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Abstract
Inference on )<(= YXPR has been considered when X and Y belong to independent
exponentiated family of distributions. Maximum Likelihood Estimator (MLE), Uniformly Minimum
Variance Unbiased Estimator (UMVUE) and Bayes Estimator of R has been derived and
compared through simulation study. Exact and approximate confidence intervals and Bayesian
credible intervals have also been derived.

Keywords: Bayes Estimator, Confidence Interval, Credible Interval, Delta
Method, Markov Chain Monte Carlo, Maximum Likelihood Estimator, Uniformly
Minimum Variance Unbiased Estimator.

1. Introduction
)<(= YXPR is used in various applications e.g. stress-strength reliability,

statistical tolerancing, measuring demand-supply system performance,
measuring heritability of a genetic trait, bio-equivalence study etc. Some
examples are as follows.
i) If X represents the maximum chamber pressure generated by ignition of

a solid propellant and Y represents the strength of the rocket chamber,
then R is the probability of successful firing of the engine.

ii) If X represents the diameter of a shaft and Y represents the diameter of a
bearing that is to be mounted on the shaft, then R is the probability that
the bearing fits without interference.

iii) If X represents a patient's remaining years of life if treated with drug A
and Y represents a patient's remaining years of life if treated with drug B,
inference about R represents a comparison of the effectiveness of the two
drugs.

iv) If X and Y represent lifetimes of two electronic devices, then R is the
probability that one fails before the other.

v) A certain unit - be it a receptor in a human eye or ear or any other organ -
operates only if it is stimulated by the source of random magnitude Y and
the stimulus exceeds a lower threshold X specific for that unit. In this
case, R is the probability that the unit functions.
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The statistical formulation of R appears to be given first by Birnbaum (1956).
The problem he considered was to find both the point estimate and an interval
estimate of R on the basis of m independent observations mXXX ,...,, 21 on X
and n independent observations nYYY ,...,, 21 on Y . Birnbaum used Mann-Whitney
statistic to estimate R and found the confidence interval of R in nonparametric
set up following the Hodges-Lehmann approach. This paper opened up the flood
gates and was followed by a deluge of papers [Birnbaum and McCarthy (1958),
Owen et al. (1964), Govindarajulu (1967, 1968), Church and Harris (1970),
Majumdar (1970), Enis and Geisser (1971), Bhattacharyya and Johnson (1974),
Tong (1974, 1975), Kelley et al. (1976), Beg (1980), Sathe and Shah (1981),
Shah and Sathe (1982), Iwase (1987), Guttman et al. (1988), McCool (1991),
Weerhandi and Johnson (1992), Reiser and Farragi (1994), Ivshin (1996),
Crame r and Kamps (1997), Sinha and Zielinski (1997), Surles and Padgett
(2001), Banerjee and Biswas (2003), Ali et al. (2004), Nadarajah (2004), Pal et
al. (2005), Mokhlis (2005), Kundu and Gupta (2005), etc.], more or less on the
same theme. For excellent reviews we refer to Johnson (1988) and Kotz et al.
(2003).

Let ),(=),( 0   xFxFX and ),(=)( 0  yFyGY , where )(.,0 F is the continuous
baseline distribution and  may be vector valued, and  and  are positive
shape parameters. Then, X and Y are said to be belonged to the exponentiated
family of distributions (abbreviated as EFD) or the proportional reversed hazard

family. If X and Y are independent, then





=)<(= YXPR . In particular, we

take 





 


 xFxF 00 =),( i.e. the location-scale family. If 0= , then ),(0 xF

belongs to the scale family and this case was studied in detail by Kakade et al.
(2007).

If ),(=),( 0   xFxF and ),(=),( 0   yFyG i.e. they belong to the proportional

hazard family, then





1=R .

Kundu and Gupta (2005) and Kakade et al. (2008) considered inferential aspect
of R assuming ),(0 xF as exponential and Gumbel distributions respectively.
Surles and Padgett (2001) and Raqab and Kundu (2005) considered the same
problem for scaled Burr type X distribution that eventually belongs to the
exponentiated family of distributions. Awad and Gharraf (1986), Mokhlis (2005)
and Rezaei et al. (2010) considered inferential aspect of R for Burr type XII, Burr
type III and generalized Pareto distributions respectively which are nothing but
the exponentiated family of distributions with some baseline distributions.

Our objective in this article is to draw inference, parametric as well as Bayesian,
about R when X and Y belong to the exponentiated family of distributions. We
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look into the problem in more general set up under any known baseline
distribution not necessarily restricted to the location-scale family. The problem is
also studied for the baseline distribution unknown through parameter(s), in
particular for the folded Crammer distribution. An outline is also given for
inference about R in general case i.e. when the baseline distributions for X and
Y are different through parameter.

The paper is organized as follows. In section 2, we derive the expression of R
for parallel system. Section 3 discusses inference about R when the baseline
distribution is completely known. In this section MLE, UMVUE and Bayes
estimate of R have been derived in a general set up. Also Confidence Interval,
approximate as well as exact and Bayesian Credible Intervals have been
derived. In section 4, Inference about R for unknown baseline distribution
through parameters has been considered. In particular, the folded Crammer
distribution has been attempted and Confidence limits have been found out using
bootstrap methods in section 5. In section 6, Bayes estimate of R have been
calculated adopting Markov Chain Monte Carlo (MCMC) approach. An outline is
given in section 7 for estimation of R in general case. Simulation results have
been discussed in Section 8. Section 9 concludes.

2. Expression of R for parallel system
A system consisting of n units is said to be parallel if at least one of the units
must succeed for the system to succeed. If nXXX ...,,, 21 are the life lengths of
the units, then the life length of the system is )...,,,(= 21)( nn XXXmaxX . The
following theorem holds for parallel system when the life length of each unit
belongs to the exponentiated family of distribution.

Theorem 2.1 If the iX are independent and belong to the exponentiated family
of distribution ),( ixEFD  , for ,...,2,1,= ni then )...,,,(= 21)( nn XXXmaxX is

distributed as the )=,(
1= i

n

i
xEFD   .

Remark 2.1 If the baseline distribution is normal, then Gupta and Gupta (2008)
called it as power normal and their theorem 3.1 is particular case of the above
theorem.

If any one or both of X and Y is realized as resultant of a parallel system, then
with the help of theorem 1.2 , one can find out the expression for R .

3. Inference about R when the baseline distribution is completely known
Without loss of generality, we assume that 0= and 1= . If we transform the
random variables )(ln= 0 XFU  (i.e. )(= XU  ) and )(ln= 0 YFV  (i.e. )(= YV  ),
then U and V follow independent exponential distributions with parameters 
and  respectively. Therefore, all the results of R for independent exponential
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distributions will follow. Moreover, )<(=)<(= VUPYXPR . We summarize
inferential results in sequel.

3.1  Maximum Likelihood Estimator of R
To compute the MLE of R , we will use the following theorem in Kotz et al.
(2003)[p.40].

Theorem 3.1 Let ),(ˆ VU be the MLE of R based on observations
),...,,(= 21 mUUUU and ),...,,(= 21 nVVVV , where nm= whenever U and V are

dependent. Then the MLE R̂ of R based on X and Y is given by
))(),((ˆ=),(ˆ=ˆ YXVUR  (1)

where ))(...,),(),((=)()),(...,),(),((=)( 2121 nm YYYYXXXX  , and X and Y
are observation vectors.

Using the theorem 1.3 and writing )(ln== 01=1=1 i
m

ii
m

i
XFUW   and

)(ln== 01=1=2 i
n

ii
n

i
YFVW   , we obtain the MLE of R is

.=ˆ

21

2
1

W
n

W
m
W
n

R


(2)

Here ),...,,(= 21 mXXXX is a random sample from )(EFD and ),...,,(= 21 nYYYY

is a random sample from )(EFD and the MLE of  is
1

=ˆ
W
m

 and that of  is

2

=ˆ
W
n

 .

Theorem 3.2 If 1R̂ is the MLE of R , then
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Hence, ,11)(1
2)(1)(2)(1)(

)(1)ˆ( 22
2

2

2
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3.2 Uniformly Minimum Variance Unbiased Estimator of R

The upcoming theorem in Kotz et al. (2003)[p.40] will be used to obtain the
UMVUE of R .

Theorem 3.3 Let VUT , be a sufficient statistic for  based on ),( VU and let there

exist an UMVUE )(~ ,VUT of R based on observations ),( VU . Then,
))(),((= ,, YXTT VUYX  is a sufficient statistic for  based on the sample

))(),(( YX  and the UMVUE R~ of R based on X and Y is given by

),(~=~ ,YXTR  (3)

where the scalar or vector-valued parameter  is connected to  by the one-to-
one transformation  with the inverse ).(=)(=:  

Since ),( 21 WW is a complete sufficient statistic for ),(  , using theorem 3.3 , the
UMVUE of R , say 2R̂ , can be obtained [see also the result of Tong (1974, 1975)]
as
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This can also be expressed in the following form
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2 <,1);(1,=ˆ WWif
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,<,1);(1,1= 21
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1 WWif
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where ),;,( zF  is the Gauss hypergeometric function given by

....,
1).1.2(

1)(1).(
.1
.1=),;,( 2 




 zzzF






see Grandshteyn and Ryzhik (2000) (formula 9.100).
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Now, we are interested to find out the variance of 2R̂ . From Blight and Rao
(1974) and Ghosh and Sathe (1987), the Bhattacharya bound converges to the
variance of UMVUE for the family of exponential distributions. Hence,

,=)ˆ( 22

2

10=0=
2
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ij
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3.3  Bayes Estimator of R
We state the following theorem in Kotz et al. (2003)[p.41] that will be used to
obtain a Bayes estimator of R .

Theorem 3.4 Let ),(ˆ VU be a Bayes estimator of R based on observations
),...,,(= 21 mUUUU and ),...,,(= 21 nVVVV and the prior pdf )( . Then a Bayes

estimator R̂ of R based on X and Y is given by
))(),((ˆ=ˆ YXR  (4)

where ))(...,),(),((=)()),(...,),(),((=)( 2121 nm YYYYXXXX  and the prior
pdf |)(|))((  J . Here |)(| J is the Jacobian of the transformation )( .

3.3.1  Conjugate Prior Distributions
We obtain the Bayes estimator of R under the assumption that the shape
parameters  and  are random variables for both the populations. It is
assumed that  and  have independent gamma prior with pdfs:
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0>,,, 2211 baba respectively. The prior pdfs of  and  are as follows:
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Since apriori  and  are independent, the posterior pdf of R becomes
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Here, the Bayes estimator of R with respect to the squared error loss function is

 ),/(=ˆ 213 WWRER
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where naWbma  2211111 =,=,=  and .= 222 Wb 

It is to be noted that the Bayes estimator 3R̂ depends on the parameters of the
prior distributions of  and  . These parameters could be estimated by means
of an empirical Bayes procedure, see Lindley (1969) and Awad and Gharraf
(1986). Given the random samples ),...,,( 21 mXXX and ),...,,( 21 nYYY , the likelihood
functions of  and  are gamma densities with parameters )1,( 1Wm and

)1,( 2Wn respectively. Hence it is proposed to estimate the prior parameters 1a
and 1b from the samples by 1m and 1W . Similarly, 2a and 2b could be
estimated from the samples by 1n and 2W . Therefore, the Bayes estimator of
R with respect to the squared error loss function could be given as

21
2

1

12

2

1
4 3,121;22,222

222
12=ˆ WWif

W
WnmmnmF

nm
n

W
WR

n































.<3,122;22,222
222

12= 12
1

2

12

1

2 WWif
W
WnmnnmF

nm
n

W
W

n































3.3.2  Non Informative Prior Distributions:
In this subsection we obtain the Bayes estimator of R under the assumption that

the shape parameters  and  are random variables having independent

noninformative priors


 1)(1  and


 1)(2  respectively.

Hence, the Bayes estimator with respect to the squared error loss function will be
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3.4  Interval Estimation of R
3.4.1  Approximate Confidence Interval

It is to be noted that the MLE 1R̂ is asymptotically normal with mean R and

variance .11)(1
2)(1)(2)(1)(

)(1 22
2

2

2

2
222
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Hence an approximate )%100(1  confidence interval for R would be ),( 11 UL ,
where

),ˆ(1ˆ11ˆ= 11/211 RR
nm
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and

),ˆ(1ˆ11ˆ= 11/211 RR
nm

RU 





  

with /2 being the upper /2 point of the standard normal distribution.

3.4.2  Exact Confidence Interval
Before obtaining a confidence interval for R , we state the following theorem in
Kotz et al. (2003)[p.42].

Theorem 3.5 Let ),(),,( 22 VUUVUL be a confidence interval for R with the
confidence coefficient )(1  . Then ))](),(()),(),(([ 22 YXUYXL  is the
confidence interval for R based on ),( YX with the same coverage probability.

Notice that 12 W and 22 W are two independent chi-square random variables
kwith m2 and n2 degrees of freedom. Now, 1R̂ can be rewritten as
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and
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3.5  Bayesian Credible Intervals

3.5.1  Conjugate Prior Distributions:
Assuming  and  are independent, we have seen in subsection 3.3.1 that the
posterior distributions of  and  corresponding to gamma priors are gamma
with parameters )1,2(2 1Wm and )1,2(2 2Wn , respectively. Thus 14 W and

24 W are independent chi-square random variables with 1)2(2 m and 1)2(2 n
degrees of freedom. Thus
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is an F distributed random variable with 1)]1),2(2[2(2  mn degrees of
freedom. Using 2F as a pivotal quantity, we obtain a )%100(1  Bayes credible
interval for R as ),( 33 UL , where
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3.5.2  Non-informative Prior Distributions
We have seen in subsection 3.3.2 that assuming independence and non-
informative prior distributions for  and  , the posterior distributions of  and
 are gamma with parameters ),( 1Wm and ),( 2Wn , respectively. Therefore,

12 W and 22 W are independent chi-square random variables with m2 and n2
degrees of freedom. Thus

R
R

W
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W
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1
=

2
2=

1

2
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2
3 



is an F distributed random variable with ),2(2 mn degrees of freedom. Using 3F
as a pivotal quantity, we obtain a )%100(1  Bayes credible interval for R with
lower and upper bounds exactly the same as those given in subsection 3.4.2.
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4. Inference about R when the baseline distribution is unknown through
parameter

4.1  Maximum Likelihood Estimation on R

To compute the MLE of R , we have to obtain the MLEs of  and  . Suppose
),...,,( 21 mXXX is a random sample from ),( Xf and ),...,,( 21 nYYY is a random

sample from ),( Yg . Hence, the underlying log-likelihood function is

  )},(ln1)(),(ln{lnln=,, 00
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 ii
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i
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1=

 jj

n

j
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Then the MLE of  is to be obtained from the relation
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and the MLE of components of  are to be obtained by solving the equations
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An estimate R̂ of R is to be obtained from expression replacing  and  by
)ˆ(ˆ  and )ˆ(ˆ  respectively. Here we will use delta method to obtain

approximate confidence intervals of R .
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where  
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Now, the asymptotic variance-covariance matrix of )ˆ,ˆ,ˆ(  is given by
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 as a standard normal variate,

confidence intervals to R can be constructed.

5. Inference on R for Exponentiated Folded Crammer Distribution

The Folded Crammer distribution has the density function
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Hence the density function of Exponentiated Folded Crammer (EFC) distribution
is given by
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For convenience, we re-parametrized this distribution by defining 
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Therefore,
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5.1  Maximum Likelihood Estimation of R
Let ),( EFCX : and ),( EFCY : , where X and Y are independent random
variables. To compute the MLE of R , first we obtain the MLEs of  and  .
Suppose ),.....,( 21 mXXX is random sample from ),( EFC and ),.....,( 21 nYYY is
random sample from ),( EFC . Therefore, the log-likelihood function of the
observed samples is
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The MLE's of  ,  and  say ̂ , ̂ and ̂ respectively, can be obtained as the

solutions of 0=0,=
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and ̂ can be obtained as the solution of the non-linear equation
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(7)

Therefore, ̂ can be obtained as a solution of the non-linear equation of the form

=)( h (8)
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where
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It can be obtained by using a simple iterative scheme as follows
=)( 1)()( jjh  (9)

where )( j is the thj iterate of ̂ . The iteration procedure should be stopped

when 1)()(  jj  is sufficiently small. Once we obtain ̂ , ̂ and ̂ can be
obtained from 5).(5 and 6).(5 respectively. Therefore, the MLE of R become

ˆˆ

ˆ
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5.2  Asymptotic distribution and confidence intervals

In this section, the asymptotic distribution of )ˆ,ˆ,ˆ(=ˆ  and the asymptotic
distribution of R̂ are obtained. Based on the asymptotic distribution of R̂ , the
asymptotic confidence interval of R is derived. Let us denote the Fisher
information matrix of ),,(=  as   1,2,3=,;)(,=)( jiII ij  . Therefore,
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Using the integrals of the form
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Proof: The proof follows from the asymptotic normality of MLE.

Theorem 5.2 As m and n and 
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Using Theorem 1.5 , the consistency and asymptotic normality of MLE, the proof
is complete.

Note that Theorem 2.5 can be used to construct asymptotic confidence intervals.
To compute the confidence interval of R , the variance B needs to be estimated.
To estimate it, the empirical Fisher information matrix and the MLEs of  ,  and
 are used, as follows;
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5.3  Bootstrap Confidence Limits
In this subsection, we propose to use two confidence limits based on the
parametric bootstrap methods; (i) percentile bootstrap method (we call it from
now on as Boot-p) based on the idea of Efron (1982), (ii) bootstrap-t method (we
refer it as Boot-t from now on) based on the idea of Hall (1988). We illustrate
briefly how to estimate confidence limits of R using both methods.

Boot-p Methods

Step 1: From the sample },.......,{ 1 mxx and },.......,{ 1 nyy , compute ̂ , ̂ and ̂ .

Step 2: Using ̂ and ̂ generate a bootstrap sample },.......,{ **
1 mxx and similarly

using ̂ and ̂ generate a bootstrap sample },.......,{ **
1 nyy . Based on },.......,{ **

1 mxx
and },.......,{ **

1 nyy compute the bootstrap estimate of R using 10).(5 , say *R̂ .

Step 3: Repeat step 2, N times.

Step 4: Let )ˆ(=)( * xRPxG  , be the cumulative distribution function of *R̂ .
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Define )(=)(ˆ 1 xGxR pBoot


 for a given x . The approximate )%100(1  confidence
ineterval of R is given by





  )

2
(1ˆ),

2
(ˆ 

pBootpBoot RR

Bootstrap-t Confidence Limits

Step 1: From the samples },.......,{ 1 mxx and },.......,{ 1 nyy , compute ̂ , ̂ and ̂ .

Step 2: Using ̂ and ̂ generate a bootstrap sample },.......,{ **
1 mxx and similarly

using ̂ and ̂ generate a bootstrap sample },.......,{ **
1 nyy . Based on },.......,{ **

1 mxx
and },.......,{ **

1 nyy compute the bootstrap estimate of R using 10).(5 , say *R̂ and
the following statistic:

,
)ˆ(

)ˆˆ(=
*

*
*

RV

RRmT 

where )ˆ( *RV is obtained using the expected Fisher information matrix.

Step 3: Repeat step 2, N times.

Step 4: From the *T values obtained, determine the lower and the upper bound
of the )%100(1  confidence limits of R as follows: Let )(=)( * xTPxH  be the
cumulative distribution function of *T . For a given x , define

xHRVmRR tBoot
12

1

)ˆ(ˆ=ˆ 

  .

Here also, )ˆ(RV can be computed similarly as for the )ˆ( *RV . The approximate
)%100(1  confidence interval of R is given by

.)
2

(1ˆ),
2
(ˆ





 


tBoottBoot RR

6. Bayes estimation of R
In this section, we obtain the Bayes estimation of R under assumption that the
shape parameters  ,  and  are random variables. We mainly obtain the
Bayes estimate of R under the squared error loss using the Gibbs sampling
technique. It is assumed that  ,  and  have independent gamma priors with
the parameters ),(),,( 2211 baba and ),( 33 ba respectively. Based on the above
assumptions, we have the likelihood function of the observed data as

  1)(1
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Therefore, the joint density of the data,  ,  and  can be obtained as

    )()()(,,|=,,,  dataLdataL

where (.) is the prior distribution. Therefore, the joint posterior density of  , 
and  given the data is

   
  


ddddataL

dataLdataL
,,,

,,,=|,,
000 


We adopt the Gibbs sampling technique to compute the Bayes estimate of R .
The posterior pdfs of  ,  and  are as follows:
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The posterior pdfs of  are not known, but the plots of them show that they are
similar to normal distribution. So to generate random numbers from these
distributions, we use the Metropolis-Hastings method with normal proposal
distribution. Therefore, the algorithm of Gibbs sampling is as follows:

Step 1: Start with an initial guess ),,( 000  .

Step 2: Set 1=t .

Step 3: Using the Metropolis-Hastings, generate )(t from
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 .

Step 4: Using the Metropolis-Hastings, generate )(t from
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Step 5: Using the Metropolis-Hastings, generate )(t from f with the  1,1)( tN 
proposal distribution.

Step 6: Compute tR from (5.13)

Step 7: Set 1= tt .

Step 8: Repeat step 3-7, T times.
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Note that in steps 5, we use the Metropolis-Hastings algorithm with ),( 21)(  tq
proposal distribution as follows:
1.  Let 1)(= tx  .
2.  Generate y from the proposal distribution q .
3.  Let )}()/().()/({1,=),( yqxqxfyfminyxp  .
4.  Accept y with the probability ),( yxp or accept x with the probability

),(1 yxp .

Now the approximate posterior mean, and posterior variance of R become
t

T

t
R

T
dataRE 

1=

1=)|(ˆ

and

 2
1=

1=)|( RR
T

dataRMSE t
T

t


respectively.

7. Estimation of R in general case
Computing the R when the parameter  is different for X and Y , is considered
in this section. Surles and Padgett 2001)(1998, considered this case also. In
Surles and Padgett (2001) , there is no exact expression for R , but they
presented a bound for it.

7.1  Maximum likelihood estimator of R

Let ),( 1EFCX : and ),( 2EFCY : , where X and Y are independent random
variables. Therefore,

dyyYPyYYXPR )=()=|<(=
0
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F (11)

where (.)F is the Gauss hypergeometric function, see Grandshteyn and Ryzhik
(2000) (formula 9.100).

To compute the MLE of R , Suppose ),.....,( 21 mXXX is random sample from
),( 1EFC and ),.....,( 21 nYYY is random sample from ),( 2EFC . Therefore, the

log-likelihood function of the observed samples is
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The MLE's of  ,  , 1 and 2 say ̂ , ̂ , 1̂ and 2̂ respectively, can be
obtained as the solutions of

0=0,=0,=0,=
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After calculation, we obtain
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and 1̂ and 2̂ can be obtained as the solution of the non-linear equation
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respectively.

By invariance property of the ML estimators, the MLE of R becomes
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7.2  Asymptotic distribution

The asymptotic distribution of )ˆ,ˆ,ˆ,ˆ(=ˆ 21  is to be obtained using the
approach of Theorems 1.5 and hence the asymptotic distribution of R̂ could be
obtained using the approach of 2.5 . We denote the expected Fisher information
matrix of ),,,(= 21  as ))(,(=)(  ijII ; 43,2,1,=, ji . Therefore
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It is easy to see that
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Based on the above Fisher information matrix, it is possible to present
confidence intervals of R based on the percentile bootstrap and bootstrap-t
method. They are very similar to those mentioned in Section 5.3. The Bayes
estimate of R could be found out using the Metropolis-Hastings algorithm
assuming two independent gamma priors for 1 and 2 following the same
procedure as in section 6. For saving space, we omit them.

8. Simulation and discussion
In this section we present some results based on the Monte Carlo simulations to
compare the performance of different methods. All computations were performed
using R-software and these are available on request from the corresponding
author. We consider to draw inference on R when the baseline distribution of
exponentiated distribution is (a) known and (b) unknown through parameters. In
our study we take sample sizes 25),(25,25),(20,15),(15,=),( nm 50)(50, and take

1)(1,0.4),(0.8,0.4),(3,=),(  3)(0.4,0.8),(0.4, respectively. For the unknown
case, we take 23,1,1.5,0.5,= . All the results are based on 1000 replications.

We have used the initial estimate to be 1 and the iterative process stops when
the difference between the two consecutive iterates are less than 410 for both 
and  using the iterative equations. We choose the initial estimate to be 1, since
for that value exponentiated distribution reduces to the baseline distribution. We
obtain the MLE of R substituting ̂ and ̂ in the expression.

First we consider the case when the baseline distribution is completely known.
We report the estimates of R , 1R̂ , 2R̂ and 4R̂ using the MLE, UMVUE and
empirical Bayes procedure assuming conjugate priors (in each cell first, second
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and third row respectively), and the average biases and mean squared errors
(MSEs) of R in tables 1-4 over 1000 replications. We also compute the 95%
confidence limits of R , both approximate [( 11,UL )] and exact [( 22 ,UL )], and
Bayesian credible intervals [( 33 ,UL )], and hence report average confidence
lengths and coverage proportions (cp) based on 1000 replications in table 5.

Some of the points are quite clear from this experiment. The performance of the
MLEs are quite satisfactory with respect to the UMVUEs in terms of biases and
MSEs. Though differences are marginal, the MLEs have computational ease.
Since for the MLE, the exact distribution is known therefore it can be used to
construct confidence intervals. As expected, with the help of prior information, the
Bayes estimates of R perform better than the MLEs and UMVUEs. For all the
methods, when m and n increase, the average biases and MSEs decrease. The
Bayesian interval (with conjugate priors), ( 33 ,UL ) has the shortest average length
for all values of R and ),( nm . The average lengths of all intervals decrease as
nm, increase. The interval ),( 22 UL has the largest average probability coverage

which is approximately the anticipated 95%. The interval ( 33 ,UL ) has the
smallest average probability coverage and it is far from 0.95. The average
probability coverage of ( 11,UL ) is approximately 0.95 for large nm, .

For the second case, we have assumed that the common scale parameter  of
the folded Crammer distribution is unknown. From the sample, we compute the
estimate of  using the iterative algorithm (5.9). Once we estimate  , we obtain
the MLE of R using 10).(5 . We report the average biases and mean squared
errors (MSEs) in table 6, and report 95% confidence intervals based on the delta,
Boot-p and Boot-t methods in table 7 using 1000 bootstrap replications in both
cases. The performance of the MLEs are quite satisfactory in terms of biases and
MSEs. It is observed that when nm, increase, the MSEs decrease. It verifies the
consistency property of the MLE of R . The confidence intervals based on the
delta method work quite well, as it offers much narrower intervals, unless the
sample size is very small, say (15, 15). For very small samples, the Boot-t
confidence intervals perform well.

We do not have any prior information on R , therefore, we prefer to use the non-
informative prior to compute different Bayes estimates. Since the non-informative
prior, i.e. 0==== 2121 bbaa provides prior distributions which are not proper, we
adopt the suggestion of Congdon (2001, p.20) and Kundu and Gupta (2005), i.e.
choose 0.0001==== 2121 bbaa , which are almost like Jeffreys prior, but they are
proper. Under the same prior distributions, we compute the Bayes estimate of 
and  and have approximate the Bayes estimates of R under the squared error
loss function. To generate random observations from the posterior distributions of
 ,  and  , we use the Metropolis-Hastings method. The algorithms of Gibbs
sampling is described in section 6. The burn in sample in each case is taken
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5000. The results are reported in table 8 . It is observed that as expected when
nm, increase then the average biases and the MSEs decrease.

The calculations for general case will be in similar way as have been done in
second case with some modifications. That is why we omit this portion here.

9. Concluding Remark
In this article, we have discussed inference problem of )<(= YXPR for
exponentiated family of distributions. This family is obtained by adding a
parameter to the exponent of a distribution function (called a baseline distribution
function) to make resulting distribution richer and more flexible for modeling data.
We have considered the cases when the baseline distribution is known or
unknown through parameter(s). At first we look into inference of R in more
general set up under any known baseline distribution not necessarily restricted to
the location-scale family. Based on the simulation results, we recommend to use
the MLE for R from the frequentist view point. From the Bayesian view point, the
Bayes estimate of R is also recommended with conjugate priors. The confidence
interval ),( 22 UL based on the exact distribution of the MLE is recommended for
its largest average probability coverage, even though the credible interval
( 33 ,UL ) has the shortest average length. When the baseline distribution is
unknown through parameter(s), in particular for the folded Crammer distribution,
it is observed that the MLE works quite well. The confidence intervals based on
the delta method is recommended to use. For very small samples, the Boot-t
confidence intervals perform well and it is recommended to use.
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Table 1: Biases and Mean Squared Errors of estimates of R when baseline
distributions are completely known and 15== nm

 , R R̂ Bias MSE

0.1241110 0.0064639 0.0018093
0.43, 0.1176471 0.1186844 0.0010373 0.0016983

0.1266500 0.0090028 0.0018782
0.3400351 0.0067017 0.0054612

0.40.8, 0.3333333 0.3351727 0.0018393 0.0056811

0.3421717 0.0088383 0.0053780
0.5028957 0.0028957 0.0081285

11, 0.5 0.5030025 0.0030025 0.0086792

0.5028498 0.0028498 0.0078948
0.6612367 -0.0054299 0.0069237

0.80.4, 0.6666667 0.6660255 -0.0006411 0.0072197

0.6591277 -0.0075389 0.0068062
0.8775772 -0.0047756 0.0015257

30.4, 0.882353 0.8829957 0.0006427 0.0014362

0.8750404 -0.0073125 0.0015850
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Table 2: Biases and Mean Squared Errors of estimates of R when baseline
distributions are completely known and 25=20,= nm

 , R R̂ Bias MSE
0.1216647 0.0040176 0.0010981

0.43, 0.1176471 0.1185643 0.0009172 0.0010577
0.1231408 0.0054937 0.0011230
0.3385388 0.0052054 0.0042621

0.40.8, 0.3333333 0.3363988 0.0030655 0.0043901
0.3394884 0.0061550 0.0042053
0.4941221 -0.0058779 0.0056908

11, 0.5 0.4952429 -0.0047570 0.0059368
0.4935758 -0.0064241 0.0055822
0.6612858 -0.0053809 0.0045092

0.80.4, 0.6666667 0.6656551 -0.0010115 0.0046101
0.6592534 -0.0074132 0.0044756
0.8786907 -0.0036622 0.0010396

30.4, 0.882353 0.8828578 0.0005048 0.0009864
0.876689 -0.0056638 0.0010768

Table 3: Biases and Mean Squared Errors of estimates of R when baseline
distributions are completely known and 25== nm

 , R R̂ Bias MSE
0.1206998 0.0030527 0.0008488

0.43, 0.1176471 0.1174729 -0.0001741 0.0008160
0.1222521 0.0046050 0.0008715
0.3352984 0.0019650 0.0037183

0.40.8, 0.3333333 0.3323512 -0.0009821 0.0038204
0.3366616 0.0033282 0.0036765
0.4983102 -0.0016897 0.0049426

11, 0.5 0.4982778 -0.0017221 0.0051422
0.4983251 -0.0016749 0.0048524
0.661385 -0.0052816 0.0037909

0.80.4, 0.6666667 0.664281 -0.0023856 0.0038718
0.6600459 -0.0066207 0.0037586
0.879125 -0.0032279 0.0009735

30.4, 0.882353 0.882344 6108.9956  0.0009370
0.8775767 -0.0047762 0.0009977
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Table 4: Biases and Mean Squared Errors of estimates of R when baseline
distributions are completely known and 50== nm

 , R R̂ Bias MSE
0.1205489 0.0029018 0.0004714

0.43, 0.1176471 0.1189402 0.0012931 0.0004581
0.1213379 0.0036908 0.0004798
0.3361455 0.0028121 0.0019635

0.40.8, 0.3333333 0.3346827 0.0013493 0.0019840
0.3368485 0.0035151 0.0019551
0.500021 5102.0961  0.0025857

11, 0.5 0.5000206 5102.0567  0.0026374
0.5000211 5102.1138  0.0025612
0.6650935 -0.0015731 0.0019151

0.80.4, 0.6666667 0.6665655 -0.0001011 0.0019387
0.664386 -0.0022806 0.0019052
0.881857 -0.0004959 0.0004406

30.4, 0.882353 0.8834483 0.0010953 0.0004352
0.8810763 -0.0012766 0.0004451

Table 5: Average length of the intervals and coverage probability,
0.95=1  when baseline distributions are completely known

R 15=15,= nm 25=20,= nm 25=25,= nm 50=50,= nm
Avg.

length
cp Avg.

length
cp Avg.

length
cp Avg.

length
cp

0.1530690 0.931 0.1243955 0.938 0.1167395 0.951 0.0827526 0.94
0.1176471 0.1610088 0.948 0.1107205 0.906 0.1211200 0.961 0.0849714 0.95

0.1088123 0.823 0.0749692 0.719 0.0828934 0.846 0.0586488 0.839
0.3134595 0.956 0.2583569 0.941 0.2429865 0.941 0.1734145 0.942

0.3333333 0.3114038 0.973 0.2401906 0.906 0.2426449 0.962 0.1739129 0.943

0.2170539 0.868 0.16703 0.745 0.1696754 0.847 0.1218414 0.831
0.3462040 0.932 0.2873023 0.93 0.2717007 0.933 0.1939692 0.936

0.5 0.3402838 0.95 0.2808955 0.874 0.2692232 0.95 0.1936650 0.941

0.2385059 0.828 0.1969246 0.703 0.1890375 0.819 0.1360222 0.837
0.3107594 0.908 0.2581351 0.935 0.2441317 0.944 0.1731287 0.946

0.6666667 0.308911 0.942 0.2712599 0.883 0.2436993 0.949 0.1736381 0.949

0.2152449 0.812 0.1901887 0.712 0.1704457 0.843 0.1216441 0.829
0.1516271 0.934 0.1241446 0.932 0.1167498 0.94 0.0813341 0.941

0.882353 0.1596477 0.954 0.1494543 0.895 0.1211098 0.939 0.0835561 0.957

0.107836 0.833 0.1028255 0.721 0.0828937 0.832 0.0576519 0.822

In each cell first, second and third row represent for ),(= 11 ULA , ),(= 22 ULB and
),(= 33 ULC .
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Table 6: Biases and Mean Squared Errors of estimates of R when baseline
distribution is unknown through parameter.

nm,  ,, R R̂ Bias MSE

0.50.4,3, 0.117647 0.110523 -0.007123 0.002425

1.50.4,0.8, 0.333333 0.328390 -0.004943 0.007279

1515, 11,1, 0.5 0.501738 0.001738 0.009832

30.8,0.4, 0.666667 0.676385 0.009718 0.008039

23,0.4, 0.882353 0.891497 0.009144 0.002609

0.50.4,3, 0.117647 0.113055 -0.004591 0.001633

1.50.4,0.8, 0.333333 0.328322 -0.0050107 0.004883

2520, 11,1, 0.5 0.497996 -0.0020038 0.006136

30.8,0.4, 0.666667 0.667912 0.001245 0.005218

23,0.4, 0.882353 0.887199 0.004846 0.001874

0.50.4,3, 0.117647 0.112801 -0.004845 0.001438

1.50.4,0.8, 0.333333 0.327344 -0.005988 0.004682

2525, 11,1, 0.5 0.496659 -0.0033405 0.005591

30.8,0.4, 0.666667 0.668385 0.001718 0.004698

23,0.4, 0.882353 0.886460 0.004107 0.001508

0.50.4,3, 0.117647 0.117314 -0.000332 0.000762

1.50.4,0.8, 0.333333 0.330085 -0.003248 0.002126

5050, 11,1, 0.5 0.499593 -0.000406 0.002577

30.8,0.4, 0.666667 0.665511 -0.001155 0.002120

23,0.4, 0.882353 0.886149 0.003796 0.000766



Inference on )<( YXP for Exponentiated Family of Distributions

Pak.j.stat.oper.res. Vol.VII No.2 2011 pp109-138 137

Table 7: Confidence Intervals of R when baseline distribution is
unknown through parameter

nm, R dCI pbootCI  tbootCI 

0.117647 0.187443)(0.033603, 0.197734)(0.028184, 0.193374)(0.082433,

0.333333 0.484051)(0.172729, 0.444176)(0.117986, 0.407828)(0.259907,

1515, 0.5 0.673968)(0.329508, 0.687201)(0.293958, 0.580655)(0.349942,

0.666667 0.828736)(0.524033, 0.815290)(0.458024, 0.834927)(0.445414,

0.882353 0.960108)(0.822886, 0.934786)(0.665628, 0.938587)(0.736418,

0.117647 0.167305)(0.058805, 0.143901)(0.027543, 0.324875)(0.074772,

0.333333 0.443231)(0.213413, 0.444362)(0.174119, 0.616123)(0.189632,

2520, 0.5 0.626402)(0.369590, 0.682432)(0.382204, 0.789454)(0.196976,

0.666667 0.782882)(0.552942, 0.857327)(0.588276, 0.752330)(0.394075,

0.882353 0.939928)(0.834471, 0.962061)(0.820402, 0.947217)(0.833712,

0.117647 0.174537)(0.051065, 0.238650)(0.060964, 0.565707)(0.024918,

0.333333 0.449119)(0.205569, 0.491937)(0.215327, 0.559833)(0.156457,

2525, 0.5 0.632335)(0.360983, 0.657253)(0.369239, 0.618601)(0.294208,

0.666667 0.787928)(0.547042, 0.861645)(0.619468, 0.936866)(0.554524,

0.882353 0.942468)(0.830453, 0.956534)(0.812885, 0.982590)(0.753327,

0.117647 0.162902)(0.071726, 0.118739)(0.038928, 0.279955)(0.068552,

0.333333 0.417425)(0.242745, 0.428971)(0.246952, 0.459289)(0.280111,

5050, 0.5 0.596650)(0.402536, 0.610471)(0.404521, 0.671751)(0.464106,

0.666667 0.752709)(0.578313, 0.784652)(0.597613, 0.780716)(0.544028,

0.882353 0.926178)(0.846121, 0.896096)(0.762388, 0.998084)(0.604966,
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Table 8: Biases and Mean Squared Errors of Bayes estimates of R when
baseline distribution is unknown through parameter.

nm,  ,, R R̂ Bias MSE

0.50.4,3, 0.117647 0.107534 -0.010113 0.001164

1.50.4,0.8, 0.333333 0.303510 -0.029823 0.006342

1515, 11,1, 0.5 0.498338 -0.001661 0.007842

30.8,0.4, 0.666667 0.641738 -0.0249270 0.008540

23,0.4, 0.882353 0.775178 -0.107174 0.015074

0.50.4,3, 0.117647 0.147594 0.029947 0.002248

1.50.4,0.8, 0.333333 0.233583 -0.099749 0.013007

2520, 11,1, 0.5 0.498658 -0.001341 0.006335

30.8,0.4, 0.666667 0.642149 -0.024516 0.005845

23,0.4, 0.882353 0.892355 0.010024 0.000832

0.50.4,3, 0.117647 0.040825 -0.076821 0.006040

1.50.4,0.8, 0.333333 0.355480 0.022147 0.005181

2525, 11,1, 0.5 0.516483 0.016483 0.005083

30.8,0.4, 0.666667 0.525415 -0.014125 0.024947

23,0.4, 0.882353 0.776394 -0.105959 0.013335

0.50.4,3, 0.117647 0.064869 -0.052777 0.002915

1.50.4,0.8, 0.333333 0.357916 0.024582 0.002537

5050, 11,1, 0.5 0.480819 -0.019180 0.002637

30.8,0.4, 0.666667 0.630305 -0.036361 0.003143

23,0.4, 0.882353 0.860816 -0.021536 0.000987


