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Abstract 
In this article, we introduce a new three-parameter lifetime model called the Burr X exponentiated Weibull model. 

The major justification for the practicality of the new lifetime model is based on the wider use of the exponentiated 

Weibull and Weibull models. We are motivated to propose this new lifetime model because it exhibits increasing, 

decreasing, bathtub, J shaped and constant hazard rates. The new lifetime model can be viewed as a mixture of the 

exponentiated Weibull distribution. It can also be viewed as a suitable model for fitting the right skewed, 

symmetric, left skewed and unimodal data. We provide a comprehensive account of some of its statistical 

properties. Some useful characterization results are presented. The maximum likelihood method is used to estimate 

the model parameters. We prove empirically the importance and flexibility of the new model in modeling two 

types of lifetime data. The proposed model is a better fit than the Poisson Topp Leone-Weibull, the Marshall Olkin 

extended-Weibull, gamma-Weibull , Kumaraswamy-Weibull , Weibull-Fréchet, beta-Weibull, transmuted 

modified-Weibull, Kumaraswamy transmuted- Weibull, modified beta-Weibull, Mcdonald-Weibull and 

transmuted exponentiated generalized-Weibull models so it is a good alternative to these models in modeling 

aircraft windshield data as well as the new lifetime model is much better than the Weibull-Weibull, odd Weibull-

Weibull, Weibull Log-Weibull, the gamma exponentiated-exponential and exponential exponential-geometric 

models so it is a good alternative to these models in modeling the survival times of Guinea pigs. We hope that the 

new distribution will attract wider applications in reliability, engineering and other areas of research. 

 

Keywords: Burr X family, Order Statistics, Exponentiated Weibull, Maximum Likelihood 

Estimation, Characterizations, Quantile function, Moments, Generating Function. 

 

1. Introduction 

It is known that the Weibull distribution has been the most popular distribution for modeling 

lifetimes (see Murthy et al., 2004 and Rinne, 2009) and has been extensively used for modeling 

data in engineering, reliability and biological researches. The major weakness of this 

distribution is its inability to accommodating nonmonotone hazard rates. This has led to the 

need of exploring more generalizing of this model. The first generalization allowing for 

nonmonotone hazard rates is the exponentiated Weibull (EW) model (see Mudholkar and 

Srivastava (1993) and Mudholkar et al. (1995)). The goal of this paper is to introduce a new 

extremely flexible version of the EW model.  
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A random variable (rv)  𝑍  is said to have the EW distribution if its probability density function 

(pdf) and cumulative distribution function (cdf) are given by  

𝑔𝐸𝑊(𝑧; 𝛼, 𝛽) = 𝛼𝛽𝑧
𝛽−1 𝑒𝑥𝑝(−𝑧𝛽) [1 − 𝑒𝑥𝑝(−𝑧𝛽)]

𝛼−1
and 𝐺𝐸𝑊(𝑧; 𝛼, 𝛽)

= [1 − 𝑒𝑥𝑝(−𝑧𝛽)]
𝛼
, 

respectively, for  𝑧 > 0 ,  𝛼 > 0  and  𝛽 > 0. Yousof et al. (2017) introduced a flexible family 

of distributions called Burr X generator (BrX-G) with  

𝐹(𝑥; 𝜃, 𝜉) = (1 − 𝑒𝑥𝑝 {−[𝐺(𝑥; 𝜉)/𝐺(𝑥; 𝜉)]
2
})
𝜃

, 𝑥 ∈ 𝑅, 
 

(1) 

 

and pdf  

𝑓(𝑥; 𝜃, 𝜉) = 2𝜃𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝐺(𝑥; 𝜉)−3 𝑒𝑥𝑝 {−[𝐺(𝑥; 𝜉)/𝐺(𝑥; 𝜉)]
2
} 

× (1 − 𝑒𝑥𝑝 {−[𝐺(𝑥; 𝜉)/𝐺(𝑥; 𝜉)]
2
})
𝜃−1

, 𝑥 ∈ 𝑅. 

 

 

(2) 

To this end we will use the BrX-G for generating the new extreme flexible version of the EW 

model. 

 

This paper is organized as follows. In Section 2, we define the new distribution. Section 3 deals 

with some characterizations of the new model. we derive some of its mathematical properties 

in Section 4. The maximum likelihood method is presented in Section 5. In Section 6, we 

illustrate the importance of the new model by means of two applications to real data sets. The 

paper is concluded in Section 7. 

 

2. The new model and its justification 

By inserting  𝐺𝐸𝑊(𝑥; 𝛼, 𝛽)  in (1) we obtain the cdf of the Burr X exponentiated Weibull 

(BrXEW) model as 

𝐹(𝑥; 𝜃, 𝛼, 𝛽) = [1 − 𝑒𝑥𝑝(− {
[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
}

2

)]

𝜃

, 𝑥 ≥ 0. 

 

 

(3) 

 

 

The corresponding pdf is  

𝑓(𝑥; 𝜃, 𝛼, 𝛽)

=
2𝜃𝛼𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

2𝛼−1

{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}3
𝑒𝑥𝑝(− {

[1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
}

2

) 

× [1 − 𝑒𝑥𝑝(− {
[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
}

2

)]

𝜃−1

⏟                            

𝐴

, 𝑥 > 0. 

 

 

 

 

 

 

(4) 

Now, we provide a very useful linear representation for the BrXEW density function.  

If  |𝑧| < 1  and  𝑏 > 0  is a real non-integer, the following power series holds  
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(1 − 𝑧)𝑏−1 =∑(−1)𝑖

𝑖=0

∞

𝛤(𝑏)𝑧𝑖/[𝑖! 𝛤(𝑏 − 𝑖)].  
 

 

(5) 

Applying (5) to the term A in (4) we have 

𝑓(𝑥) =
2𝜃𝛼𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

2𝛼−1

{[1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}3
∑

(−1)𝑖𝛤(𝜃)

𝑖! 𝛤(𝜃 − 𝑖)

∞

𝑖=0

 

× 𝑒𝑥𝑝(−(𝑖 + 1) {
[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
}

2

)

⏟                          

𝐵

, 𝑥 > 0. 

 

 

 

 

 

 

(6) 

Applying the power series to the term B in (6) we have  

𝑓(𝑥) =   ∑
2𝜃𝛼𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) (−1)𝑖+𝑗(𝑖 + 1)𝑗𝛤(𝜃)

𝑖! 𝑗! 𝛤(𝜃 − 𝑖)[1 − 𝑒𝑥𝑝(−𝑥𝛽)]1−𝛼

∞

𝑖,𝑗=0

 

×
{[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼
}
2𝑗+1

{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}2𝑗+3⏟                  

𝐶

. 

 

 

 

(7) 

Consider the series expansion  

(1 − 𝑧)−𝑏 =∑𝛤(𝑏 + 𝑘)𝑧𝑘/[𝑘! 𝛤(𝑏)]

∞

𝑘=0

,  |𝑧| < 1,  𝑏 > 0. 
 

 

(8) 

Applying the expansion (8) to (7) to C in (7) we arrive at 

𝑓(𝑥) = ∑ 𝛿𝑗,𝑘𝜋(2𝑗+𝑘+2)𝛼(𝑥)

∞

𝑗,𝑘=0

, 
 

 

(9) 

where 

𝛿𝑗,𝑘 = 
2𝜃(−1)𝑗𝛤(𝜃)𝛤(2𝑗 + 𝑘 + 3)

𝑗! 𝑘! 𝛤(2𝑗 + 3)[(2𝑗 + 𝑘 + 2)𝛼]
∑

(−1)𝑖(𝑖 + 1)𝑗

𝑖! 𝛤(𝜃 − 𝑖)

∞

𝑖=0

, 

and 𝜋(2𝑗+𝑘+2)𝛼(𝑥) is the cdf of the EW model with power parameter (2𝑗 + 𝑘 + 2)𝛼. 

Equation (5) reveals that the density of  𝑋  can be expressed as a linear mixture of EW densities. 

So, several mathematical properties of the new family can be obtained from those of the exp-Li 

distribution. Similarly, the cdf of the BrXEW model can also be expressed as a mixture of EW 

cdfs given by 

𝐹(𝑥) = ∑ 𝛿𝑗,𝑘

∞

𝑗,𝑘=0

[1 − 𝑒𝑥𝑝(−𝑥𝛽)]
(2𝑗+𝑘+2)𝛼

⏟                

𝛱(2𝑗+𝑘+2)𝛼(𝑥)

, 
 

 

(10) 

where  𝛱(2𝑗+𝑘+2)𝛼(𝑥)  is the cdf of the EW model with power parameter (2𝑗 + 𝑘 + 2)𝛼. 

 

The justification for the practicality of the BrXEW lifetime model is based on the wider use of 

the EW and W models. We are also motivated to introduce the BrXEW lifetime model since it 

exhibits increasing, decreasing, bathtub, J shaped, and constant hazard rates as illustrated in 

Figure 2 (b1 to b5, respectively). We mentioned before that the BrXEW lifetime model can be 

viewed as a mixture of the EW distribution. It can be considered as a suitable model for fitting 
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the right skewed, symmetric, left skewed and unimodal data. The proposed BrXEW lifetime 

model is a much better fit than the Poisson Topp Leone-Weibull, the Marshall Olkin extended-

Weibull, gamma-Weibull, Kumaraswamy-Weibull, Weibull-Fréchet, beta-Weibull, transmuted 

modified-Weibull, Kumaraswamy transmuted- Weibull, modified beta-Weibull, Mcdonald-

Weibull and transmuted exponentiated generalized-Weibull models, so the new lifetime model 

is a good alternative to these models in modeling aircraft windshield data. It is also a much 

better fit than the Weibull-Weibull, odd Weibull-Weibull, Weibull Log-Weibull, the gamma 

exponentiated-exponential and exponential exponential-geometric models, so it is a good 

alternative to these models in modeling the survival times of Guinea pigs. 

 

 

 
 

Figure 1: Plots of the BrXEW pdf. 
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Figure 2: Plots of the BrXEW hrf. 

 

3. Characterizations results 

This section is devoted to the characterizations of the BrXEW distribution in different 

directions:  (𝑖)  based on the ratio of two truncated moments;  (𝑖𝑖)  in terms of the hazard 

function;  (𝑖𝑖𝑖)  in terms of the reverse hazard function and  (𝑖𝑣)  based on the conditional 

expectation of certain function of the random variable.  Note that  (𝑖)  can be employed also 

when the cdf does not have a closed form. We would also like to mention that due to the nature 
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of BrXEW distribution, our characterizations may be the only possible ones.  We present our 

characterizations   (𝑖) − (𝑖𝑣)   in four subsections. 

 

3.1 Characterizations based on two truncated moments 

This subsection deals with the characterizations of BrXEW distribution based on the ratio of 

two truncated moments. Our first characterization employs a theorem due to Glänzel (1987), 

see Theorem 1 (see Hamedani et al. (2018) and Hamedani et al. (2019)). The result, however, 

holds also when the interval  𝐻   is not closed, since the condition of the Theorem is on the 

interior of  𝐻 . 

 

Proposition 3.1.  Let  𝑋  :   𝛺 → (0,∞)  be a continuous rv and let 

 𝑞2(𝑥) =
(1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼
)
3

𝑒𝑥𝑝 (− {
[1−𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1−[1−𝑒𝑥𝑝(−𝑥𝛽)]
𝛼}
2

) [1 − 𝑒𝑥𝑝 (− {
[1−𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1−[1−𝑒𝑥𝑝(−𝑥𝛽)]
𝛼}
2

)]

𝜃−1

.

 

and  𝑞1(𝑥) = 𝑞2(𝑥) [1 − 𝑒
−𝑥𝛽]

−𝛼

   for  𝑥 > 0.  The rv  𝑋   has pdf  (4)  if and only if the 

function   𝜂  defined in Theorem 1 is of the form 

 

𝜂(𝑥) =
1

2
{1 + [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼
},   𝑥 > 0. 

Proof.  Suppose the rv  𝑋   has pdf  (4) , then 

 

(1 − 𝐹(𝑥))𝐸[𝑞1(𝑋) | 𝑋 ≥ 𝑥] = 2𝜃{1 − [1 − 𝑒𝑥𝑝(−𝑥
𝛽)]

𝛼
},   𝑥 > 0, 

and 

(1 − 𝐹(𝑥))𝐸[𝑞2(𝑋) | 𝑋 ≥ 𝑥] = 𝜃 {1 − [1 − 𝑒𝑥𝑝(−𝑥
𝛽)]

2𝛼
} ,   𝑥 > 0. 

Further, 

 

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) =
𝑞2(𝑥)

2
{
1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

[1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
} > 0 ,  𝑓𝑜𝑟  𝑥 > 0. 

Conversely, if  𝜂  is of the above form, then 

 

𝑠′(𝑥) =
𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=
𝛼𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼−1

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
,   𝑥 > 0, 

and consequently  𝑠(𝑥) = − 𝑙𝑜𝑔{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
},     𝑥 > 0.  Now, according to 

Theorem 1,   𝑋   has density  (4).  
 

Corollary 3.1.  Let  𝑋  :   𝛺 → (0,∞)   be a continuous rv and let  𝑞2(𝑥)  be as in Proposition 

3.1.  The rv   𝑋   has pdf  (4)  if and only if there exist functions  𝑞1  and  𝜂  defined in Theorem 

1 satisfying the following differential equation 

 

𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=
𝛼𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼−1

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
,   𝑥 > 0. 

Corollary 3.2. The general solution of the differential equation in Corollary A.1 is 
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𝜂(𝑥) = {1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
}
−1

 

× [−∫𝛼 𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼−1
(𝑞1(𝑥))

−1
𝑞2(𝑥)𝑑𝑥 + 𝐷], 

 

where  𝐷  is a constant. We like to point out that one set of functions satisfying the above 

differential equation is given in Proposition 3.1 with  𝐷 =
1

2
. 

Clearly, there are other triplets  (𝑞1, 𝑞2, 𝜂)  which satisfy conditions of Theorem1. 

 

3.2 Characterization in terms of hazard function 

The hazard function,  ℎ𝐹 , of a twice differentiable distribution function,  𝐹 , satisfies the 

following first order differential equation 

 
𝑓 ′(𝑥)

𝑓 (𝑥)
=
ℎ𝐹
′ (𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥). 

It should be mentioned that for many univariate continuous distributions, the above equation is 

the only differential equation available in terms of the hazard function.  In this subsection we 

present non-trivial characterizations of BrXEW distribution, for  𝜃 = 1 , in terms of the hazard 

function. 

 

Proposition A.2.  Let  𝑋  :   𝛺 → (0,∞)  be a continuous random variable.  The rv  𝑋   has pdf  

(4)  if and only if its hazard function  ℎ𝐹(𝑥)  satisfies the following differential equation 

ℎ𝐹
′ (𝑥) + 𝛽𝑥𝛽−1ℎ𝐹(𝑥) = 2𝛼𝛽 𝑒𝑥𝑝(−𝑥

𝛽)
𝑑

𝑑𝑥
{
𝑥𝛽−1[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

2𝛼−1

(1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼)3
} , 𝑥 > 0. 

Proof.  If   𝑋   has pdf  (4) , then clearly the above differential equation holds. If the differential 

equation holds, then 

 

𝑑

𝑑𝑥
{𝑒𝑥

𝛽
ℎ𝐹(𝑥)} = 2𝛼𝛽

𝑑

𝑑𝑥
{
𝑥𝛽−1[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

2𝛼−1

(1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼)3
}, 

 

from which we arrive at the hazard function of  (4)  when  𝜃 = 1. 

 

3.3 Characterization in terms of the reverse hazard function 

The reverse hazard function,  𝑟𝐹 , of a twice differentiable distribution function,  𝐹  , is defined 

as 

𝑟𝐹(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
,   𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐹. 

In this subsection we present a characterization of BrXEW distribution in terms of the reverse 

hazard function. 

 

Proposition 3.3.  Let  𝑋  :   𝛺 → (0,∞)  be a continuous random variable.  The rv  𝑋   has pdf  

(4)  if and only if its reverse hazard function  𝑟𝐹(𝑥)  satisfies the following differential equation 

𝑟𝐹
′(𝑥) + 𝛽𝑥𝛽−1𝑟𝐹(𝑥) = 
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2𝜃𝛼𝛽𝑒−𝑥
𝛽 𝑑

𝑑𝑥

{
 
 

 
 𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽)

[1−𝑒𝑥𝑝(−𝑥𝛽)]
1−2𝛼 𝑒𝑥𝑝(−{

[1−𝑒𝑥𝑝(−𝑥𝛽)]
𝛼

1−[1−𝑒−𝑥
𝛽
]
𝛼 }

2

)

(1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼)3 [1 − 𝑒𝑥𝑝 (− {
[1−𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1−[1−𝑒𝑥𝑝(−𝑥𝛽)]
𝛼}
2

)]
}
 
 

 
 

, 𝑥 > 0. 

 

Proof.  Is similar to that of Proposition 3.2. 

 

 

3.4 Characterization based on the conditional expectation of certain function of the 

random variable 

In this subsection we employ a single function  𝜓 (or  𝜓1 ) of  𝑋  and characterize the distribution 

of  𝑋  in terms of the truncated moment of  𝜓(𝑋)  (or  𝜓1(𝑋)).  The following propositions have 

already appeared in Hamedani's previous work (2013), so we will just state them here which 

can be used to characterize BrXEW distribution. 

 

Proposition 3.4.   Let   𝑋:𝛺 →   (𝑒, 𝑓)   be a continuous rv with  𝑐𝑑𝑓   𝐹  .  Let   𝜓(𝑥) be a 

differentiable function on   (𝑒, 𝑓)   with   𝑙𝑖𝑚𝑥→𝑒+ 𝜓 (𝑥) = 1 .  Then for 𝛿 ≠ 1, 

 

𝐸[𝜓(𝑋) | 𝑋 ≥ 𝑥] = 𝛿𝜓(𝑥),   𝑥 ∈ (𝑒, 𝑓), 
 if and only if  

𝜓(𝑥) = (1 − 𝐹(𝑥))
1

𝛿
−1
,   𝑥 ∈ (𝑒, 𝑓) 

 

Proposition 3.5.   Let   𝑋:𝛺 →   (𝑒, 𝑓)   be a continuous rv with   𝑐𝑑𝑓    𝐹  .  Let   𝜓1(𝑥)   be a 

differentiable function on  (𝑒, 𝑓) with  𝑙𝑖𝑚𝑥→𝑓− 𝜓1 (𝑥) = 1.  Then for 𝛿1 ≠ 1, 

 

𝐸[𝜓1(𝑋) | 𝑋 ≤ 𝑥] = 𝛿1𝜓1(𝑥),   𝑥 ∈ (𝑒, 𝑓) implies 𝜓1(𝑥) = (𝐹(𝑥))
1

𝛿1
−1
.   𝑥 ∈ (𝑒, 𝑓). 

Remarks 3.1. 

(A) For  (𝑒, 𝑓) = (0,∞),   𝜃 = 1, 

𝜓(𝑥) = 𝑒𝑥𝑝(− {
[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
}

2

) 

and   𝛿 =
1

2
  , Proposition 3.4 provides a characterization of BrXEW distribution. 

(B) For  (𝑒, 𝑓) = (0,∞), 

𝜓1(𝑥) = 1 − 𝑒𝑥𝑝(− {
[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼

1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼
}

2

) 

and   𝛿1 =
𝜃

1+𝜃
. Proposition 3.5 provides a characterization of BrXEW distribution. 

 

4. Mathematical properties 

4.1 Moments 

The  𝑟 th ordinary moment of  𝑋  is given by 
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𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟

∞

−∞

𝑓(𝑥)𝑑𝑥 = 𝛤 (1 +
𝑟

𝛽
) ∑ 𝑞𝑗,𝑘,𝑚

((2𝑗+𝑘+2)𝛼,𝑟)
∞

𝑗,𝑘,𝑚=0

, ∀ 𝑟 > −𝛽, 
 

 

(11) 

where  

𝑞𝑗,𝑘,𝑚
((2𝑗+𝑘+2)𝛼,𝑟)

= 𝛿𝑗,𝑘𝜈𝑚
((2𝑗+𝑘+2)𝛼,𝑟)

, 

and 

𝜈𝑎1
(𝑎2,𝑎3) =  𝑎2(−1)

𝑎1 (
𝑎2 − 1
𝑎1

) /(𝑎1 + 1)
(𝑎3+𝛽)/𝛽 . 

Setting  𝑟 = 1  in (11), we have the mean of  𝑋 . 

 

4.2 Generating function 

Using the series expansion 

(1 − 𝑧)𝑎 = ∑ (
𝑎
𝑖
)∞

𝑖=0 (−𝑧)𝑖  for  | 𝑧 | < 1 , 

 one can expand  𝑔𝐸𝑊(𝑥; (2𝑗 + 𝑘 + 2)𝛼, 𝛽)  as  

𝑔𝐸𝑊(𝑥; (2𝑗 + 𝑘 + 2)𝛼, 𝛽) = [(2𝑗 + 𝑘 + 2)𝛼] ∑ (
𝑘
𝑚
)

∞

𝑚=0

[(−1)𝑚/(𝑚 + 1)]𝑔[(𝑚+1)1/𝛽](𝑥), 

where  𝑔[(𝑚+1)1/𝛽](𝑥)  denotes the pdf of the one-parameter Weibull distribution. So, whenever 

possible,  𝜋(2𝑗+𝑘+2)𝛼(𝑥)  can be used to derive moment generating function of the BrXEW 

distribution from those of the one-parameter Weibull distribution. Let  𝑝𝚿𝑞(⋅)  is the complex 

parameter Wright generalized hypergeometric (WGH) function with  𝑝  numerator and  𝑞  

denominator parameters (Kilbas et al., 2006, Equation (1.9)) defined by the series  

𝑝𝚿𝑞 [
(𝛼1, 𝐴1), … , (𝛼𝑝, 𝐴𝑝)

(𝛽1, 𝐵1),… , (𝛽𝑞, 𝐵𝑞)
; 𝑧] = ∑

∏ 𝛤(𝛼𝑗 + 𝐴𝑗𝑛)
𝑝
𝑗=1

∏ 𝛤(𝛽𝑗 + 𝐵𝑗𝑛)
𝑞
𝑗=1

∞

𝑛=0

𝑧𝑛

𝑛!
 

Then, following similar algebraic developments of Nadarajah et al. (2013), we can write the 

mgf of  𝑔𝐸𝑊(𝑥; (2𝑗 + 𝑘 + 2)𝛼, 𝛽) say  𝑀𝑍(𝑡; (2𝑗 + 𝑘 + 2)𝛼, 𝛽) , as  

𝑀𝑍(𝑡; (2𝑗 + 𝑘 + 2)𝛼, 𝛽) = [(2𝑗 + 𝑘 + 2)𝛼] ∑
(−1)𝑚

𝑚 + 1

∞

𝑚=0

(
(2𝑗 + 𝑘 + 2)𝛼 − 1

𝑚
) 

×1 𝚿0 [
(1, −𝛽−1)

−
; (𝑚 + 1)1/𝛽𝑡], 

Hence, the mgf of the BrXEW model follows from (9) as  

𝑀𝑋(𝑡) = ∑ 𝑎𝑚

∞

𝑚=0

𝚿0 [
(1, −𝛽−1)

−
; (𝑚 + 1)1/𝛽𝑡], 

where  𝑎𝑚 = [(−1)
𝑚/(𝑚 + 1)]∑ 𝛿𝑗,𝑘

∞
𝑗,𝑘 [(2𝑗 + 𝑘 + 2)𝛼] (

(2𝑗 + 𝑘 + 2)𝛼 − 1
𝑚

) . The above 

equation  𝑀𝑋(𝑡)  can be easily evaluated by scripts of the Matlab, Maple and Mathematica 

platforms. 

 

4.3 Incomplete moments  

The  𝑠th incomplete moment, say 

𝜙𝑠(𝑡) = ∫ 𝑥𝑠
𝑡

−∞
𝑓(𝑥)𝑑𝑥 , of  𝑋  can be expressed from (10) as  



Mohamed G. Khalil, G. G. Hamedani and Haitham M. Yousof 

Pak.j.stat.oper.res.  Vol.XV  No.1 2019  pp141-160 150 

𝜙𝑠(𝑡) = ∑ 𝛿𝑗,𝑘

∞

𝑗,𝑘=0

∫ 𝑥𝑠
𝑡

−∞

𝜋(2𝑗+𝑘+2)𝛼(𝑥)𝑑𝑥 

= 𝛾 (1 +
𝑠

𝛽
, (
1

𝑡
)
𝛽

) ∑ 𝑞𝑗,𝑘,𝑚
((2𝑗+𝑘+2)𝛼,𝑠)

∞

𝑗,𝑘,𝑚=0

, ∀ 𝑠 > −𝛽. 

The first incomplete moment is obtained by setting  𝑠 = 1  in  𝜙𝑠(𝑡) . 
 

4.4 Probability weighted moments 

The  (𝑠, 𝑟)𝑡ℎ  PWM of  𝑋  following the BrXEW model, say  𝜌𝑠,𝑟 , is formally defined by  

𝜌𝑠,𝑟 = 𝐸{𝑋
𝑠𝐹(𝑋)𝑟} = ∫ 𝑥𝑠

∞

−∞

𝐹(𝑥)𝑟𝑓(𝑥)𝑑𝑥. 

Using equations (3), (4), (9) and (10) we can write 

𝑓(𝑥)𝐹(𝑥)𝑟 = ∑ 𝑎𝑗,𝑘

∞

𝑗,𝑘=0

𝜋(2𝑗+𝑘+2)𝛼(𝑥), 

 where 

 

𝑎𝑗,𝑘 =
2𝜃(−1)𝑗𝛤(2𝑗 + 𝑘 + 3)

𝑗! 𝑘! 𝛤(2𝑗 + 3)[(2𝑗 + 𝑘 + 2)𝛼]
∑(−1)𝑖
∞

𝑖=0

(𝑖 + 1)𝑗 (𝜃
(𝑟 + 1) − 1

𝑖
). 

Then, the  (𝑠, 𝑟)𝑡ℎ PWM of  𝑋  can be expressed as  

𝜌𝑠,𝑟 = 𝛤 (1 +
𝑠

𝛽
) ∑ 𝑎𝑗,𝑘,𝑚

((2𝑗+𝑘+2)𝛼,𝑠)
∞

𝑗,𝑘,𝑚=0

, ∀ 𝑠 > −𝛽, 

where  

𝑎𝑗,𝑘,𝑚
((2𝑗+𝑘+2)𝛼,𝑠)

= 𝑎𝑗,𝑘𝜈𝑚
((2𝑗+𝑘+2)𝛼,𝑠)

. 

 

2.5 Residual and reversed residual life 

The  𝑛th moment of the residual life, say  𝑚𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)
𝑛 | 𝑋 > 𝑡] ,  𝑛 = 1,2 ,, uniquely 

determine  𝐹(𝑥) . The  𝑛 th moment of the residual life of  𝑋  is given by  𝑚𝑛(𝑡) =

[1 − 𝐹(𝑡)]−1 ∫ (𝑥 − 𝑡)𝑛
∞

𝑡
𝑑𝐹(𝑥).  Therefore 

 

𝑚𝑛(𝑡) = 𝛾 (1 +
𝑛

𝛽
, (
1

𝑡
)
𝛽

) [1 − 𝐹(𝑡)]−1 ∑ ∑𝜁𝑗,𝑘,𝑚,𝑟
((2𝑗+𝑘+2)𝛼,𝑛)

𝑛

𝑟=0

∞

𝑗,𝑘,𝑚=0

, ∀ 𝑛 > −𝛽, 

where  

𝜁𝑗,𝑘,𝑚
((2𝑗+𝑘+2)𝛼,𝑛)

= 𝛿𝑗,𝑘𝜈𝑚
((2𝑗+𝑘+2)𝛼,𝑛)

(
𝑛
𝑟
) (−𝑡)𝑛−𝑟 .  

The 𝑛th moment of the reversed residual life,  𝑀𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)
𝑛 | 𝑋 ≤ 𝑡]  for  𝑡 > 0  and  

𝑛 = 1,2 , … uniquely determines  𝐹(𝑥) . We obtain  𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∫ (𝑡 − 𝑥)𝑛
𝑡

0
𝑑𝐹(𝑥).  Then, the  

𝑛 th moment of the reversed residual life of  𝑋  becomes 
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𝑀𝑛(𝑡) = 𝛾 (1 +
𝑛

𝛽
, (
1

𝑡
)
𝛽

) [𝐹(𝑡)]−1 ∑ ∑𝜉𝑗,𝑘,𝑚,𝑟
((2𝑗+𝑘+2)𝛼,𝑛)

𝑛

𝑟=0

∞

𝑗,𝑘,𝑚=0

, ∀ 𝑛 > −𝛽, 

where 

𝜉𝑗,𝑘,𝑚,𝑟
((2𝑗+𝑘+2)𝛼,𝑛)

= (−1)𝑟𝛿𝑗,𝑘𝜈𝑚
((2𝑗+𝑘+2)𝛼,𝑛)

(
𝑛
𝑟
) 𝑡𝑛−𝑟 . 

 

 

4.6 Stress-strength model 

In stress-strength modeling,  𝑅𝑋1,𝑋2 = 𝑃𝑟(𝑋2 < 𝑋1)  is a measure of reliability of the system 

when it is subjected to random stress  𝑋2  and has strength  𝑋1 . The system fails if and only if 

the applied stress is greater than its strength and the components will function satisfactorily 

whenever  𝑋1 > 𝑋2.  𝑅𝑋1,𝑋2  can be considered as a measure of system performance and 

naturally arise in electrical and electronic systems. Other interpretation can be given as the 

reliability  𝑅𝑓1,𝑓2  of a system is the probability that the system is strong enough to overcome the 

stress imposed on it. Let  𝑋1  and  𝑋2  be two independent random variables with BrXEW 

(𝜃1, 𝛼, 𝛽)  and BrXEW (𝜃2, 𝛼, 𝛽)  distributions, respectively. The reliability is defined by  

𝑅𝑓1,𝑓2|𝑋2<𝑋1 = ∫ 𝑓1(𝑥; 𝜃1, 𝛼, 𝛽)
∞

0
𝐹2(𝑥; 𝜃2, 𝛼, 𝛽)𝑑𝑥.  Then we can write  

𝑅𝑓1,𝑓2|𝑋2<𝑋1 = ∑ 𝑣𝑗,𝑘,𝑤,𝑚

∞

𝑗,𝑘,𝑤,𝑚=0

, 

where 

𝑣𝑗,𝑘,𝑤,𝑚 = 4𝜃1𝜃2∑
(−1)𝑗+𝑤𝛤(2𝑗 + 𝑘 + 3)𝛤(2𝑤 +𝑚 + 3)

𝑗! 𝑘!𝑤!𝑚! 𝛤(𝜃2 − ℎ)𝛤(2𝑗 + 3)𝛤(2𝑤 + 3)
𝑗,𝑘,𝑤,𝑚=0

∞

 

× ∑
(−1)𝑖+ℎ(𝑖 + 1)𝑗(ℎ + 1)𝑤 (

𝜃1 − 1
𝑖

) (
𝜃2 − 1
ℎ

)

(2𝑤 +𝑚 + 2)[(2𝑗 + 2𝑤 + 𝑘 +𝑚 + 4)𝛼]

∞

𝑖,ℎ=0

. 

 

4.7 Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let  

𝑋1  :  𝑛, … , 𝑋𝑛  :  𝑛  be a random sample from the BrXEW distribution and let  𝑋(1), … , 𝑋(𝑛)  be 

the corresponding order statistics. The pdf of  𝑖th order statistic, say  𝑋𝑖  :  𝑛 , can be written as  

𝑓𝑖  :  𝑛(𝑥) = [𝐵(𝑖, 𝑛 − 𝑖 + 1)]
−1∑(−1)𝑗

𝑛−𝑖

𝑗=0

(
𝑛 − 𝑖
𝑗
) 𝑓(𝑥)𝐹𝑗+𝑖−1(𝑥), 

 

 

(12) 

where  𝐵(⋅,⋅)  is the beta function. Using (3), (4), equation (12) becomes 

𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1 = ∑ 𝑑𝑤,𝑘

∞

𝑤,𝑘=0

𝜋(2𝑤+𝑘+2)𝛼(𝑥), 

where 

𝑑𝑤,𝑘 =
2𝜃(−1)𝑤𝛤(2𝑤 + 𝑘 + 3)

𝑤! 𝑘! 𝛤(2𝑤 + 3)[(2𝑤 + 𝑘 + 2)𝛼]
∑(−1)𝑚
∞

𝑚=0

(𝑚 + 1)𝑤 (𝜃
(𝑗 + 𝑖) − 1

𝑚
). 

The pdf of  𝑋𝑖:𝑛  can be expressed as  
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𝑓𝑖:𝑛(𝑥) = ∑ ∑[𝐵(𝑖, 𝑛 − 𝑖 + 1)]−1
𝑛−𝑖

𝑗=0

∞

𝑤,𝑘=0

(−1)𝑗 (
𝑛 − 𝑖
𝑗
) 𝑑𝑤,𝑘𝜋(2𝑤+𝑘+2)𝛼(𝑥). 

Then, the density function of the 𝑖th BrXEW order statistic is a mixture of EW densities. For 

example, the moments of  𝑋𝑖:𝑛  can be expressed as  

𝐸(𝑋𝑖:𝑛
𝑞 ) = ∑ ∑[𝐵(𝑖, 𝑛 − 𝑖 + 1)]−1

𝑛−𝑖

𝑗=0

∞

𝑤,𝑘=0

(−1)𝑗 (
𝑛 − 𝑖
𝑗
) 𝑑𝑤,𝑘∫ 𝑋𝑖:𝑛

𝑞
∞

−∞

𝜋(2𝑤+𝑘+2)𝛼(𝑥)𝑑𝑥 

= 𝛤 (1 +
𝑞

𝛽
) ∑ ∑𝑡𝑤,𝑘,𝑚,𝑗

((2𝑗+𝑘+2)𝛼,𝑞)
𝑛−𝑖

𝑗=0

∞

𝑤,𝑘,𝑚=0

, ∀ 𝑞 > −𝛽, 

where 

𝑡𝑤,𝑘,𝑚,𝑗
((2𝑗+𝑘+2)𝛼,𝑞)

= [𝐵(𝑖, 𝑛 − 𝑖 + 1)]−1(−1)𝑗 (
𝑛 − 𝑖
𝑗
) 𝑑𝑤,𝑘𝜈𝑚

((2𝑗+𝑘+2)𝛼,𝑞)
. 

 

5. Parameter Estimation 

Several methods for parameter estimation were proposed in the literature but the maximum 

likelihood method is the most commonly employed. So, we consider the estimation of the 

unknown parameters of this family from complete samples only by maximum likelihood 

method. Let  𝑥1, … , 𝑥𝑛  be a random sample from the BrXEW distribution with parameters  𝜃, 𝛼  

and  𝛽 . Let  𝛩 = (𝜃, 𝛼, 𝛽)𝑇   be the  3 × 1  parameter vector. For determining the MLE of  𝛩 , 

we have the log-likelihood function 

ℓ = ℓ(𝛩) = 𝑛 𝑙𝑜𝑔 2 + 𝑛 𝑙𝑜𝑔 𝜃 + 𝑛 𝑙𝑜𝑔 𝛼 + 𝑛 𝑙𝑜𝑔 𝛽 + (𝛽 − 1)∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

 +∑𝑙𝑜𝑔 𝑧𝑖

𝑛

𝑖=1

 

−∑𝑥𝑖
𝛽

𝑛

𝑖=1

+∑𝑙𝑜𝑔 𝑧𝑖
𝛼

𝑛

𝑖=1

− 3∑𝑙𝑜𝑔(1 − 𝑧𝑖
𝛼)

𝑛

𝑖=1

−∑𝑠𝑖
2

𝑛

𝑖=1

+ (𝜃 − 1)∑𝑙𝑜𝑔[1 − 𝑒𝑥𝑝(−𝑠𝑖
2)]

𝑛

𝑖=1

, 

where  𝑠𝑖 = 𝑧𝑖
𝛼/(1 − 𝑧𝑖

𝛼)  and  𝑧𝑖 = [1 − 𝑒𝑥𝑝(−𝑥𝑖
𝛽
)] . The components of the score vector can 

be easily obtained. 

 

6. Applications 

In this section, we provide two applications of the BrXEW distribution to show empirically its 

potentiality. In order to compare the fits of the BrXEW distribution with other competing 

distributions, we consider the Cramér-von Mises (𝑊∗) and the Anderson-Darling  (𝐴∗)  
statistics. These two statistics are widely used to determine how closely a specific cdf fits the 

empirical distribution of a given data set. These statistics are given by  

𝑊∗ = [(1/12𝑛) +∑[𝑧𝑗 − (2𝑗 − 1)/2𝑛]
2

𝑛

𝑗=1

] (1 + 1/2𝑛) 

and  

𝐴∗ = (1 +
9

4𝑛2
+
3

4𝑛
){𝑛 +

1

𝑛
∑(−1 + 2𝑗)

𝑛

𝑗=1

𝑙𝑜𝑔[𝑧𝑗(1 − 𝑧𝑛−𝑗+1)]} 

respectively, where  𝑧𝑗 = 𝐹(𝑦𝑗)  and the  𝑦𝑗 's values are the ordered observations. The smaller 

these statistics are, the better the fit. The required computations are carried out using the R 
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software. The MLEs and the corresponding standard errors (in parentheses) of the model 

parameters are given in Tables 1 and 2. The numerical values of the statistics W* and A* are 

listed in the same Tables. The histograms of the two data sets and the estimated pdf of the 

proposed model are displayed in Figures 2 and 3. 

 

Failure times of 84 aircraft windshield 

The data consist of 84 observations. Here, we shall compare the fits of the BrXEW distribution 

with those of other competitive models, namely:  Poisson Topp Leone-Weibull (PTL-W), 

Marshall Olkin extended-Weibull (MOE-W) (Ghitany et al., 2005), gamma-Weibull (Ga-W) 

(Provost et al., 2011)  Kumaraswamy-Weibull (Kw-W) (Cordeiro et al., 2010), Weibull-Fréchet 

(W-Fr) (Afify et al., 2016b), beta-Weibull (BW) (Lee et al., 2007), transmuted modified-

Weibull (TM-W) (Khan and King, 2013)  Kumaraswamy transmuted-Weibull (KwT-W) (Afify 

et al., 2016a), modified beta-Weibull (MB-W) (Khan, 2015),  Mcdonald-Weibull  (Mc-W) 

(Cordeiro et al., 2014),  transmuted exponentiated generalized Weibull (TExG-W) (Yousof et 

al., 2015) distributions, whose pdfs (for  𝑥 > 0 ) are: given by 

PTL-W: 

𝑓(𝑥) =
2𝜆𝛼𝑏𝑎𝑏𝑥𝑏−1𝑒−2𝑥

𝑏
[1 − 𝑒𝑥𝑝(−2𝑥𝑏)]𝛼−1

1 − 𝑒𝑥𝑝(−𝜆)
𝑒𝑥𝑝{−𝜆[1 − 𝑒𝑥𝑝(−2𝑥𝑏)]𝛼} ; 

MOE-W: 

𝑓(𝑥) = 𝛼𝛽𝛾𝛽𝑥𝛽−1 [1 − (1 − 𝛼)𝑒−(𝛾𝑥)
𝛽
]
−2

𝑒𝑥𝑝[−(𝛾𝑥)𝛽] ; 

GaW: 

𝑓(𝑥) = 𝛽𝛼𝛾/𝛽+1𝛤−1(1 + 𝛾/𝛽)𝑥𝛽+𝛾−1 𝑒𝑥𝑝[−𝛼𝑥𝛽] ; 

Kw-W: 

𝑓(𝑥) = 𝑎𝑏𝛽𝛼𝛽𝑥𝛽−1{1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]}
𝑎−1

𝑒𝑥𝑝[−(𝛼𝑥)𝛽] {1 − {1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]}
𝑎
}
𝑏−1
; 

W-Fr: 

𝑓(𝑥) = 𝑎𝑏𝛽𝛼𝛽𝑥−𝛽−1 {1 − 𝑒𝑥𝑝 [−(
𝛼

𝑥
)
𝛽

]}

−𝑏−1

 

× 𝑒𝑥𝑝 [−𝑏 (
𝛼

𝑥
)
𝛽

] 𝑒𝑥𝑝 (−𝑎 {𝑒𝑥𝑝 [−(
𝛼

𝑥
)
𝛽

] − 1}

−𝑏

) ; 

B-W: 

𝑓(𝑥) = 𝛽𝛼𝛽𝐵−1(𝑎, 𝑏)𝑥𝛽−1{1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]}
𝑎−1

𝑒𝑥𝑝[−𝑏(𝛼𝑥)𝛽] ; 
TM-W: 

𝑓(𝑥) = (𝛼 + 𝛾𝛽𝑥𝛽−1)[1 − 𝜆 + 2𝜆 𝑒𝑥𝑝(−𝛼𝑥 − 𝛾𝑥𝛽)] 𝑒𝑥𝑝[−𝛼𝑥 − 𝛾𝑥𝛽] ; 
KT-W: 

𝑓(𝑥) = 𝑎𝑏𝛽𝛼𝛽𝑥𝛽−1(1 + 𝜆 − 2𝜆{1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]}) 𝑒𝑥𝑝[−(𝛼𝑥)𝛽] 

× [1 − ((1 + 𝜆){1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]} − 𝜆{1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]}
2
)
𝑎

]
𝑏−1

 

× [{1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]}(1 + 𝜆 − 𝜆{1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]})]
𝑎−1
; 

MB-W: 

𝑓(𝑥) = 𝛽𝛾𝑎𝛼−𝛽𝐵−1(𝑎, 𝑏)𝑥𝛽−1 {1 − 𝑒𝑥𝑝 [− (
𝑥

𝛼
)
𝛽

]}

𝑎−1

𝑒𝑥𝑝 [−𝑏 (
𝑥

𝛼
)
𝛽

] 
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× (1 − (1 − 𝛾) {1 − 𝑒𝑥𝑝 [−𝑏 (
𝑥

𝛼
)
𝛽

]})

−𝑎−𝑏

; 

Mc-W: 

𝑓(𝑥) = 𝛽𝑐𝛼𝛽𝐵−1(𝑎/𝑐, 𝑏)𝑥𝛽−1{1−𝑒𝑥𝑝[−(𝛼𝑥)
𝛽]}

𝑎−1

𝑒𝑥𝑝[−(𝛼𝑥)𝛽] 

× (1 − {1 − 𝑒𝑥𝑝[−(𝛼𝑥)𝛽]}
𝑐
)
𝑏−1
; 

TExG-W: 

𝑓(𝑥) = 𝑎𝑏𝛽𝛼𝛽𝑥𝛽−1{1 − 𝑒𝑥𝑝[−𝑎(𝛼𝑥)𝛽]}
𝑏−1

𝑒𝑥𝑝[−𝑎(𝛼𝑥)𝛽] 

× (1 + 𝜆 − 2𝜆{1 − 𝑒𝑥𝑝[−𝑎(𝛼𝑥)𝛽]}
𝑏
). 

 

Some other extensions of the Weibull distribution can also be used in this comparison, but are 

not limited to Yousof et al., (2015), Alizadeh et al., (2016), Yousof et al., (2017a-d), Cordeiro 

et al., (2017a, b), Brito et al., (2017), Aryal et al., (2017a, b), Nofal et al., (2017), Korkmaz et 

al., (2018), Yousof et al., (2018a, b),  Hamedani et al., (2018), Korkmaz et al., (2019),  and 

Hamedani et al., (2019). The parameters of the above densities are all positive real numbers 

except for the TM-W and TExG-W distributions for which  |𝜆| ≤ 1. Tables 2 list the values of 

above statistics for seven fitted models. The MLEs and their corresponding standard errors (in 

parentheses) of the model parameters are also given in these tables. The figures in Table 1 reveal 

that the BrXEW distribution yields the lowest values of these statistics and hence provides the 

best fit to the two data sets. 
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Table 1: MLEs (standard errors in parentheses) and the statistics  𝑊∗  and  𝐴∗  for data set I. 

 

 
 

 

 

 

 

 

Distribution Estimates W A

BrXEW(,,) 0.6369, 4.261, 0.536 0.074 0.64

( 0.356), (1.757), (0.099)

PTL-W(,, b) 5.78175, 4.22865, 0.65801 0.1397 1.194

(1.395), ( 1.167), (0.039)

MOE-W(,,) 488.899455, 0.283246, 1261.9660 0.3995 4.448

(189.358), (0.013), (351.073)

Ga-W(,,) 2.376973, 0.848094, 3.534401 0.255 1.9488

(0.378), (0.0005296), (0.665)

Kw-W(,, a, b) 14.4331, 0.2041, 34.6599, 81.8459 0.1852 1.5059

(27.095), (0.042), (17.527), (52.014)

W-Fr(,, a, b) 630.9384, 0.3024, 416.0971, 1.1664 0.25372 1.957

(697.94), (0.03), (232.36), (0.357)

B-W(,, a, b) 1.36, 0.2981, 34.1802, 11.4956 0.4652 3.2197

(1.002), (0.06), (14.838), (6.73)

TM-W(,,,) 0.2722, 1, 4.6106 , 0.4685 0.80649 11.2047

(0:014), (5.2105), (1.9104), (0.165)

KwT-W(,,, a, b) 27.7912, 0.178, 0.4449, 29.5253, 168.0603 0.164 1.363

(33.401), (0.017), (0.609), (9.792), (129.165)

MB-W(,, a, b, c) 10.1502, 0.1632, 57.4167, 19.3859, 2.0043 0.47172 3.26561

(18.697), (0.019), (14.063), (10.019),(0.662)

Mc-W(,, a, b, c) 1.9401, 0.306, 17.686, 33.6388, 16.7211, 0.1986 1.5906

(1.011), (0:045), (6.222), (19.994), (9.722)

TExG-W(,,, a, b) 4.2567,0.1532, 0.0978, 5.2313,1173.3277 1.0079 6.233

(33.401), (0:017), (0.609),(9.792)
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Figure 3: Estimated pdf for data set I. 

 

 

Survival times (in days) of 72 Guinea pigs 

The second real data set corresponds to the survival times (in days) of 72 guinea pigs infected 

with virulent tubercle bacilli reported by Bjerkedal (1960). We shall compare the fits of the 

BrXEW distribution with those of other competitive models, namely: Weibull-Weibull (W-W) 

(Tahir et al., 2016), odd Weibull-Weibull (OW-W) (Bourguignon et al., 2014),Weibull Log-

Weibull (WLog-W) (Alzaatreh et al., 2013), the gamma exponentiated-exponential (GaE-E) 

(Risti´c and Balakrishnan 2012) and exponential exponential-geometric (EE-Gc) (Rezaei et al., 

2013) distributions, whose pdfs (for  𝑥 > 0) are: given by 

W-W: 

𝑓(𝑥) = 𝑒𝑥𝑝(−𝛼{− 𝑙𝑜𝑔[1 − 𝑒𝑥𝑝(−𝜆𝑥𝛾)]}𝛽) ; 
OW-W: 

𝑓(𝑥) = 1 − 𝑒𝑥𝑝{−𝛼[𝑒𝑥𝑝(𝜆𝑥𝛾) − 1]𝛽} ; 

GaE-E: 

𝑓(𝑥) =
𝛼𝜃

𝛤(𝜆)
𝑒𝑥𝑝(−𝜃𝑥) [1 − 𝑒𝑥𝑝(−𝜃𝑥)]𝛼−1{−𝛼 𝑙𝑜𝑔[1 − 𝑒𝑥𝑝(−𝜃𝑥)]}𝜆−1; 

EE-Gc: 

𝑓(𝑥) =
𝛼𝜃(1 − 𝑝) 𝑒𝑥𝑝(−𝜃𝑥)

[1 − 𝑒𝑥𝑝(−𝜃𝑥)]𝛼−1{1 − 𝑝 + 𝑝[1 − 𝑒𝑥𝑝(−𝜃𝑥)]𝛼}2
. 
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Table 2: MLEs (standard errors in parentheses) and the statistics W* and A*   for data set II. 

Distribution Estimates W A

BrXEW(,,) 3.18, 5.539, 0.166 0.0907 0.5668

(2.117), (2.437),(0.024)

W-W(,,) 2.6594, 0.6933, 0.0270 0.1427 0.7811

(0.713), (0.1707), (0.019)

OW-W(,,) 11.1576, 0.0881, 0.4574 0.4494 2.4764

(4.545) (0.0355) (0.077)

WLog-W(,,) 1.7872, 0.7795, 0.0255 0.4348 2.3938

(0.782), (0.333), (0.040)

GaE-E(,,) 2.1138, 2.6006, 0.0083 0.3150 1.7208

(1.3288), (0.559), (0.005)

EE-Gc(,, p) 2.5890, 0.0004, 0.9999 0.1047 0.5789

(0.4820), 0.0041), (0.1036)

 

 

 

 
Figure 4: Estimated pdf for data set II. 

 

 

Based on the figures in Tables 1 and 2 we conclude that the BrXEW lifetime model provides 

adequate fits as compared to other Weibull-G models in both applications with small values for 

W* and A*. In Application 1, the proposed BrXEW lifetime model is much better than the PTL-

W, MOE-W, Ga-W, Kw-W, W-Fr, B-W, TM-W, KwT-W, MB-W, Mc-W, TExG-W models, 
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and a good alternative to these models. In Application 2, the proposed BrXEW lifetime model 

is much better than the W-W, OW-W, WLog-W, GaE-E, EE-Gc models, and a good alternative 

to these models. 

 

 

7. Conclusions 

In this article, we introduce a new three-parameter lifetime model called the Burr X 

exponentiated Weibull model. The major justification for the practicality of the new lifetime 

model is based on the wider use of the exponentiated Weibull and Weibull models. We are 

motivated to propose this new lifetime model because it exhibits increasing, decreasing, 

bathtub, J shaped and constant hazard rates. The new lifetime model can be viewed as a mixture 

of the exponentiated Weibull distribution. It can also be viewed as a suitable model for fitting 

the right skewed, symmetric, left skewed and unimodal data. We provide a comprehensive 

account of some of its statistical properties also some useful characterization results are 

presented. The maximum likelihood method is used to estimate the model parameters. We prove 

empirically the importance and flexibility of the new model in modeling two types of lifetime 

data. The proposed BrXEW lifetime model is a much better fit than the Poisson Topp Leone-

Weibull, the Marshall Olkin extended-Weibull, gamma-Weibull, Kumaraswamy-Weibull, 

Weibull-Fréchet, beta-Weibull, transmuted modified-Weibull, Kumaraswamy transmuted- 

Weibull, modified beta-Weibull, Mcdonald-Weibull and transmuted exponentiated 

generalized-Weibull models, so the new lifetime model is a good alternative to these models in 

modeling aircraft windshield data. It is also a much better fit than the Weibull-Weibull, odd 

Weibull-Weibull, Weibull Log-Weibull, the gamma exponentiated-exponential and exponential 

exponential-geometric models, so it is a good alternative to these models in modeling the 

survival times of Guinea pigs. We hope that the new model will attract wider applications in 

reliability, engineering and other areas of research. 
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