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Abstract

For the first time, a new continuous distribution, called the generalized beta exponentiated Pareto type |
(GBEP) [McDonald exponentiated Pareto] distribution, is defined and investigated. The new distribution
contains as special sub-models some well-known and not known distributions, such as the generalized beta
Pareto (GBP) [McDonald Pareto], the Kumaraswamy exponentiated Pareto (KEP), Kumaraswamy Pareto
(KP), beta exponentiated Pareto (BEP), beta Pareto (BP), exponentiated Pareto (EP) and Pareto, among
several others. Various structural properties of the new distribution are derived, including explicit
expressions for the moments, moment generating function, incomplete moments, quantile function, mean
deviations and Rényi entropy. Lorenz, Bonferroni and Zenga curves are derived. The method of maximum
likelihood is proposed for estimating the model parameters. We obtain the observed information matrix.
The usefulness of the new model is illustrated by means of two real data sets. We hope that this
generalization may attract wider applications in reliability, biology and lifetime data analysis.

Keywords: Beta-Generated class; Pareto type | distribution; Lorenz, Bonferroni and
Zenga curves; Rényi entropy; Maximum likelihood estimation.

1. Introduction

The Pareto distribution named after the Italian economist Vilfredo Pareto (1848-1923) is
a power law probability distribution that coincides with social, scientific, geophysical,
actuarial, and many other types of observable phenomena. Outside the field of economics
it is at times referred to as the Bradford distribution. Burroughs and Tebbens (2001)
discussed applications of the Pareto distribution in modeling earthquakes, forest fire areas
and oil and gas field sizes and Schroeder et al. (2010) presented an application of the
Pareto distribution in modeling disk drive sector errors. To add flexibility to the Pareto
distribution, various generalizations of the distribution have been derived, the beta Pareto
distribution discussed by Akinsete et al. (2008), the Kumaraswamy Pareto distribution
introduced by Bourguignon et al. (2013), the beta generalized Pareto defined by Nassar
and Nada (2011) and Mahmoudi (2011), the beta exponentiated Pareto distribution
presented by Zea et al. (2012), the gamma Pareto distribution introduced by Alzaatreh et
al. (2012) and recently, ElbataL (2013) studied the Kumaraswamy exponentiated Pareto
distribution.

The cdf of the exponentiated Pareto type | distribution with parameters 4, k and d is
given by

G(xd.k,2) =[1-(d/%"]", (1)
where 1>0,d >0, k>0 and X >d . The corresponding pdf is given by

g(x:d.k,2) = 2kd“x “[1-(d/x) ] . )
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Eugene et al. (2002) used the beta distribution as a generator to develop the so-called
family of beta-generated distributions (BG). The cdf of a beta-generated random variable
X is defined as

1 G(x)

F(x;a,b) =I5, (a,b) = BaD) WA (1—w)"tdw, (3)

for a>0, b>0, where 1 (a,b)=B,(a,b)/B(a,b) denotes the incomplete beta function
ratio of type | and B (a,b) = onwa-l(l_w)b-ldw is the incomplete beta function. The pdf

corresponding to (3) can be expressed as
1
B(a,b)
where g(x) =0G(x)/ox is the baseline density function.

f(x;a,b)= g() G [1-G(X], ()

Eugene et al. (2002) has used the cdf of normal distribution in (4) to construct the beta
normal distribution. The generalization given in (4) has been used by number of authors
to propose new distributions. This family of distributions is a generalization of the
distributions of order statistics for the random variable X with cdf F(x) as pointed out by
Eugene et al. (2002) and Jones (2004). Since the paper by Eugene et al. (2002), many
beta-generated distributions have been studied in the literature including, beta gamma
distribution by Kong et al. (2007), beta Weibull distribution by Famoye et al. (2005),
beta exponential distribution by Nadarajah and Kotz (2006) and others.

Cordeiro and de Castro (2011) extended the beta-generated family of distributions by
replacing the beta distribution in (3) with the Kumaraswamy distribution (1980),
g(x) =abx**(1—x*)"", 0<x<1. The cdf of the Kumaraswamy generalized distributions

(KG) is given by
F(xb,c) =1-[1-G(x)°] (5)

and the corresponding pdf is defined as

b-1

f(x;b,c) =cbg(x) G(x)** [1-G(X)"] (6)

Several generalized distributions from (6) have been defined and investigated in the
literature including the Kumaraswamy Weibull distribution by Cordeiro et al. (2010), the
Kumaraswamy generalized gamma distribution by de Castro et al. (2011) and the
Kumaraswamy generalized half-normal distribution by Cordeiro et al. (2012).

Recently, Alexander et al. (2012) introduce the generalized beta-generated (GBG)
distribution which has as sub-models the classical beta-generated (BG), Kumaraswamy-
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generated (KG) and exponentiated distributions. They defined the cdf of the GBG as the

form
G(x)°

F(x:a,b,c) =ﬁ [ W a-w)dw
' 0

=gy (@h)
and the corresponding pdf is given by

f(xa0,0) = 590G 161 ] ®)

(7)

The importance of the density(8) is that it contains as special sub-models, the BG (c=1),
the KG (a=1)and the exponentiated (b=c=1) distributions .The generalization given

in (8) has been used by number of authors including Marciano et al. (2012), Corderio et
al. (2014), Oluyede and Rajasooriya (2013) and Tahir et al. (2014).

2. Generalized Beta Exponentiated Pareto Distribution

In this note we propose the generalized beta exponentiated Pareto (GBEP) distribution by
using the density function (2) in (8). The pdf of GBEP can be expressed as

Cﬁ,kde_(kﬂ) Jac-1 4¢Pt
f(x;0)=="——"|1-(d/x)" [1—1—dxk } 9
9 ="5ap [1-(d/x)" ] (1-(@d/%") 9)
where £ =(a,b,4,d,k,c) is the vector of the model parameters. Plots of the GBEP for
selected parameter values (c =1.4, 1 =2.3& k=1.2 and different values ofa,b&d)
are given in Figure 1.

08

— a=2.20, b=2.10,d=0.15
— a=9.40, b=4.90, d=0.38
a=6.80, b=5.20 ,d=0.66
— a=9.00, b=5.10, d=0.30
06 a=9.50,b=10.50, d=1.20

04r 1

02r -

Figure 1: Some possible shapes of the GBEP density function
The cdf corresponding to (9) is

F(x¢)= '[1_<d ] (a,b). (10)
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Equation (10) can be expressed as follows

Aac

i _I:l_(d/x)k] . . K A¢C
F(x,g)_W[zﬁ(a,l—b,aﬂ,[l—(d/x)] )} (11)
where
1ib-1 c—b-1
,F(ab;c;z)= 1 Gl dt,

B(b,c-b) 7 (@1-tz)°
is the well known hypergeometric function (Gradshteyn and Ryzhik, 2007).

For a lifetime random variable t, the survival function S(t), hazard rate function h(t),
reversed hazard rate function r(t) and the cumulative hazard rate function H(t) of GBEP
distribution are given by

SM=1-FO=1-1__.(@b)
eakd t 01—/ 11—y )]
h(t):;(tt): [ ] [ ( ) ] |
(®) [B(a, b) - B[l_m/t)q“ (a, b)}
() AT [1-( 1 [1-(1— @/t )" Tl
r(t) = =
F(t) B _.(ab)

[1—(d/t)k}
and

H(t)=—/nS(t) =—/n {1— I[Hd/t)kr (a, b)} .

Plots of the hazard rate function (HRF) for selected parameter values
(c=14, 2 =2.3 &k =1.2and different values of a,b & d) are given in Figure 2.

1/

04 T

1

— =018, b=0.08, d=0.80
— a=2.60 , b=3.50, d=0.62
o2r a=0.19, b=0.10, d=1.52 |
—— 3=9.20, b=5.10 ,d=0.44

a=2.50 ,b=2.60, d=0.45

2 4 6

Figure 2: Some possible shapes of the HRF
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Note that the GBEP distribution has several well known models as special cases, which
make it of distinguishable scientific importance from other distributions.

1.

The study of the new density (9) is important, since it includes as special sub-
models some distributions not previously considered in the literature. Setting
A =1, the density (9) gives the generalized beta Pareto (GBP) [also known as the
McDonald Pareto type I] distribution.

If a=1 equation (9) reduces to Kumaraswamy exponentiated Pareto (KEP)
distribution defined by Elbatal (2013).

Setting c=1, the density (9) gives the beta exponentiated Pareto (BEP)
distribution presented by Zea et al. (2012) and the beta generalized Pareto defined
by Nassar and Nada (2011).

If a=A=1equation (9) corresponds to the Kumaraswamy Pareto (KP)
distribution introduced by Bourguignon et al. (2013).

Setting ¢ =4 =1, GBEP becomes the beta Pareto (BP) distribution discussed by
Akinsete et al. (2008).

When a=b=c=1,the density (9) corresponds to the exponentiated Pareto (EP)

[also known as Stoppa or the generalized Pareto type 1] distribution defined by
Gupta et al. (1998).

If we takea=b=c =1 =1, equation (9) becomes the Pareto (P) distribution.

3. Some Statistical Properties

We give a mathematical treatment of the new distribution including expansions of the
GBEP cdf and pdf, moments, incomplete moments, generating and quantile functions,
mean deviations, mean residual life, Lorenz, Bonferroni and Zenga curves and Rényi
entropy.

3.1 Expansion of Distribution

We now present a series expansion of the GBEP cdf and pdf. For any positive real
number b, and for | z| < 1, a generalized binomial expansion holds

e (-1)'T(b)
< JZ;J'F(b—J)

Therefore, the cdf of GBEP can be expanded to obtain

where

[l—(d/x)k]

DN it CD'TE)

F(X’g)_B(a,b) z[ ;J'F(b—l) (12)
= i p,G(x;d,k, Ac(a+ j)),

oo CDT@rD)

I'(@)j'r(b-j)a+j)
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and G(x;d,k, Ac(a+ j)) denotes the cdf of EP with parametersd , k and Ac(a+ j).
Similarly, we can write the pdf (9) as

2 cAkd T(a+b)(-1)’
f (X’é/) :Z;(a)Jlr((z—l—— J))(X(kzl) |:1—(d/X)

K }ﬁc(aﬂ)—l
j=0

(13)

0

=Y p;H(xd,k, Ac(a+ j)),

j=0
where H(x;d,k,Ac(a+ j)) denotes the EP density function with parametersd, k and
Ac(a+j).
Again, by using binomial expansion in equation (13), we obtain

v cAll(@+b)(-1 T (Ac(a+ j)) K(i+1) o —k (i+1)-1
_%:jz_(;l“(a)j!ill“(b—j)F(ic(a+j)—i) dx

: (14)
=>"e h(x;d,k(i+1)),
where i

i cA(-)™'T'(Ac(a+ j)I'(a+b)
@3+ T (- jIr(Ac(a+ j)—i)

e =

and h(x;d,k(i+1)) denotes the Pareto density with parameters d and k(i+1). Thus, the
GBEP density function can be expressed as an infinite linear combination of Pareto
densities. Thus, some of its mathematical properties can be obtained directly from those
properties of the Pareto distribution. If b is an integer, then the summation in equations
(12), (13) and (14) stops at b—1.

3.2 Moments

As with any other distribution, many of the interesting characteristics and features of the
GBEP distribution can be studied through the moments. If we assume that Y is a Pareto
distributed random variable, then the sth moment of Y is given as

E(YS)= kdS

s<Kk.

Let X be a random variable having the GBEP distribution (9). Using equation (14), it is
easy to obtain the sth moment of X as the following form

sy k(i+1)d®e,
E(X%)= ,Zzol k(i+1)—-s 15

The mean, variance, skewness and kurtosis can be obtained from (15). If b >0 is integer
and s <k, the sum stops at b—1.
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An alternative form for the sth ordinary moment of X from equation (13) as
E(X®)=[x* f(x:¢)dx
d

i p; Ac(a+ j)k dkaS’H [1_(d/x)k}ﬂ°(a+j)l i
d

]

=0
p,;cA(a+ j)d*B(1-s/k,Ac(a+ j)). (16)

j=0

If b>0 isinteger and s <k, the sum stopsat b—1.

3.3 Moment Generating Function

The moment generating function (mgf) z (t) corresponding to a random variable Y

with Pareto distribution with parameters d and k is only defined for negative values of t
(See Zea et al., 2012). It is given by

a4, (1) = [ekd*y*Ddlx = k (~dt)* T (K, ~dt),
d

where T'(«, 2) :jt“‘le‘tdt denotes the incomplete gamma function. From equation (14),

the mgf of X is obtained by
f (€)= D_k(i +D) (-d )"V (—k (i +1),-dt)e, for t<oO.

i=0
3.4 Incomplete Moments

If Y is a random variable with Pareto distribution with parameters d and k, the sth
incomplete moment of Y , for s<k , is given by
kd® d

k—s
'\/ls(2)=fd ysg(y;d,k)dyzjd y°kd y(k*l)dyza{l—(;j }

From this equation, we note that M (z) - E(Y®) when z — oo, whenever s<k. Let

X be a random variable having the GBEP distribution (9). Using equation (14), the
sth incomplete moment of X is then equal to

) © - s k(i+1)—s
Ms(z):Zeij'dzxsh(x;d,k(i+1))dy:2%l}—(gj } s<k. (A7)

i-0 z

An alternative expression for the sth incomplete moment of X can be obtained from
equation (13) as

E(XS):.Z[Xs f(x;¢)dx

Ac(j+a)-1

:i P, /1c(j+a)kd"jxs‘k‘1[l—(d/x)k} dx
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=>"p,cA(j+a)dBYY (1-s/k, Ac(j+a)), s<k. (18)
j=0
1
where BY(a,b) = I WA (1-w)*dw, is the upper incomplete beta type I function.
y

3.5 Mean Deviations

The mean deviations about the mean and the median can be used as measures of spread in
a population. Let »=E(X) and Y be the mean and the median of the GBEP distribution,

respectively. The mean deviations about the mean and about the median of X can be
calculated as

D(1) = E|X =g = [ [x— 4] F (x) dx= 24 F () —2m, (1)

and
D(y) = E|X =7| = [ [x=7] f () dx= 1 —2m, (),

respectively, where m,(z) denotes the first incomplete moment and F () follows from
(10).

3.6 Quantile Function

Let Q,,(u) be the beta quantile function with parameters a and b . The quantile function
of the GBEP distribution, say x =Q(u), can be easily obtained as

X=0Q(u) =d [1-(@8,b (u))”‘”)r/k , ue(0,1). (19)

This scheme is useful to generate GBEP random variates because of the existence of fast
generators for beta random variables in most statistical packages, i.e. if V is a beta

random variable with parameters a and b, then X =d [1—VJ/(”)T/k follows the GBEP

distribution. From equation (19) we conclude that the median m of X is m=Q(l/2).

The Bowley skewness SK measure and Moors kurtosis KR (based on octiles) of the
GBEP distribution can be calculated using the formulae given below

o _ QB4 +0W4)-202)
QE/4)-QW4)

and

[Q(7/8)-Q(5/8)] +[Q(3/8) —Q(/8)]

KR =
[Q(6/8)-Q(2/8)]
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3.7 Mean Residual Life and Mean Waiting Time

The mean residual life function (MRL) at a given time t measures the expected remaining
lifetime of an individual of age t. It is denoted by m(t). The MRL or life expectancy of

GBEP is defined as

1 t
m(t) :%{E(t)—gt f (t) dt}—t,
cidY" p,(j+a)| B1-1k, Ac(j+a)~BY” (1-1/k, Ac(j+a))]
= — -] b —t, k>1,
- [Hd/t)K]” (a,b)
where

jt f(t)dt:i P, CA(] +a)dB@Y (1-Yk,Ac(j+a)).

The mean waiting time (MWT) of an item failed in a interval [d,t] for GBEP is defined
as

NP
a(t, 0) =t F(t)gt f (t)dt
S p.cA(j+a)d BOY (1-1/k, Ac(j+a))

—t_J0 | . , k>1.
[1-(am]” (@.b)

3.8 Lorenz, Bonferroni and Zenga Curves

Lorenz and Bonferroni curves have been applied in many fields such as economics,
reliability, demography, insurance and medicine, (See Kleiber and Kotz, (2003) for
additional details). Zenga curve was presented by Zenga (2007). The Lorenz L (X),
Bonferroni B(F(x)) and Zenga A(x) curves are defined by Oluyede and Rajasooriya
(2013) as the following

jt f(t)dt jt () dt ]
L. (x)=2 , _d _L(® and _, MK
¢ (X) £ B(F(x)) FOOEC) " F ) A(x) =1 .

respectively, where

It f(t)dt )

) Tt f(t)dt
M(X) ="FT and M(X) =m
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are the lower and upper means respectively. For the GBEP distribution, these quantities
are derived below

1. Lorenz curve:

S p, cA(j +2)dBY (1-1k, Ac(j+a))
LFG(X;é,) = j:Ow
D p;cA(j+a)dB(1-1/k,Ac(j+a))

j=0

2. Bonferroni curve:

3" p,ca(j+a)dBYY (1-1/k, Ac(j +a))
B(F (6 ()= i |
ijG(X;d,k,iC(a-l—j)) ' pj Cﬂ(j+a)d|3(1—1/k,/lc(j+a))

3. Zengacurve

[1- F(x)]ﬁt f(t) dt}

A(x;$)=1-

F(x)Tt f(t)dt

{1-% p,G(x:d k Ac(a+ j))Mi p, CA(j +2)dB¢ (1—1/k,/1c(j+a))}
1 -0 -0

j=0

[i p,G(xd,k, Ac(a+ j))}{cﬁdi p,(j+a)[ B(1-Vk, Ac(j+a))~B“" (1-k, Ac(j +a))]}

3.9 Rényi Entropy

The entropy of a random variable X is a measure of uncertainty variation. The Rényi
entropy is defined as

IR(5)=§[|09 15)],

where 1(0) =.[ f°(x)dx 6>0 and & =1.Using equation (9) we obtain

=S 1) o)

Based on the binomial expansion to the last factor in the above integrand yields

_C5/15k5dk5 = (o(b-1) [ (ke \ (0(ac)ic]
= 1 e e

Using the transformation y = (,B/x)k in above expression and simplifying,
5 2816146 = ( S(h—1 _ _
|(5)=MZ (b= (—1)‘B(w+1,5(}ta c—1)+/1cj+1j.
B’(a,b) = K
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Hence, the Rényi entropy reduces to

cA (o= oo (6-D(k+1) ~ _
NOE (5 1)[&09[8( b)]+|og;( i ]( 1) B(—k +1,6(lac 1)+/ICJ+1H

ol

4. Estimation of Parameters

The maximum likelihood estimation (MLE) is one of the most widely used estimation
method for finding the unknown parameters. Let x,,X,.,....,X, be an independent random

sample from GBEP. The total log-likelihood is given by

¢=n/n(c)+nin(A)+nin(k)+nken(d)-ninB(a,b)—(k+1) Z/n +(dac-— 12/n ) (20)
+(b—1)g£n[l—(Di)“]
where Z, =(d/x), W, =(z) and D =1-W,.

The score vector vy - 2L 92 9¢ 9 0%y has components

da'ob’oc’ o4’ ok

2= (v (a+b)-w(a) +2e3m(D)

= n(y(a+b)-y (b)) +Zf”[1 )}

%:g+ia;fn(q) Ab- 1):[ ()] (D) m(D),

S_jz % +acizn1:£n(Di le[ } (D,) (D))
and

%: E+n€n )+ Ac(b-1) Zl:[l Y] (0, () n(z,)

n

—an ~(2ac-1)>(D,) " (W,)n(Z,),

i=1
where w(p) is the digamma function which is the derivative of log T'(.). The maximum

likelihood estimates (MLEs) of the unknown five parameters can be obtained by solving
the system of nonlinear equations v¢ =0, iteratively. Since x>d, the MLE of d is the
first-order statistic xq,. For interval estimation and hypothesis tests on the model

parameters, we require the observed information matrix
aa ab ‘]ac ‘]al ‘]ak
‘]ab ‘]bb ‘]bc ‘]b/l ‘ka
‘]n(a):n ‘] ‘]bc ‘]cc ‘]ci ‘]ck '
‘Jc/l ‘J},l ‘]ﬂk
‘]ak ‘]bk ‘]ck ‘]"k ‘]kk

Al

whose entries are obtained from standard calculations:
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3o ==eX[1-(0)*] ()" (D)
J= 203 [1-(0) ] (D) (W)m(z)

J. = —C— ~2%(b-1) Zi( )1 )“ﬁn(Di)z}[H(l—(Di)“) (Di)“},

Jo, = aiZl:@n(Di )—(b—l)Z[(l—(Di )“)fl(Di ) (D, )}{1+/1c€n(Di )[1+(1—(Di )“)71(Di )“ﬂ,

i=1

-1

o =223 [(B) W)m(z )20 3| (1-(0)) (0) " (W)m(2)]

[1+/1c£n(Di)[1+(l—(Di )“)lﬂ,

Y=t —c%b—l)i[(l—wi)“)1<Di>“fn<oi)ﬂ[1+<oi>“(1—( i

i=l

O
~—
>

)
~—
iR
| E—

3, :-acz Vin(z,)-c(b-1) z[ i)“lzn(oi)(wi)/zn(zi)}
[ 1+lc/n(D)[1 (D) ( ) )lﬂ

and
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5. Empirical Illustrations

In this section, we present two applications of the proposed GBEP distribution (and their
sub-models: GBP, BEP, KEP, BP, KP, EP and P distributions) in two real data sets to
illustrate its potentiality. The first data correspond to the exceedances of flood peaks (in
m?®/s) of the Wheaton River near Carcross in Yukon Territory, Canada. The data consist
of 72 exceedances for the years 1958-1984, rounded to one decimal place. These data
were analysed by Choulakian and Stephens (2001). Recently, Akinsete et al. (2008) and
Bourguignon et al. (2013) studied these data using the BP and KP respectively. The data
are as follows: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5,
25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9,
17,01, 1.1, 06, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8,
13.3, 4.2, 25,5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0,1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8,
5.3, 9.7, 27.5, 2.5, 27.0. The second real data set represents the actual taxes data set. The
revenue in Egypt is divided onto 5 chapters and although the taxes is only one chapter
from these 5 chapters, but it records the majority of the income. The data consists of the
monthly actual taxes revenue in Egypt from January 2006 to November 2010. The
distribution is highly skewed to the right. The data (in 1000 million Egyptian pounds)
are: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 185, 5.1,6.7, 17,
8.6,9.7,39.2, 35.7,15.7,9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9,16.7, 21.3, 35.4, 14.3, 8.5,
10.6,19.1, 205, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9,
5.2, 6.8, 8.9, 7.1, 10.8. These data were studied by Nassar and Nada (2011) using beta
generalized Pareto distribution.

Table 1 lists the MLEs (the corresponding standard errors in parentheses) of the
parameters of all the models for the first data set (the exceedances of flood peaks data)
and the statistics: Akaike information criterion (AIC), Bayesian information criterion
(BIC) and consistent Akaike information criterion (CAIC). Table 2 gives the values of
the statistics Kolmogorov-Smirnov (K-S) and -2/(d) (where/(d) denotes the log-

likelihood function evaluated at the maximum likelihood estimates) for the first data set.
The results of the last four models (BP, KP, EP and P) can be obtained from Bourguignon
et al. (2013). Since the KEP distribution has the lowest AIC, BIC, CAIC, —2/(8) and K-S

values among all the other models, and so it could be chosen as the best model.
Additionally, it is evident that the P distribution presents the worst fit to the first data.

Tables 3 and 4 provide the MLEs (the corresponding standard errors in parentheses) of
the parameters of all the models and the statistics AIC, BIC, CAIC, —2%(@) and K-S for
the second data set (actual taxes revenue). Again, the results indicate that the KP model
presents the smallest values for the AIC, BIC, CAIC, —2¢() and K-S statistics among

the fitted models and therefore it could be chosen as the best model. The required
numerical evaluations are implemented using the MATH- CAD PROGRAM.
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Table 1:  MLEs (standard errors in parentheses) and the statistics AIC, BIC and
CAIC; first data set. (d=0.1 for all models, Sinced is the first order
statistic).

Estimates Statistics
Model a b ¢ i k AIC | BIC | CAIC
GBEP | 67.65386 | 4.01038 | 0.34919 | 0.25325 0.20803 | 554.5 | 565.9 | 555.4
(33.9215) | (2.598) (3.0681) (2.225) (0.1099)
GBP | 358031 407272 | 0.16468 - 020572 | 552.5 | 561.60 | 553.0
(18.0603) | (2.655) (0.3836) - (0.1096)
BEP | 56.92285 | 4.02054 - 0.10476 0.20765 | 552.5 | 561.6 | 553.1
(21.051) (2.604) - (0.38005) | (0.10971)
KEP - 136.0781 | 1.97714 | 1.75478 006153 | 530.2 | 539.3 | 530.8
- (30.198) | (13.987) | (3.3557) (0.0252)
BP 3.1473 85.7508 - - 0.0088 | 5734 | 580.3 | 573.8
(0.4993) | (0.0001) - - (0.0015)
KP - 85.8468 2.8553 - 0.0528 | 5484 | 555.3 | 548.8
- (0.3371) | (0.3371) - (0.0185)
EP - - - 2.8797 04241 | 5786 | 5832 | 578.8
- - - (0.4911) 0.0463)
P - - - - 02438 | 608.2 | 610.4 | 608.2
- - - - (0.0287)
Table 2: K-S and—-2/(6) statistics; first data set.
Model | GBEP GBP BEP KEP BP KP EP P
K-S 0.15665 | 0.16028 | 0.15663 | 0.14314 | 0.1747 | 0.1700 | 0.1987 | 0.3324
_20(f) | 544535 | 544494 | 544529 | 522211 | 5674 | 5424 | 5746 | 606.2
Table 3:  MLEs (standard errors in parentheses) and the statistics AIC, BIC and

CAIC; second data set. (d=4.1 for all models, Sinced is the first order

statistic).

Estimates Statistics

Model a b ¢ ] K AIC | BIC [ cAC

GBEP 50.173 1.61244 0.27553 0.20069 1.09171 403.04 | 413.427 | 404.172
(10.683) (0.782) (2.0699) (1.508) (0.406)

GBP 34.7029 1.61671 0.07979 - 1.08948 401.029 | 409.34 | 401.77
(25.352) (0.986) (0.578) - (0.5589)

BEP 27.025 1.622 - 0.10229 1.08673 401.016 | 409.326 | 401.757
(15.333) (1.031) - (0.566) (0.58)

KEP 75.33529 1.41497 1.46209 0.11359 390.97 399.28 | 391.71
- (39.223) (20.494) (21.177) (0.105)

BP 2.57098 17.09134 - - 0.1373 396.775 | 403.008 | 397.212
(0.44668) (6.4901) - - (0.5001)

KP 77.3103 2.06776 - 0.11195 388.956 | 395.188 | 389.392
(22.144) (0.2537) - (0.1033)

EP - - 2.54142 1.58491 397.571 | 401.726 | 397.786
- - (0.4883) (0.205)

P - - - 0.95346 415.881 | 417.958 | 415.951
- - - (0.1241)
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Table 4: K-S and —2/(6) statistics; second data set

Model GBEP GBP BEP KEP BP KP EP P
K-S 0.11442 | 0.11439 | 0.11435 | 0.06736 0.1061 | 0.06726 | 0.11983 | 0.25527
—2((9) 393.04 393.029 | 393.016 | 382.969 | 390.775 | 382.956 | 393.571 | 413.881

6. Conclusion

The new five-parameter model (Since the sixth parameter is the first order statistic)
includes as special sub-models the Pareto, exponentiated Pareto (Gupta et al., 1998), beta
Pareto (Akinsete et al., 2008), Kumaraswamy Pareto (Bourguignon et al., 2013), beta
generalized Pareto (Nassar and Nada, 2011), beta exponentiated Pareto (Zea et al., 2012),
Kumaraswamy exponentiated Pareto (Elbatal, 2013) and generalized beta Pareto (new)
distributions. We provide a mathematical treatment of this distribution including
analytical expressions for the moments, moment generating function, mean deviations,
mean residual life, Lorenz, Bonferroni and Zenga curves, quantile function and Rényi
entropy. The estimation of the model parameters is approached by maximum likelihood
and the observed information matrix is derived. The usefulness of the new model is
illustrated in two applications to real data using goodness-of-fit tests.
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