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Abstract 
In this work, a new lifetime model is introduced and studied. The major justification for the practicality of 

the new model is based on the wider use of the exponentiated Weibull and Weibull models. We are also 

motivated to introduce the new lifetime model since it exhibits decreasing, upside down-increasing, constant, 

increasing-constant and J shaped hazard rates also the density of the new distribution exhibits various 

important shapes. The new model can be viewed as a mixture of the exponentiated Weibull distribution. It 

can also be considered as a suitable model for fitting the symmetric, left skewed, right skewed and unimodal 

data. The importance and flexibility of the new model is illustrated by four read data applications. 
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1. Genesis of the new model 

A random variable (R.V.)  𝑇  is said to have the Exponentiated Weibull (EW) distribution 

(see Mudholkar and Srivastava (1993), Mudholkar et al., (2015) and Nadarajah et al., 

(2013)) if its probability density function (P.D.F.), cumulative distribution function 

(C.D.F.) and the reliability function (R.F.) are given by  

𝑔𝐸𝑊(𝑡 ; 𝛼 , 𝛽) = 𝛼𝛽𝑡
𝛽−1[1 − 𝑒𝑥𝑝(−𝑡𝛽)]

𝛼−1
𝑒𝑥𝑝(−𝑡𝛽), 

 

𝐺𝐸𝑊(𝑡 ; 𝛼 , 𝛽) = [1 − 𝑒𝑥𝑝(−𝑡
𝛽)]

𝛼
, 

and 

𝑅𝐸𝑊(𝑡) = 𝐺𝐸𝑊(𝑡 ; 𝛼 , 𝛽) = 1 − 𝐺𝐸𝑊(𝑡 ; 𝛼 , 𝛽) = {1 − [1 − 𝑒𝑥𝑝(−𝑡
𝛽)]

𝛼
}, 

respectively, for  𝑡 > 0 ,  𝛼 > 0  and  𝛽 > 0 . When  𝛼 = 1  we get the standard one 

parameter W model (see Weibull (1951)). In statistical literature, the Burr-Hatke 

differential equation (B.H.D.E.) can be written as 

𝑑𝐹/𝑑𝑡 = 𝑔(𝑡, 𝐹)𝐹(1 − 𝐹) with 𝐹0 = 𝐹(𝑡0)|[𝑡0∈ℜ], 

 

(1) 

where  𝐹(𝑡) = 𝐹  is the C.D.F. of a continuous R.V.  𝑇  and  𝑔(𝑡, 𝐹)  is an arbitrary positive 

function  (𝑔(+))  for any  𝑡0 ∈ ℜ . Using (1), Maniu and Voda (2008) introduced and 

studied the BH distribution with C.D.F. and P.D.F. given by  

𝐹(𝑡 ; 𝜃) = 1 −
(𝑡 + 1)−1

𝑒𝑥𝑝(𝑡𝜃)
|[𝑡>0,𝜃>0], 

 

and 

𝑓(𝑡 ; 𝜃) =
(𝑡 + 1)−2[𝜃(𝑡 + 1) + 1]

𝑒𝑥𝑝(𝑡𝜃)
, 
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respectively. By replacing  𝑡  by  {− 𝑙𝑜𝑔[𝐺𝐸𝑊(𝑥)]}, Yousof et al., (2018) introduced a 

new flexible family of distributions called the BH-G family of distributions. Based on 

Yousof et al., (2018), the C.D.F. of the BHEW distribution can be defined as 

𝐹𝜃,𝛼,𝛽(𝑥) = 1 −
{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}𝜃⏞                

𝐴

1 − 𝑙𝑜𝑔{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}⏟                    

𝐵

. 

 

 

(2) 

Equation (2) can be also obtained using idea of Alzaatreh et al., (2013). The P.D.F. 

corresponding to (2) is given by 

𝑓𝜃,𝛼,𝛽(𝑥) = 𝑓(𝑥 ; 𝜃 , 𝛼, 𝛽) = 𝛼𝛽𝑥
𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼−1
 

×
{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼
}
𝜃−1

(1 − 𝑙𝑜𝑔{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼})2
 

× [𝜃(1 − 𝑙𝑜𝑔{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
}) + 1]. 

 

 

 

(3) 

The R.F. and hazard rate function (H.R.F.) of new model are given by  

𝑅𝜃,𝛼,𝛽(𝑥) =
{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼
}
𝜃

1 − 𝑙𝑜𝑔{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}
, 

 

and 

ℎ𝜃,𝛼,𝛽(𝑥) =
𝛼𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼−1

{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}[1 − 𝑙𝑜𝑔{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]𝛼}]
 

× [𝜃(1 − 𝑙𝑜𝑔{1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
}) + 1]. 

Some useful extension of the W and EW models are developed by Yousof et al., (2015), 

Aryal et al. (2017), Yousof et al., (2017), Brito et al., (2017), Hamedani et al., (2017), 

Aboraya (2018), Almamy et al., (2018), Cordeiro et al., (2018), Korkmaz et al., (2019), 

among others.  

2. Justification 

The major justification for the practicality of the new model is based on the wider use of 

the exponentiated Weibull and Weibull models. We are also motivated to introduce the 

new lifetime model since it exhibits decreasing, unimodal and constant hazard rates (see 

Figure 2) also the P.D.F. of the new distribution exhibits various important shapes such 

as decreasing, unimodal, right skewed and left skewed (see Figure 1). The new model can 

be viewed as a mixture of the EW distribution. It can also be considered as a suitable 

model for fitting the symmetric, left skewed, right skewed, and unimodal data (see 

application section). 

 

The proposed lifetime model is better than the Poisson Topp Leone-Weibull, Marshall 

Olkin extended-Weibull, Gamma-Weibull, Kumaraswamy-Weibull, Weibull-Fréchet, 

Beta-Weibull, Kumaraswamy transmuted-Weibull, transmuted modified-Weibull, 

transmuted exponentiated generalized Weibull, modified beta-Weibull, McDonald-

Weibull models in modeling the failure times data. In modeling cancer patient's data, the 

new model is much better than the transmuted linear exponential, Weibull, Transmuted 
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modified-Weibull, modified beta-Weibull, transmuted additive-Weibull, exponentiated 

transmuted generalized Rayleigh models. The new model is much better than the 

Weibull-Weibull, Odd Weibull-Weibull, gamma exponentiated-exponential models in 

modeling survival times of Guinea pigs. Finally, the proposed model is much better than 

the exponentiated-Weibull, transmuted-Weibull, Odd Log Logistic-Weibull models in 

modeling glass fibers data. Figure 1 shows that the P.D.F. BHEW distribution exhibits 

various important shapes such as decreasing, unimodal, right skewed and left skewed, 

from Figure 2 we conclude that the H.R.F. of the BHEW distribution exhibits decreasing, 

unimodal and constant hazard rates (Figure 1 and 2 are given in Appendix). 

3. Properties 

3.1 Asymptotic 

Proposition Let  𝑎 = 𝑖𝑛𝑓{ 𝑥|𝐺𝐸𝑊(𝑥) > 0} . The asymptotics of the C.D.F., P.D.F. and 

H.R.F. as  𝑥 → 𝑎  are:  

𝐹𝜃,𝛼,𝛽(𝑥) ∼ [1 − 𝑒𝑥𝑝(−𝑥
𝛽)]

𝛼
|[𝑥→𝑎], 

𝑓𝜃,𝛼,𝛽(𝑥) ∼ 𝛼𝛽𝑥
𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼−1
|[𝑥→𝑎], 

and 

ℎ𝜃,𝛼,𝛽(𝑥) ∼ 𝛼𝛽𝑥
𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

−1
|[𝑥→𝑎]. 

 

Proposition The asymptotic of C.D.F., P.D.F. and H.R.F. as   x → ∞ are: 

1 − 𝐹𝜃,𝛼,𝛽(𝑥) ∼ 𝜃{1 − [1 − 𝑒𝑥𝑝(−𝑥
𝛽)]

𝛼
}
𝜃
|[𝑥→∞], 

𝑓𝜃,𝛼,𝛽(𝑥) ∼ 𝜃
2𝛼𝛽𝑥𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) {1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼
}
𝜃−1
[1

− 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼−1
|[𝑥→∞], 

and 

ℎ𝜃,𝛼,𝛽(𝑥) ∼ 𝜃𝛼𝛽𝑥
𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) {1 − [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼
}
−1
[1 − 𝑒𝑥𝑝(−𝑥𝛽)]

𝛼−1
|[𝑥→∞]. 

 

3.2 Useful expansions 

Consider the following expansions 

(−𝑧 + 1)𝑡 = ∑

∞

𝑑=0

(−1)𝑑 (
𝑡
𝑑
) 𝑧𝑡|[|𝑧| <1], 

(4) 

And 

𝑙𝑜𝑔( − 𝑧 + 1) = −∑

∞

𝑤=0

[𝑧𝑤+1/(𝑤 + 1)] |[|𝑧| <1]. 
(5) 

 

Applying (4) for  in Eq. (2) we get  

{−[1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
+ 1}

𝜃
= ∑

∞

𝑑=0

𝑎𝑑{[1 − 𝑒𝑥𝑝(−𝑥
𝛽)]

𝛼
}
𝑑
, 

 

where  
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𝑎𝑑 = (−1)
𝑑 (
𝜃
𝑑
). 

Applying (5) for the term  𝐵 , still in Eq. (2), we obtain  

1 − 𝑙𝑜𝑔{−[1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
+ 1} = 1 +∑

∞

𝑖=0

{[1 − 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
}
𝑖+1

(𝑖 + 1)
 

= ∑

∞

𝑑=0

𝑏𝑑{[1 − 𝑒𝑥𝑝(−𝑥
𝛽)]

𝛼
}
𝑑
, 

where  𝑏0 = 1  and for  𝑑 ≥ 1 ,  𝑏𝑑 =
−1

𝑑
.  Then, Eq. (2) can be writen as  

𝐹𝜃,𝛼,𝛽(𝑥) = 1 −
∑

𝑑=0
∞

𝑎𝑑

∑

𝑑=0
∞

𝑏𝑑

{[− 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼
+ 1}

𝑑

{[− 𝑒𝑥𝑝(−𝑥𝛽)]𝛼 + 1}𝑑
 

= 1 −∑

∞

𝑑=0

𝑐𝑑{[1 − 𝑒𝑥𝑝(−𝑥
𝛽)]

𝛼
}
𝑑
, 

where  

𝑐0 =
𝑎𝑜
𝑏0

 

and, for  𝑑 ≥ 1,  we have  

𝑐𝑑 = (𝑎𝑑 −
1

𝑏0
∑

𝑑

𝑟=1

𝑏𝑟𝑐𝑑−𝑟)/𝑏0. 

 

At the end, the C.D.F. (2) can be written as 

𝐹𝜃,𝛼,𝛽(𝑥) = ∑

∞

𝑑=0

𝑉𝑑+1 𝛱(𝑑+1)𝛼(𝑥), 
 

(6) 

where  𝑑0 = 1 − 𝑐𝑑,  for  𝑑 ≥ 1  we have  𝑑0 = −𝑐𝑑  and  

[− 𝑒𝑥𝑝(−𝑥𝛽) + 1]
(𝑑+1)𝛼

= 𝛱(𝑑+1)𝛼(𝑥) 

is the C.D.F. of the Exp-G family with power parameter  (𝑑 + 1)𝛼 . By differentiating 

(6), we obtain the same mixture representation 

𝑓𝜃,𝛼,𝛽(𝑥) = ∑

∞

𝑑=0

𝑉𝑑+1𝜋(𝑑+1)𝛼(𝑥 ; 𝜉), 

 

 

(7) 

where  

𝜋(𝑑+1)𝛼(𝑥) = [(𝑑 + 1)𝛼]𝛼𝛽𝑥
𝛽−1 𝑒𝑥𝑝(−𝑥𝛽) [1 − 𝑒𝑥𝑝(−𝑥𝛽)]

(𝑑+1)𝛼−1
[1

− 𝑒𝑥𝑝(−𝑥𝛽)]
𝛼−1

 

is the EW P.D.F. with power parameter  (𝑑 + 1)𝛼 . Eq. (7) means that the BHEW 

function is a linear combination of EW densities. So that, some the structural properties 

of the new model can be immediately obtained from the well-established properties of the 

EW distribution. 
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3.2 Moments and generating function 

The  𝑟𝑡ℎ  ordinary moment of  𝑋  is given by  

𝜇𝑟
′ = 𝐸𝑋𝑟 = ∫

∞

−∞

𝑥𝑟𝑓𝜃,𝛼,𝛽(𝑥)𝑑𝑥. 

Then, we obtain  

𝜇𝑟
′ = 𝛤(1 + 𝑟𝛽−1) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,𝑟)

|[𝑟>−𝛽], 

 

(8) 

where  

𝑉𝑑+1𝜉𝑚
((𝑑+1)𝛼,𝑟)

= 𝜉𝑑,𝑚
((𝑑+1)𝛼,𝑟)

, 

and 

𝜉𝜏
(𝜂,𝑞)

=   𝜂(−1)𝜏(𝜏 + 1)−(𝑞+𝛽)/𝛽 (
𝜂 − 1
𝜏
) 

Setting  𝑟 = 1,2,3  and  4  we get 

𝐸𝑋 = 𝛤(1 + 1/𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,1)

|[1>−𝛽], 

𝐸𝑋2 = 𝛤(1 + 2/𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,2)

|[2>−𝛽], 

𝐸𝑋3 = 𝛤(1 + 3/𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,3)

|[3>−𝛽], 

and  

𝐸𝑋4 = 𝛤(1 + 4/𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,4)

|[4>−𝛽]. 

3.4 Effect of  on the mean, variance, skewness and kurtosis 

From Table 1 we note that: 

1-  𝐸𝑋  decreases as  𝜃  increases. 

2- The variance decreases as  𝜃  increases. 

3- The new mode will be more skewed to the right as  𝜃  increases. 

4-The kurtosis of new mode increases as  𝜃  increases. 
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Table 1: Mean, variance, skewness and kurtosis.

   EX Variance Skewness Kurtosis

5 0.5 0.5 0.00721373 0.001326813 19.46052 849.4605

6 0.004238804 0.000488343 20.70598 979.9014

7 0.00266581 0.0002043993 21.86453 1111.439

8 0.001766359 9.430646e05 22.94609 1243.363

9 0.001219828 4.697908e05 23.95796 1375.071

10 0.0008711163 2.490317e05 24.90484 1505.966

15 0.0002271622 1.999047e06 28.12918 2067.223

20 6.501137e05 3.060367e07 30.54657 2569.744

30 7.538604e06 1.941787e08 34.60131 3399.615

50 1.00447e07 2.167821e10 152.5896 28718.54

100 1.281096e12 2.742489e15 40878.74 1671225019

150 1.233945e17 2.641542e20 13171437 1.734868e14

 

The moment generating function M.G.F.can be derived via Eq. (7) as  

𝑚𝑟(𝑦) = 𝛤(1 + 𝑟𝛽
−1) ∑

∞

𝑑,𝑟,𝑚=0

𝜉𝑑,𝑟,𝑚
((𝑑+1)𝛼,𝑟)

|[𝑟>−𝛽], 

where  

[𝑡𝑟/𝑟!]𝑉𝑑+1 𝜉𝑚
((𝑑+1)𝛼,𝑟)

= 𝜉𝑑,𝑟,𝑚
((𝑑+1)𝛼,𝑟)

. 

The  𝑟𝑡ℎ  incomplete moment of  𝑋  is defined by  

𝜏𝑟(𝑦) = ∫
𝑦

−∞

𝑥𝑟𝑓(𝑥)𝑑𝑥. 

We can write from (7)  

𝜏𝑟(𝑦) = 𝛾(1 + 𝑟𝛽
−1, (𝑡−1)𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,𝑟)

|[𝑟>−𝛽], 
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By setting  𝑟 = 1,2,3  and  4  we get 

𝜏1(𝑦) = 𝛾(1 + 𝛽
−1, (𝑡−1)𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,1)

|[1>−𝛽], 

𝜏2(𝑦) = 𝛾(1 + 𝛽
−2, (𝑡−1)𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,2)

|[1>−𝛽], 

𝜏3(𝑦) = 𝛾(1 + 𝛽
−3, (𝑡−1)𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,3)

|[3>−𝛽], 

and 

𝜏4(𝑦) = 𝛾(1 + 𝛽
−4, (𝑡−1)𝛽) ∑

∞

𝑑,𝑚=0

𝜉𝑑,𝑚
((𝑑+1)𝛼,4)

|[4>−𝛽]. 

3.5 Moments of residual life 

The  𝑛𝑡ℎ  moment of the residual life, say  

𝐸(𝑋 − 𝑡)𝑛 = 𝑧𝑛(𝑡)|[𝑋>𝑡,𝑛=1,2,… ], 

uniquely determines  𝐹(𝑥) . The  𝑛 th moment of the residual life of  𝑋  is given by  

𝑧𝑛(𝑡) = 𝑅𝜃,𝛼,𝛽
−1 (𝑡)∫

∞

𝑡

(𝑥 − 𝑡)𝑛𝑑𝐹𝜃,𝛼,𝛽(𝑥). 

Therefore,  

𝑧𝑛(𝑡) =
𝛾(1 + 𝑛𝛽−1, (𝑡−1)𝛽)

𝑅(𝑡)
∑

∞

𝑑,𝑚=0

𝜅𝑑,𝑚
((𝑑+1)𝛼,𝑛)

|[𝑛>−𝛽], 

where 

𝑞𝑑+1𝜉𝑚
((𝑑+1)𝛼,𝑛)

= 𝜅𝑑,𝑚
((𝑑+1)𝛼,𝑛)

, 

and  

𝑉𝑑+1∑

𝑛

𝑟=0

(−𝑡)𝑛−𝑟 (
𝑛
𝑟
) = 𝑞𝑑+1 

3.6 Moments of the reversed residual life 

The  𝑛𝑡ℎ  moment of the reversed residual life, say  

𝐸(𝑡 − 𝑋)𝑛 = 𝑍𝑛(𝑡)|[𝑋≤𝑡,𝑡>0,𝑛=1,2,… ],  

we obtain  

𝑍𝑛(𝑡) = 𝐹𝜃,𝛼,𝛽
−1 (𝑡)∫

𝑡

0

(𝑡 − 𝑥)𝑛𝑑𝐹𝜃,𝛼,𝛽(𝑥). 

Then, the  𝑛𝑡ℎ  moment of the reversed residual life of  𝑋  becomes  

𝑍𝑛(𝑡) =
𝛾(1 + 𝑛𝛽−1, (𝑡−1)𝛽)

𝐹(𝑡)
∑

∞

𝑑,𝑚=0

𝛿𝑑,𝑚
((𝑑+1)𝛼,𝑛)

|[𝑛>−𝛽], 

where 

𝑙𝑑+1𝜉𝑚
((𝑑+1)𝛼,𝑛)

= 𝛿𝑑,𝑚
((𝑑+1)𝛼,𝑛)

, 

and  
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𝑉𝑑+1∑

𝑛

𝑟=0

(−1)𝑟 (
𝑛
𝑟
) 𝑡𝑛−𝑟 = 𝑙𝑑+1. 

3.7 Order statistics 

Suppose  𝑋1   :   𝑛, 𝑋2   :   𝑛, … , 𝑋𝑛   :   𝑛,  is a random sample (R.S.) from the BHEW model. 

Let  𝑋𝑖   :   𝑛  denote the  𝑖𝑡ℎ  order statistic. The P.D.F. of  𝑋𝑖   :   𝑛  is  

𝑓𝑖   :   𝑛(𝑥) = 𝐵
−1(𝑖, 𝑛 − 𝑖 + 1)∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
𝑗
) 𝑓𝜃,𝛼,𝛽(𝑥)𝐹𝜃,𝛼,𝛽(𝑥)

𝑗+𝑖−1. 
(9) 

Following the result 0.314 of Gradshteyn and Ryzhik (2000) for a power series raised to  

𝑛  is a positive integer we have  

∑

∞

𝑖=0

𝑐𝑛,𝑖𝑢
𝑖 = (∑

∞

𝑖=0

𝑎𝑖𝑢
𝑖)

𝑛

|[𝑛≥1], 

where  𝑐𝑛,𝑖  (for  𝑖 = 1,2, … ) are the coefficients determined from the recurrence Eq. 

(with  𝑐𝑛,0 = 𝑎0
𝑛 )  

(𝑖𝑎0)
−1 ∑

𝑖

𝑚=1

𝑎𝑚𝑐𝑛,𝑖−𝑚[𝑚(𝑛 + 1) − 𝑖] = 𝑐𝑛,𝑖. 

The P.D.F. of the  𝑖𝑡ℎ  order statistic of any BHEWmodel can be expressed as 

 

𝑓𝑖   :   𝑛
(𝜃,𝛼,𝛽)

(𝑥) = ∑

∞

ℎ,𝑑=0

𝑏ℎ,𝑑𝜋ℎ+𝑑+1(𝑥),  
 

(10) 

 

where  

𝑏ℎ,𝑑 = 𝑛! (ℎ + 1)(𝑖 − 1)! (ℎ + 𝑑 + 1)
−1𝑑ℎ+1∑

𝑛−𝑖

𝑗=0

(−1)𝑗 𝑣𝑗+𝑖−1,𝑑

(𝑛 − 𝑖 − 𝑗)! 𝑗!
 

and the quantities  𝑣𝑗+𝑖−1,𝑑  can be determined with    and recursively 

for   

𝑓𝑗+𝑖−1,𝑑 = (𝑑𝑑0)
−1 ∑

𝑑

𝑚=1

𝑑𝑚  𝑣𝑗+𝑖−1,𝑑−𝑚[𝑚(𝑗 + 𝑖) − 𝑑] . 

 

4. For the BHEW model 

5. 𝐸𝑋𝑖   :   𝑛
𝑞

= 𝛤(1 + 𝑞𝛽−1)∑∞
ℎ,𝑑,𝑚=0 𝜉ℎ,𝑑,𝑚

(ℎ+𝑑+1,𝑞)
|[𝑞>−𝛽], 

6. where 

7. 𝑏ℎ,𝑑𝜉𝑚
(ℎ+𝑑+1,𝑞) = 𝜉ℎ,𝑑,𝑚

(ℎ+𝑑+1,𝑞). 

8. Estimation 

Let  𝑥1, … , 𝑥𝑛  be a R.S. from the BHEW distribution with parameters  𝜃, 𝛼  and  𝛽 . Let  

𝚿  be the  3 × 1  parameter vector. For getting the maximum likelihood estimates 

(M.L.E.) of  𝚿 , we have the log-likelihood (L.L.) function 

 



A New Extremely Flexible Version of the Exponentiated Weibull Model: Theorem and Applications to………..  

Pak.j.stat.oper.res.  Vol.XV  No.1 2019  pp195-215 203 

ℓ = ℓ(𝚿) = 𝑛 𝑙𝑜𝑔 𝛼 + 𝑛 𝑙𝑜𝑔 𝛽 + (𝛽 − 1)∑

𝑛

𝑖=1

𝑙𝑜𝑔𝑥𝑖 −∑

𝑛

𝑖=1

𝑥𝑖
𝛽

 

−∑

𝑛

𝑖=1

𝑥𝑖
𝛽
+ (𝛼 − 1)∑

𝑛

𝑖=1

𝑙𝑜𝑔𝑧𝑖 +∑

𝑛

𝑖=1

𝑙𝑜𝑔𝑞𝑖   +∑

𝑛

𝑖=1

𝑙𝑜𝑔𝑠𝑖 , 

where  

𝑞𝑖 = (1 − 𝑧𝑖
𝛼)𝜃−1/[1 − 𝑙𝑜𝑔(1 − 𝑧𝑖

𝛼)]2, 
 

𝑠𝑖 = {𝜃[1 − 𝑙𝑜𝑔(1 − 𝑧𝑖
𝛼)] + 1} 

and  

𝑧𝑖 = [1 − 𝑒𝑥𝑝(−𝑥𝑖
𝛽
)]. 

 

The components of the score vector is available if needed. 

9. Applications 

In this Section, we provide four applications to show empirically its potentiality. We 

consider the Cramér-Von Mises  W*  and the Anderson-Darling  𝐴∗  statistics. The 

computations are carried out using the R software. The M.L.E. and the corresponding 

standard errors (S.E.) (in parentheses) of the new model parameters are given in Tables 2, 

4, 6, and 8. The numerical values of the  W*  and  A*  are listed in Tables 3, 5, 7, and 9. 

The estimated P.D.F., P-P plot, TTT plot and Kaplan-Meier survival plot of the four data 

sets of the proposed model are displayed in Figures 3, 4,5 and 6. These four data sets 

were used for fitting the Odd Lindley EW by Aboraya (2018). 

Application 1 

The data consist of 84 observations. The data are: 0.040, 1.866, 2.385, 3.443, 0.301, 

1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 4.570, 1.652, 2.300, 

3.344, 4.602, 1.757,  3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 

1.981, 2.661, 3.779, 1.248, 2.010, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 2.688, 3.924, 

1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 

4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 

1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 2.324, 3.376, 

4.663. Here, we shall compare the fits of the BHEW distribution with those of other 

competitive models, namely: Poisson Topp Leone-Weibull (PTL-W), Marshall Olkin 

extended-Weibull (MOE-W), Gamma-Weibull (Ga-W), Kumaraswamy-Weibull (Kw-

W), Weibull-Fréchet (W-Fr) Beta-Weibull (B-W), Transmuted modified-Weibull, 

Kumaraswamy transmuted-Weibull (KwT-W), Modified beta-Weibull (MB-W), 

Mcdonald-Weibull (Mc-W), transmuted exponentiated generalized Weibull distributions, 

whose P.D.F.s (for   x > 0 ) (for more details about these P.D.F.s see Aboraya (2018)). 

The parameters of the above densities are all positive real numbers except for the TM-W 

and TExG-W distributions. Tables 2 list the values of above statistics for seven fitted 

models. The M.L.E.s and their corresponding standard errors (in parentheses) of the 

model parameters are also given in these tables. The figures in Table 3 reveal that the 
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new distribution yields the lowest values of these statistics and hence provides the best fit 

to the two data sets. 

 

Table 2: M.L.E.s (S.E. in parentheses) for data set I.

Model Estimates

BHEW,, 814.3149, 20.146, 0.223

(582.25), (1.683), (0.03)

PTL-W,,b 5.78175, 4.22865, 0.65801

(1.395), ( 1.167), (0.039)

MOE-W,, 488.8994, 0.283246, 1261.96

(189.358), (0.013), (351.073)

Ga-W,, 2.376973, 0.848094, 3.534401

(0.378), (0.0005296), (0.665)

Kw-W,,a,b 14.4331, 0.2041, 34.6599, 81.8459

(27.095), (0.042), (17.527), (52.014)

W-Fr,,a,b 630.938, 0.30, 416.097, 1.1664

(697.942), (0.032), (232.359), (0.357)

B-W(,, a, b) 1.36, 0.2981, 34.1802, 11.4956

(1.002), (0.06), (14.838), (6.73)

TM-W,,, 0.2722, 1, 4.6106 , 0.4685

(0.014), (5.2105), (1.9104), (0.165)

KwT-W,,,a,b 27.7912, 0.178, 0.4449, 29.5253, 168.0603

(33.401), (0.017), (0.609), (9.792), (129.165)

MB-W,,a,b,c 10.1502, 0.1632, 57.4167, 19.3859, 2.0043

(18.697), (0.019), (14.063), (10.019),(0.662)

Mc-W,,a,b,c 1.9401, 0.306, 17.686, 33.6388, 16.7211,

(1.011), (0:045), (6.222), (19.994), (9.722)

TExG-W,,,a,b 4.257,0.1532, 0.0978, 5.23, 1173.328

(33.401), (0:017), (0.609), (9.792)
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Table 3: W and A for data set I.

Model W A

BHEW,, 0.09165 0.87409

PTL-W,,b 0.13967 1.19393

MOE-W,, 0.39953 4.44766

Ga-W,, 0.25533 1.94887

Kw-W,,a,b 0.18523 1.50591

W-Fr,,a,b 0.25372 1.95739

B-W,,a,b 0.46518 3.21973

TM-W,,, 0.80649 11.20466

KwT-W,,,a,b 0.16401 1.36324

MB-W,,a,b,c 0.47172 3.26561

Mc-W,,a,b,c 0.1986 1.59064

TExG-W,,,a,b 1.00791 6.23321
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Figure 3: Estimated P.D.F., P-P plot, TTT plot and Kaplan-Meier survival plot for data 

set I. 

Application 2 

This data set represents the remission times (in months) of a random sample of 128 

bladder cancer patients. This data is given by: 0.080, 2.090, 3.48, 4.87, 6.940, 8.66, 

13.110, 23.63, 0.200, 2.23, 3.52, 4.980, 6.97, 9.020, 13.29, 0.400, 2.26, 3.57, 5.060, 7.09, 

9.220, 13.800, 25.74, 0.500, 2.46, 3.640, 5.09, 7.260, 9.47, 14.24, 25.820, 0.510, 2.54, 

3.70, 5.170, 7.28, 9.740, 14.760, 26.310, 0.81, 2.620, 3.820, 5.320, 7.320, 10.060, 14.770, 

32.150, 2.64, 3.88, 5.320, 7.39,10.34, 14.830, 34.26, 0.90 , 2.690, 4.18, 5.340, 7.59, 

10.660, 15.96, 36.660, 1.05, 2.690, 4.23, 5.410, 7.62, 10.750, 16.62, 43.010, 1.190, 2.750, 

4.260, 5.410, 7.63, 17.120, 46.12, 1.260, 2.83, 4.330, 5.49, 7.660, 11.25, 17.140, 79.05, 

1.350, 2.870, 5.620, 7.870, 11.640, 17.360, 1.40, 3.02, 4.340, 5.710, 7.93, 11.790, 18.10, 

1.460, 4.400, 5.85, 8.260, 11.98, 19.130, 1.76, 3.250, 4.50, 6.250, 8.37, 12.020, 2.020, 

3.31, 4.51, 6.54, 8.53, 12.030, 20.28, 2.020, 3.36, 6.760, 12.07, 21.730, 2.07, 3.36, 6.930, 

8.65, 12.63, 22.690. We compare the fits of the BHEW distribution with other 

competitive models, namely: the TMW, MBW, transmuted additive Weibull distribution 

(TA-W), exponentiated transmuted generalized Rayleigh (ETGR) and the W distributions 
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with corresponding densities (for  x > 0 ) (for more details about these P.D.F.s see 

Aboraya (2018)). 

Table 4: M.L.E.s (S.E. in parentheses) for data set II.

Model Estimates

BHEW,, 61.746, 45.807, 0.170

(157.0984), (7.291, (0.0544)

W, 9.5593, 1.0477

(0.853), (0.068)

TM-W,,, 0.1208, 0.8955, 0.0002, 0.2513

(0.024), (0.626), (0.011), (0.407)

MB-W,,a,b,c 0.1502, 0.1632, 57.4167, 19.3859, 2.0043

(22.437), (0.044), (37.317), (13.49), (0.789)

TA-W,,,, 0.1139, 0.9722, 3.0936105 , 1.0065, -0.163

(0.032), (0.125), (6.106103 ), (0.035), (0.28)

ETG-R,,, 7.3762, 0.0473, 0.0494, 0.118

(5.389),(3.965103), (0.036), (0.26)

 

Table 5:W and A for data set II.

Model W A

BHEW,, 0.09548 0.5947

W, 0.10553 0.66279

TM-W,,, 0.12511 0.76028

MB-W,,a,b,c 0.10679 0.72074

TA-W,,,, 0.11288 0.70326

ETG-R,,, 0.39794 2.36077
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Figure 4: Estimated P.D.F., P-P plot, TTT plot and Kaplan-Meier survival plot for data 

set II. 

 

Application 3 

The second real data set corresponds to the survival times (in days) of 72 guinea pigs 

infected with virulent tubercle bacilli reported by Bjerkedal (1960). The data are: 72,74, 

77, 10, 33, 44, 56, 59, 92, 93, 96, 107, 107, 108, 108, 100, 100, 102, 105, 108, 116, 120, 

121, 122, 109, 112, 113, 115, 122, 124, 130, 146, 153, 159, 160, 134, 136, 139, 144, 163, 

163, 168, 176, 183, 195, 196, 215, 216, 222, 230, 197, 202, 213, 231, 240, 245, 293, 327, 

342, 251, 253, 254, 255, 278, 347, 361, 402, 171, 172,432, 458, 555.  

 

We shall compare the fits of the BHEW distribution with those of other competitive 

models, namely: the Weibull-Weibull (W-W), the Odd Weibull-Weibull (OW-W), the 

gamma exponentiated-exponential (GaE-E) distributions, whose P.D.F.s (for   x > 0 ) 

(for more details about these P.D.F.s see Aboraya (2018)). 
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Table 6: M.L.E.s (S.E. in parentheses) for data set III.

Model Estimates

BHEW,, 10.257, 11.369, 0.2267

(16.611), (2.99), (0.08)

W-W,, 2.6594, 0.6933, 0.0270

(0.7129), (0.1707), (0.0193)

OW-W,, 11.1576, 0.0881, 0.4574

(4.5449) (0.0355) (0.0770)

GaE-E,, 2.1138, 2.6006, 0.0083

(1.3288), (0.5597), (0.0048)

 

Table 7:W and A for data set III.

Model W A

BHEW,, 0.0418 0.2792

W-W,, 0.1427 0.7811

OW-W,, 0.4494 2.4764

GaE-E,, 0.3150 1.7208
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Figure 5: Estimated P.D.F., P-P plot, TTT plot and Kaplan-Meier survival plot for data 

set III. 

Application 4: Glass fibers data 

This data consists of 63 observations of the strengths of 1.5 cm glass fibers, originally 

obtained by workers at the UK National Physical Laboratory. The data are: 0.550, 0.74, 

0.770, 0.81, 0.840, 0.93, 1.040, 1.11, 1.130, 1.240, 1.250, 1.27, 1.280, 1.29, 1.300, 1.36, 

1.390, 1.42, 1.480, 1.48, 1.490, 1.49, 1.500, 1.50, 1.510, 1.52, 1.530, 1.54, 1.550, 1.55, 

1.580, 1.590, 1.60, 1.610, 1.610, 1.6100, 1.61, 1.620, 1.62, 1.630, 1.64, 1.660, 1.66, 

1.660, 1.67, 1.68, 1.680, 1.69, 1.700, 1.70, 1.730, 1.76, 1.760, 1.77, 1.780, 1.81, 1.820, 

1.84, 1.840, 1.890, 2.00, 2.01, 2.240. For this data set, we shall compare the fits of the 

BHEW distribution with some competitive models like EW, T-W and OLL-W (for more 

details about these P.D.F.s see Aboraya (2018)). 
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Table 8: M.L.E.s (S.E. in parentheses) for data set IV.

Model Estimates

BHEW,, 908.64, 21.127, 0.5

(577.313), (1.610), (0.057)

EWa,, 0.671, 7.285,1.718

(0.249), (1.707), (0.086)

T-Wa,, 0.5010, 5.1498, 0.6458

(0.2741), (0.6657), (0.0235)

OLL-W,, 0.9439, 6.0256, 0.6159

(0.2689), (1.3478), (0.0164)

 

Table 9:W and A for data set IV.

Model W A

BHEW,, 0.3161 1.7301

EWa,, 0.636 3.484

T-Wa,, 1.0358 0.1691

OLL-W,, 1.2364 0.2194
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Figure 6: Estimated P.D.F., P-P plot, TTT plot and Kaplan-Meier survival plot for data 

set IV. 

 

Based on Tables 3, 5, 7 and 9, the BHEW lifetime model provides adequate fits as 

compared to other Weibull models with small values for  W* and  A* . The BHEW 

lifetime model is better than the PTL-W, MOE-W, W-Fr, B-W, TM-W, KwT-W, Ga-W, 

Kw-W, MB-W, Mc-W and TExG-W models in modeling the failure times data, also the 

new model is much better than the TL-E, W, TM-W, MB-W, TA-W and ETG-R models 

in modeling cancer patients data, and much better than the OW-W and GaE-E models in 

modeling survival times of Guinea pigs. Finally, the proposed model is much better than 

the EW, T-W and OLL-W models in modeling glass fibers data. Also, Plots of estimated 

P.D.F., P-P, TTT and Kaplan-Meier survival given in Figures 3-6 supports these results. 

10. Concluding remarks 

A new three-parameter lifetime model called the Burr-Hatke exponentiated Weibull 

(BHEW) model is introduced. The main justification for the practicality of the BHEW 

lifetime model is based on the wider use of the Weibull and exponentiated Weibull 
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models. We are also motivated to introduce the BHEW lifetime model since it exhibits 

increasing, decreasing and bathtub hazard rates. The BHEW model can be viewed as a 

mixture of the EW density. It can also be considered as a suitable model for fitting the 

left skewed, right skewed, symmetric, and unimodal data. We prove empirically the great 

importance and wide flexibility of the BHEW model in modeling four types of lifetime 

data, the new model provides adequate fits as compared to other Weibull models with 

small values for  W*   and  A*  so the new model is much better than other competitive 

model in modeling four data sets. The proposed lifetime model is much better than the 

Poisson Topp Leone-Weibull, Marshall Olkin extended-Weibull, Gamma-Weibull, 

Kumaraswamy-Weibull, Weibull-Fréchet, B-W, Beta-Weibull, Kumaraswamy 

transmuted-Weibull, transmuted modified-Weibull, transmuted exponentiated 

generalized Weibull, modified beta-Weibull and McDonald-Weibull models in modeling 

the failure times data. In modeling cancer patient's data, the new model is much better 

than the transmuted linear exponential, Weibull, Transmuted modified-Weibull, modified 

beta-Weibull, transmuted additive-Weibull and exponentiated transmuted generalized 

Rayleigh models. The BHEW model is much better than the Weibull-Weibull, Odd 

Weibull-Weibull and gamma exponentiated-exponential models in modeling survival 

times of Guinea pigs. Finally, the BHEW model is better than transmuted-Weibull, the 

exponentiated-Weibull and Odd Log Logistic-Weibull models in modeling glass fibers 

data. 
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Appendix 

 
Figure 1: Plots of the BHEW P.D.F. 

 
Figure 2: Plots of the BHEW H.R.F. 
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