
Pak. j. stat. oper. res.   Vol.II  No.2 2006   pp145-150 

Deviation of the Variances of Classical Estimators and  
Negative Integer Moment Estimator from Minimum Variance 

Bound with Reference to Maxwell Distribution 

G. R. Pasha 
Department of Statistics 
Bahauddin Zakariya University  
Multan, Pakistan 
E-mail: drpasha@bzu.edu.pk 
 
Muhammad Aslam 
Department of Statistics 
Bahauddin Zakariya University  
Multan, Pakistan 
E-mail: aslamasadi@bzu.edu.pk  
 
Muhammad Javed 
Department of Statistics 
Bahauddin Zakariya University  
Multan, Pakistan 
E-mail: javedstat@yahoo.com 

Abstract 
In this paper, we present that how much the variances of the classical estimators, namely, 
maximum likelihood estimator and moment estimator deviate from the minimum variance bound 
while estimating for the Maxwell distribution. We also sketch this difference for the negative 
integer moment estimator. We note the poor performance of the negative integer moment 
estimator in the said consideration while maximum likelihood estimator attains minimum variance 
bound and becomes an attractive choice.  
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1.   Introduction 
In the context of the kinetic molecular theory of gases, a gas contains a large 
number of particles in rapid motions. Each particle has a different speed, and 
each collision between particles changes the speeds of the particles. An 
understanding of the properties of the gas requires an understanding of the 
distribution of particle speeds. The Maxwell distribution describes the distribution 
of particle speeds in an ideal gas. This distribution has a variety of applications in 
the study of the distribution of speeds of molecules in thermal equilibrium as 
given by statistical mechanics (see Papoulis, 1984 for more details). 
 
The probability density function of Maxwell distribution is given as  
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With the applications of the Maxwell distribution kinetic molecular theory of gases 
and a number of other similar cases, the estimation for its unknown parameter θ 
also become crucial. In the present paper, we compare two classical estimators, 
namely, maximum likelihood estimator (MLE) and estimator by method of 
moments (MME) with the negative integer moment estimator (NIME). Mohsin and 
Shahbaz (2005) also conducted such kind of comparison while estimating the 
parameter of inverse Rayleigh distribution but they just compare MLE with NIME. 
But in our study, in addition of MME, we mainly, compute minimum variance 
bound (MVB) for any unbiased estimator of unknown parameter of the Maxwell 
distribution and compute the deviation of this MVB form the variances of the said 
estimators.  
 
In Section 2, we compute the classical estimates of the unknown value of the 
parameter θ for density (1.1) along with variances. For this we use MLE and 
MME. Section 3, dedicates for the estimation by method of negative integer 
moments. In Section 4, we give Cramer-Rao inequality and compute the MVB for 
estimation of θ. In Section 5, we discuss the deviation of the variances from the 
MVB and relative efficiencies while Section 6 concludes.  

2.   Classical Estimation 
The MLE is one of the classical estimators in statistical inference. Efron (1982) 
explained the method of maximum likelihood estimation along with the properties 
of the estimator. According to Aldrich (1997), the making of maximum likelihood 
was one of the most important developments in 20th century statistics. In his 
paper, he considered Fisher’s changing justifications for the method.  
It can be found that the log likelihood of (1.1) is; 
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and, resultantly, the MLE of θ is given as 
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The method of moment (MM) is also a commonly used method of estimation. In 
this method, the sample moments are assumed to be estimates of population 
moments and thus moment estimates for the unknown values of population 
parameters are found (see Lehman and Casella, 1998, for details).  
 
For unknown parameter θ in (1.1), the moment estimator can be found as    
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where X  is sample mean. 

also,             ( )MMθvar  =
n8

83 −π 2θ                 (2.5) 

3.   Negative Integer Moment Estimator  
Negative integer moments are useful in applications in several contexts, notably 
in life testing problems. Bock et al. (1984) illustrated the examples of their use in 
the evaluation of a variety of estimators. With the particular reference to  
Chi-square distribution, in the inverse regression problem, Oman (1985) gave an 
exact formula for the mean squared error of Kruutchkoff’s inverse estimator by 
use of negative integer moments of the noncentral Chi-squared variable.  
 
The rth negative integer moment is defined as: 
  }){( rcXE −+  
where X is a random variable, c is a constant, and  r is a positive integer.  
 
Before finding the estimator by the method of negative integer moments, we 
have the rth order negative integer moments of Maxwell distribution is as 
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For r = 1, the first order negative integer moment is; 
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Now according to method of negative integer moment (NIM) estimation, the 
estimator for unknown parameter θ for (1.1) is 
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For variance of estimator in (3.3), we have    
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4.   Minimum Variance Bound 
Let X = (X1, X2, …, Xn) be a random sample and let f(x; θ) denotes the probability 
density function for some model of the data with unknown parameter θ. If T(X) be 
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any statistic and ψ(θ) be its expectation such that ψ(θ) = E [T(X)]. Under some 
regularity conditions (see Lehman and Casella, 1998), it follows that for all θ, 
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where In(θ) is Fisher’s information matrix.  
 
This is called Cramer-Rao inequality and the right hand side of (4.1) is called 
Cramer-Rao lower bound or MVB. In particular, if T(X) is an unbiased estimator 
of θ, then the numerator becomes 1, and MVB is simply 1/In(θ). Obviously, if the 
variance of estimator coincides with the MVB, it means that we are using an 
estimator that bears minimum variance in its class of estimators. 
 
For the unknown parameter in (1.1), it can easily be shown that for any unbiased 
estimator of θ; 

MVB = n6

2θ                    (4.2) 

5.   Deviation from MVB and Relative Efficiency 
We compare all the three variances (2.3), (2.5), and (3.4) with the MVB given in 
(4.2). Since all these variances contains the term θ2 as a multiplier so we drop it 
while comparing them all. Fig. 5.1 shows the deviation of the variances (actual 
variances in the figure should be multiplied by θ2) of the estimators under 
consideration from the MVB. These values are drawn against different sample 
sizes. We note that the variance of MLE has least deviation from the MVB. As 
the sample size increases, the variance of MLE begins to coincide with the MVB. 
For n > 20, variance of MLE equalizes to the MVB.  
 
For small samples, the variance of moment estimator notably deviates from the 
MVB but this difference covers with the increase in sample size. When sample 
size becomes larger than 30, this variance begins to coincide with the MVB.  
 
In the case of NIM estimation, the performance of NIME remains quite miserable, 
especially, for small sample. The variance of NIME remains largely deviant from 
the MVB as it falls miles away form the MVB. Although, the severity of the 
deviation decreases with the increase in sample size but even then it does not 
appear to make NIME attractive while comparing with its two competitors.  
 
As for as relative efficiency is concerned, we note the efficiency of MLE relative 
to NIME as 3.45 for n = 10 and MLE remains about 2.5 times more efficient as 
compared to NIME for larger sample size. Our findings thus also matches to 
those of Mohsin and Shahbaz (2005) who also declared MLE more efficient as 
compared to NIME while estimating the parameter of inverse Rayleigh 
distribution.  
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We also note that MME remains about 2.2 times more efficient as compared to 
NIME. We further note that this relative efficiency dose not change with the 
increase in sample size. When we compare MLE with MME for variances, we 
find MLE about 7% more efficient as compared to the moment estimator. 
  

 
 

 
 

 

 
 

 
 

 
 
 

Figure 5.1:   Deviation from MVB 

6.   Conclusion 
Although the negative integer moments are gaining popularity for their 
applications but NIM estimator performs poorly in the term of efficiency while 
estimating the unknown parameter of the Maxwell distribution. Its variance 
remain too far form the Cramer-Rao lower bound for variance i.e., MVB. When 
we are dealing with the kinetic molecular theory of gases or the matters of 
thermodynamic with the application of the Maxwell distribution, MLE is the best 
choice for estimating the unknown parameter. Even for large samples (n > 30), 
moment estimator may equally be utilized.  
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