we have more 

generally discussed the properties satisfied by a parametric ROC curve. 

1. ( )ROC t  is monotonically increasing function i.e. 
( )

.

( )
X

dROC t
0

dF t

  

2. ROC(t) is said to be concave, if 
( )

( )

2

2

X

d ROC t
0

dF t
 and convex, if 

( )
.

( )

2

2

X

d ROC t
0

dF t
  
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3. The slope of the ROC curve at any operating point is equal to the ratio of PDF of 

diseased to PDF of non-diseased at cut-off point „t‟ (Krzanowski and Hand, 2002) 

is given by 

( )

( )

g t
slope

f t


           (1.2) 

4. If f(x) and g(y) denote the continuous PDF for non-diseased and diseased groups 

respectively. Let ( , )KL f g  denote the Kullback – Leibler (KL) divergence between 

the distributions of non-diseased and diseased group with f(x) as the comparison 

distribution and g(y) as the reference distribution (Hughes and Bhattacharya, 

2013). Then 

( )
( , ) ( ) ln

( )
D

f x
KL f g f x dz

g y


 
  

          

(1.3) 

where z is the common range of x and y i.e. {LL=max[LL(x), LL(y)], 

UL=[min(UL(x), UL(y)] where LL-Lower Limit, UL – Upper limit. D is based on 

z, let us represent x and y by z.     

(z)
( , ) (z) ln .

(z)
D

f
KL f g f dz

g

 
 
  

      (1.4) 

Similarly, ( , )KL g f  denote the KL divergence between the distribution of diseased 

and non-diseased population with g(y) as the comparison distribution and f(x) as 

the reference distribution, then 

   
( )

( , ) ( ) ln

( )
D

g y
KL g f g y dz

f x


 
  

 

            (1.5) 

where z is the common range of x and y i.e. {LL=max[LL(x), LL(y)], 

UL=[min(UL(x), UL(y)] where LL-Lower Limit, UL – Upper limit.  D is based 

on z, let us represent x and y by z. Hence we have,   

(z)
( , ) (z) ln .

(z)
D

g
KL g f g dz

f

 
 
  

       (1.6) 

It is to be noted that ( , )KL f g and ( , )KL g f  are positive and ( , )KL f g = ( , )KL g f =0, 

if and only if ( ) ( ).f x g y  These two measures tell us about the asymmetry of 

ROC curve about the negative diagonal of the ROC plot. If ( ,  )KL f g < ( , )KL g f , 

then the ROC curve is said to be TPR asymmetric and if ( , )KL f g > ( , )KL g f  then 

the ROC curve is said to be FPR asymmetric.   

5. ROC(t) is invariance with respect to any monotonically increasing transformation. 

 

Result: 1 (Proper ROC curve): The concavity property of ROC curve implies Proper.  A 

ROC curve is said to be a proper ROC curve if it never crosses the chance line (the line 

connecting the co-ordinates [0, 0] and [1, 1]). Otherwise, TPR is a strictly increasing 

function over the range of all possible FPR.  
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Proof: Consider any two points „x‟ and „y‟ (say) where 0 x,  y 1   on the FPR.  

 

Fig. 1   A proper ROC curve in the interval [x, y] 
 

By the definition of concavity, the line segment connecting the point on the ROC curve 

parallel to x and y never lies above the curve. If we take the extreme point i.e., x=0 and 

y=1, it becomes the chance line which never lies above the curve. Hence we have proved 

that the concavity property of ROC curve implies it is also proper. 

 

Area under the ROC curve is the frequently used measure for quantifying the biomarker 

or performance of a diagnostic test. It is defined as the probability that in a randomly 

selected pair of non-diseased and diseased subjects, the biomarker value of diseased 

subject is higher than the non-diseased subject. The analytical expression for AUC is 

given by 

(Y X) ( ) ( ).1
0 Y XAUC P G t dF t         (1.7) 

 

The evaluation of AUC and its inference are the crucial part of ROC curve analysis.  

 

The classic „bi-normal‟ ROC model consists in assuming normal distribution to the 

biomarker values from diseased and non-diseased groups while modeling the ROC curve. 

Many authors have encountered intensive study on parametric bi-normal ROC curve in a 

diversified directions such as by using Bayesian approach (O. Malley et al. 2002), 

regression modeling (Zhang, and Pepe 2012), pooling the biomarkers when drawing 

sample is expensive (Mumford et al. 2006), limit of detection when the biomarkers are 

unobserved (Perkins, Schisterman, and Vexler 2006), etc., especially for bi-normal ROC 

model. A very similar work of analyzing the ROC curves based on other distributional 

assumptions are bi-lomax ROC curve using Lomax distribution (Campbell and 

Ratnaparkhi 1993), bi-logistic ROC model using logistic distribution (Oglive, and 

Creelman 1968) and proper bi-gamma model using gamma distribution (Dorfman et al. 

1996) for rating data. The ROC curve modeling for two discrete distributions viz. 

Uniform, Triangular and two continuous distributions such as Normal and Beta (Marzban 
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2004), bi-exponential ROC model using one parameter exponential distribution (Betinec 

2008 and Pundir and Amala 2014). Betinec has provided an analysis of ROC curves 

based on Exponential distribution to compare two classification methods namely Linear 

discriminant analysis and Support Vector machine. Bi-generalized exponential ROC 

model (Hussian 2011), bi- lognormal ROC model makes use of lognormal distribution 

(Amala and Pundir 2012), bi-rayleigh (Pundir and Amala 2012a) and left truncated bi-

rayleigh ROC model using Rayleigh distribution (Pundir and Amala 2015). Pundir and 

Amala 2014d have studied the constant shape bi-weibull ROC curve using Weibull 

distribution and a review of all parametric ROC curves have been presented by Pundir 

and Amala 2014a) and bi-variate bi-lognormal ROC model (Pundir and Amala 2015). 

 

In this paper, the bi-exponential ROC curve is studied by assuming two parameter 

exponential distribution along with its properties, asymptotic variance and confidence 

interval for AUC. This paper is organized as follows: In Section 2, Bi-exponential ROC 

model, its properties and Maximum Likelihood Estimation of parameters are discussed. 

Section 3, provides estimation of AUC, asymptotic distribution and confidence interval 

for AUC. In Section 4, the proposed theory is validated by using Monte Carlo Simulation.  

2.   Two Parameter Bi-Exponential Roc Model 

Let Z be a random variable that follows two parameter exponential distribution with scale 

parameter λ and location parameter γ which is denoted by Z~exp (λ, γ). It possess the PDF 

as 
( )

( , , ) ; , .
z

Zf z e z 0
 

    
 

          (2.1) 

 

The CDF of Z is given by  

( )
( ) ( ) , , z .

z

ZF z P Z z 1 e 0
 

 
 

           (2.2) 

 

Let us assume that X and Y are independent and exponentially distributed with different 

parametric values (λx, γx) and (λy, γy) respectively. Notationally, X ~ exp(λx, γx) and Y~ 

exp(λy, γy) with the constraint γy>γx, λx>λy. This restrictive condition is because to satisfy 

the assumption of higher values of biomarker values of the diseased subjects. The ROC 

model developed under this assumption is represented by “EROC”. 

 

The FPR of  EROC curve at the threshold „t‟ is found to be   

F ( ) ( ) [- ( - )]X x x x
t

t P X t exp x  dx  


     

              [ ( )].x xexp t            (2.3) 

 

The TPR of  EROC curve at the threshold „t‟ is found to be  

G ( ) ( ) [ ( )]Y y y y
t

t P Y t exp y  dy  


      

        [ ( )]y yexp t                 (2.4) 
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where the parameters can be estimated from the sample data by any of the standard 

estimation procedure. If X and Y are two independent random variables of size „m‟ and 

„n‟ respectively, with PDF given in (2.1), the MLE of parameters (Johnson, Kotz and 

Balakrishnan, 2004) are determined as follows: 

   
(1)

(1) (1)
1 1

ˆ ˆ ˆ, ,x y xm n

i j
i j

m n
x

x x y y

  

 

 

  

 
   and (1)

ˆ
y y     (2.5) 

where (1) 1 2 3( , , ... )mx min x  x x x
 
and (1) 1 2 3( , , ... )ny min y  y y y . By substituting the above 

estimates in (2.3) and (2.4), one would get the estimates of ( )
X

F t  and ( )YG t . By plotting 

( )
X

F t  on the horizontal axis and ( )YG t
 on the vertical axis, one will get the EROC curve.  

Aliter: 

One can also obtain an analytical form of the EROC curve as follows: From (2.3), we get 

the expression for threshold „t’ as 

ln ( )
.X

x

x

F t
t 


           (2.6) 

 

Since, ROC model is TPR as a function of FPR. By substituting (2.6) in (2.4), we can get 

the two parameter Bi-exponential ROC model as 

lnF ( )
( ) ( ) X

y x y

x

t
EROC t exp   

  
  

  
  


 

             [ ( )] F ( ) ;

y

x
y y x X X x y y xexp t  0 F (t) 1, , > . 




          

  
(2.7) 

 

Plotting EROC(t) along y-axis and ( )
X

F t
 along x-axis for different values of t, we get an 

estimate of EROC curve. Now, we will discuss some of the properties of two parameter 

exponential ROC curve.  

2.1  Properties and Characteristics 

1.   EROC curve is monotonically increasing in nature for 
y x

 > . 

Proof: Since, the first derivative of EROC curve with respect to ( )
X

F t is positive i.e. 

  1
(t) [ ( ] F ( ) 0.

( )
)


 
 
   

y

x

y

y y x X

X x

d
EROC exp t

dF t






  


    (2.8)

 

EROC curve is monotonically increasing in nature. 
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Aliter:  

Consider two FPR values 1
( )

X
F t

 and 
2

( )
X

F t  such that 1
( )

X
F t <

2
( ).

X
F t  Now raising the 

power 
y

x



  

and multiplying the constant exp[ ( - )],
y y x

     the inequality remains the same 

and hence 

 
( ) ( )1 2[ ( )] ( ) [ ( )] ( )

y y

x xy y x X y y x Xexp F t exp F t

 

      - < -  

1 2( ) ( ).EROC t EROC t<
       

(2.9) 

 

Hence, the EROC curve is monotonically increasing. 

 

2.   EROC curve is concave when 
y x

 > and proper as long as it is concave. 

 Proof: The second derivative of EROC(t) is given by 

 
2

2

2
(t) 1 [ ( )] F ( ) 0.

( )


 
 
    

 
 
 

y

x

y y

y y x X

x xX

d
EROC exp t

dF t





 
  

 
   

(2.10) 

The ratio 
y

x




 will always be less than one since we assumed that 

y x
 >  and hence 

the term 1
y

x






 
 
 

0,  [ ( )] 0
y y x

exp   - >  and   2
F ( ) 0

y

xX t






 
 
    since 0≤ ( )

X
F t ≤1. On 

the whole, we will get 
2

2
(t)

( )X

d
EROC

dF t
< 0 for 

y x
 > . Hence, EROC curve is concave 

in nature and by using result 1, it is also proper. 

 

Though normal distribution is thought to fit many real world datasets (Hanley, 1988), 

it is not concave in nature in [0,1] i.e. the Bi-Normal ROC curve may lies below the 

chance line which in turn reduces the AUC. Therefore, we prefer a model that 

estimates ROC curve for biomarker which is concave in nature. 

 

3.   The slope of the EROC curve at the threshold „t‟ is found as 

 

( ) {t( ) ( )}.
y

x y y y x x

x

slope t exp   


     


      (2.11) 

 

4.   EROC curve is TNR asymmetric. 

Proof:  The KL divergence between the distribution of diseased and non-diseased 

group with f(x) as the comparison distribution and g(x) as the reference distribution 

has been derived as 

( , ) [ ( )] 1 ( ) ln .
y x

x x y x x y

x y

KL f g exp
 

     
 

     
  
  
  

    (2.12) 
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Similarly, the KL divergence between the distribution of non-diseased and diseased 

group with g(x) as the comparison distribution and f(x) as the reference distribution 

has been given as 

 

(g, f) 1 ( ) ln .
yx

x y x

y x

KL


  
 

    
 
 
 

      (2.13) 

It is found that ( , )KL f g > ( , )KL g f . A numerical check for this condition is also 

presented in simulation studies. These two divergence measures would be zero, if the 

non-diseased and diseased groups are identical. Hence, we have proved that, the 

EROC curve is TNR asymmetric.  

 

5.  EROC curve is invariance with respect to monotonically increasing transformation. 

3.   AUC of EROC Curve and Its Asymptotic Confidence Interval 

Let X and Y be two independent and continuous random variables representing non-

diseased and diseased group respectively, following two parameter exponential 

distribution individually with respective parameters ( )x x,  
 
and ( ).

y y
,    According to 

the relationship between x  and y, AUC of EROC takes two different forms which are 

given as follows. 

(i)    If ,x y  then the AUC is obtained as 

( ) [ ( )] [ ( )]
y x

y
x x x y y yP Y X exp x exp y dxdy 
     

        

                           1 ( ) .
y

x x y

x y

exp


  
 

  


        (3.1) 

(ii)    If ,x y  then the AUC is obtained as 

 ( ) ( ) ( )
x x x x x y y yP Y X exp x exp y dxdy       

         
 

                            ( )
x

y y x

x y

exp .   


  
 

 


        (3.2) 

Hence, the AUC takes the following form  

exp ( - )                   

      

1 - exp ( - )               .     

x

y y x x y

x y

y

x x y y x

x y

for

AUC

for


    

 


    

 










  



   
    

(3.3) 

 

The MLE of AUC can be numerically be obtained by substituting the estimates from the 

sample data by using (2.5) with the help of invariant property of MLE (Casella and 

Berger, 2002). 
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Theorem 1: If ˆ,  then (AUC AUC)m n m n    tends to be normally distributed 

with mean zero and variance,

 

     

  2 2 2 2 22
2

2 2 2 2 2

2 2

2 ( )
[ 1 ( )( )]

( ) ( ) ( )

2 [ 1 ( )( )] 2
.

( ) ( )

x x y y x y x yx
x y y x

y x y x y x

y x y x x y x y

y x y x

exp

m n m n

m n


       

  

   
 

 











       
    

     

       

   

 

 

Proof: Let ( / , )L x y ; '( , , , )x y x y    
 

be the likelihood function of the sample 

observations from X and Y which is given by  

1 1

ln ln ( ) ln ( ).
m n

x x i x y y j y
i j

L m x n y     
 

      
                   (3.4) 

 

Asymptotic normality of MLE, states that a consistent solution of the likelihood equation 

is asymptotically normally distributed about the true value  i.e.  1ˆ ~ , ( ) .N I  
  

1ˆ( ) (0, ( )).N N I


            (3.5) 

 

The I(θ) is the Fisher Information matrix is given by 

2 2 2 2

2

2 2 2 2

2

2 2 2

2

ln ln ln ln

ln ln ln ln

( )

ln ln ln

x y x x x yx
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Since area under the EROC curve is a function of parameters 
'
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will adopt the delta method for finding the approximate variance. ˆ( )V AUC  is obtained as 
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The estimate of variance is obtained by substituting the estimates of the parameters 

x x,    and .y y,    Hence,  
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where AUC is the true area under the ROC curve. Thus, it is proved that 
ˆ ~ (AUC, )AUC N  . Numerically, this result can be visualized from a numerical example 

presented in the simulation studies. 

 

The standard error of ˆAUC  can be obtained by taking square root of ˆ( )V AUC  in (3.8). The 

100(1-α) % confidence interval is obtained by  

 

2

ˆ ˆ[ ( ) ]AUC Se AUC Z         (3.10) 

where α is the level of significance and Zα/2 is the critical value. 
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4.   Numerical Example 

(i)  Simulation studies 

In this Section, we observed the behavior of asymptotic variance of AUC by using Monte 

Carlo simulation. We have considered four different samples of size (m, n) = (30, 30) 

with different parametric values for λx and λy. The MLE of , ,x x    
y and 

y  can be 

obtained by using (2.5). The assumed parametric values, ˆ ,AUC  ˆ( )Se AUC  and 95% 

confidence interval for ˆAUC  of EROC curve using asymptotic MLE and Monte Carlo 

methods are presented in Table 1. 

Table 1:  Estimated parameters, ˆ ,AUC  ˆ( ),Se AUC  and 95% confidence interval for 

ˆAUC  of EROC curve using asymptotic MLE and Monte Carlo methods  

Description Asymptotic MLE method 
Monte Carlo 

method 
Y X  

γx=0.15 

γy=0.99 

λx=4.50 

λy=0.82 

ˆ ˆ( ( ))AUC Se AUC  

CI (95%) 

0.1577 (0.0061) 

0.9975 (0.0354) 

5.4691 (0.9985) 

0.8086 (0.1719) 

 0.9985 (0.0020) 

[0.9947, 1.0000] 

0.1573 (0.0074) 

1.0301 (0.0394) 

4.8354 (0.9375) 

0.8799 (0.1692) 

0.9966 (0.0029) 

[0.9909, 1.0000] 

1.7192 

γx=0.15 

γy=0.44 

λx=2.00 

λy=1.00 

ˆ ˆ( ( ))AUC Se AUC  

CI (95%) 

0.1846 (0.0119) 

0.4674 (0.0186) 

2.8006 (0.5113) 

1.7937 (0.3275) 

 0.8232 (0.0864) 

[0.6539, 0.9935] 

0.1734 (0.0133) 

0.4458 (0.0255) 

2.6760 (0.5088) 

1.3954 (0.2683) 

0.8289 (0.0854) 

[0.6625, 0.9973] 

0.9211 

γx=0.16 

γy=0.42 

λx=1.80 

λy=1.30 

ˆ ˆ( ( ))AUC Se AUC  

CI (95%) 

 0.1788 (0.0612) 

0.4509 (0.0459) 

1.8325 (0.3346) 

1.3761 (0.2512) 

0.7395 (0.1081) 

[0.5265, 0.9526] 

0.1784 (0.0184) 

0.4458 (0.0255) 

1.9299 (0.3728) 

1.3890 (0.2642) 

0.7450 (0.1083) 

[0.5327, 0.9573] 

0.3963 

γx=0.18 

γy=0.32 

λx=2.5 

λy=2.0 

ˆ ˆ( ( ))AUC Se AUC  

CI (95%) 

0.1826 (0.0126) 

0.3288 (0.0155) 

2.6462 (0.4831) 

2.1457 (0.3918) 

0.6958 (0.1179) 

[0.4647, 0.9270] 

0.1933 (0.0132) 

0.3367 (0.0165) 

2.6804 (0.5108) 

2.1459 (0.4101) 

0.6932 (0.1045) 

[0.4884, 0.8980] 

0.23428 

*CI : Confidence Interval 
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In Table 1, first column represents the assumed parametric values, second column 

represents the MLE of parameters with their standard errors given within the parenthesis 

along with the 95% asymptotic confidence interval for ˆ ,AUC the third column provides the 

Monte Carlo estimates of parameters with their standard errors given within parenthesis 

along with the 95% confidence interval for ˆAUC  and the final column represents the 

difference between the mean of diseased  Y  and the mean of non-diseased  X samples 

i.e. ( )Y X  As far as the discrimination is concerned, the measure (Y X ) indirectly tell 

us the degree of separation between the two groups.  

 

We also observe that, as the measure ( )Y X  or the deviation between the estimated 

parameters of non-diseased and diseased group increases, the AUC tends to increase 

which in turn decreases the standard error of AUC. We also notice that there is no major 

difference in the estimates of parameters and ˆ ,AUC  obtained by asymptotic and Monte 

Carlo methods from Table 1. The EROC curves for different parametric values are 

plotted in Figure 1.   

  

Fig. 1  EROC curve for different  

values of AUC 

Fig. 2  Histogram of the AUC statistic 

 

In support of the theorem1, we have plotted the values of the statistic, AUC in the 

following Figure.  
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Table 2:  ˆ ,AUC  ˆ( ),Se AUC  95% asymptotic confidence interval for ˆAUC  of EROC 

curve for different values of parameters 

Parametric  

values 

Sample size 

(5, 5) (10, 10) (30, 30) (50, 50) (80, 80) (100, 100) 

γx=0.15;  

γy=0.99; 

λx=4.5;  

λy=0.82 

0.9985 

0.0046 

[0.9896, 

1.0000] 

0.9985 

0.0031 

[0.9925, 

1.0000] 

0.9985 

0.0018 

[0.9952, 

1.0000] 

0.9985 

0.0014 

[0.9960, 

1.0000] 

0.9985 

0.0011 

[0.9966, 

1.0000] 

0.9985 

0.0010 

[0.9968, 

1.0000] 

γx=0.16;  

γy=0.42; 

λx=2.5;  

        λy=1.3 

0.8232 

0.2199 

[0.3922, 

1.0000] 

0.8232 

0.1520 

[0.5253, 

1.0000] 

0.8232 

0.0864 

[0.6539, 

0.9925] 

0.8232 

0.0667 

[0.6925, 

0.9539] 

0.8232 

0.0526 

[0.7200, 

0.9263] 

0.8232 

0.0470 

[0.7309, 

0.9154] 

γx=0.16;  

γy=0.42; 

λx=1.80; 

λy=1.30 

0.7395 

0.2778 

[0.1951, 

1.0000] 

0.7395 

0.1916 

[0.3640, 

1.0000] 

0.7395 

0.1087 

[0.5265, 

0.9526] 

0.7395 

0.0839 

[0.5751, 

0.9039] 

0.7395 

0.0662 

[0.6098, 

0.8693] 

0.7395 

0.0592 

[0.6236, 

0.8555] 

γx=0.18;  

γy=0.32; 

λx=2.50; 

λy=2.00 

0.6958 

0.3020 

[0.1039, 

1.0000] 

0.6958 

0.2080 

[0.2881, 

1.0000] 

0.6958 

0.1179 

[0.4647, 

0.9270] 

0.6958 

0.0910 

[0.5175, 

0.8743] 

0.6958 

0.0718 

[0.5552, 

0.8366] 

0.6958 

0.0640 

[0.5701, 

0.8217] 

 

In Table 2, the data has been generated by assuming different parametric values for 

various sample sizes namely {(5, 5), (10, 10), (30, 30), (50, 50), (80, 80), (100, 100)}. 

The first element in each row represents the accuracy; second element is the standard 

error of  ˆ ,AUC  the third and fourth value being the lower and upper confidence limits. It is 

obvious that the asymptotic estimate of standard error holds good for large sample size. 

As we go through the columns, the standard error tends to decrease and the confidence 

intervals get narrow as the sample size increase. 

(ii) Real life example 

The proposed method is applied to Prostate cancer markers(PSA). PSA is a biomarker 

which is significant in detecting the prostate cancer. The data consisted of 50 randomly 

chosen individuals who were affected by prostate cancer and 50 non-diseased individuals 

who were participated in a lung cancer prevention trial (Etzioni , 1999).  The two 

correlated prostate cancer biomarkers were considered namely total serum PSA (tPSA) 

and the ratio of (percent) free to total PSA (fPSA). Among these biomarkers tPSA has 

higher AUC than fPSA and hence it is preferred to assess the accuracy of diagnosis for 

prostate cancer.  

 

The tPSA has been evaluated for the Goodness of Fit for two parameter exponential 

distribution using Kolmogrov-Smirnov, Anderson-Darling and Chi-Square test. The 

results are reported for significance level (α) 20, 10, 5, 2 and 1% in Table 3 from the 

software „Easy Fit‟. The EROC curve is plotted for tPSA and it is presented in Figure 2. 
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Table 3: Goodness of Fit test for tPSA biomarker 

Group  Test  Statistic  p-value  Rank  α %  

H  

K-S  0.121  0.426  18  20, 10, 5, 2, 1  


2
  0.6441  0.958  3  20, 10, 5, 2, 1  

A-D  1.219  -  23  20, 10, 5, 2, 1  

D  

K-S  0.128  0.357  29  20, 10, 5, 2, 1  


2 4.004  0.5488  24  20, 10, 5, 2, 1  

A-D  1.747  -  31  10, 5, 2, 1  

 

 

Fig. 2   EROC curve for tPSA biomarker 

 

The EROC model showed that the marker „tPSA‟ is able to identify the prostate cancer 

individual with an accuracy of 93% with the estimated Standard error, 0.055 with a 

confidence interval [0.8079, 1.000]. The sensitivity and specificity of tPSA by using 

EROC are 83% and 76% respectively at the threshold 2.865 ng/ml. 

 

From sensitivity and specificity, we could infer that an individual who is having the 

“tPSA” marker value greater than 2.865 ng/ml is 83% likely to be detected with the 

prostate cancer. Similarly, an individual having the marker value less than 2.865 ng/ml is 

76% likely to be not detected with the prostate cancer. 

5.   Conclusion 

In this paper, we have also extended the one parameter Bi-Exponential ROC curve 

analysis to two parameter exponential ROC curve analysis. The properties of the two 

parameter bi-exponential ROC curve have been studied. It is found that, EROC is 

monotonically increasing, concavity an important property for a ROC to be proper, TNR 

asymmetric which is justified theoretically as well as graphically. The 95% asymptotic 

confidence interval for ˆAUC  have been derived. For the prostate cancer data, the EROC 
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model showed that the biomarker „tPSA‟ is able to identify the prostate cancer individual 

with an accuracy of 91% with the estimated standard error, 0.055 with a confidence 

interval [0.8079, 1.000]. The sensitivity and specificity are 83% and 76% respectively at 

the threshold 2.865 ng/ml. The proposed EROC curve analysis can be adopted for 

assessing the accuracy of classification made by a particular biomarker provided the 

goodness of fit test is evaluated.  
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