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Abstract 

In survival analysis or medical studies each person can be exposed to more than one type of outcomes 

which occurrence of one of them prevents the other outcomes' occurrence; this situation is called the 

competing risks. Assessing the effect of covariates on the survival time (or failure time) is one of the 

purposes in competing risks analysis. In this paper, we study a competing risks model in the presence of 

covariates when the causes of failures follow generalized Weibull distributions. Covariates are entered to 

the model through the scale parameter of this distribution. Also in this study the competing risks are 

considered to be independent. Parameter estimation has been done by the maximum likelihood approach , in 

a real data set and a simulation study has shown the advantages of proposed model. 

Keywords: Competing risks models- Generalized Weibull Distribution- Covariates - 

Survival analysis 

1. Introduction 

In many survival studies, patients can be exposed to more than one outcome. For 

example, if we are interested in the analysis of data until death occurrence due to heart 

failure (the outcome of interest), some patients in the study may die due to causes other 

than heart failure (the competing event). These different causes of death are called 

competing risks (see Putter et al. (2007) and Pintilie (2007)). Indeed, the competing 

events are those which prevent the observation of main outcome or change the 

probability of its occurrence. The main feature of competing risks data is the presence of 

failure type according to event type in addition to failure time or survival time (see Porta 

Bleda et al. (2007)). 

 

Modeling competing risks survival data can be carried out using a semi-parametric, non-

parametric or parametric survival models (see Fine and Gray (1999)). The parametric 

models are studied assuming that the competing risks follow different lifetime 

distributions such as exponential, Lognormal and Weibull (see Sarhan (2007), Cox 
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(1959), Pascual (2010), Yáñez et al. (2014), Iskandar and Gondokaryono (2016)). One of 

the advantages of using the parametric approaches rather non-parametric and semi-

parametric approaches is as follows: when the parametric model has been chosen 

correctly, it is possible to predict the event occurrence probability in future and have a 

clear picture of survival time and hazard function. Also as the survival pattern follows a 

special parametric model, the acquired estimates are more accurate than non- or semi-

parametric approaches (see Jeong (2006)). 

 

One of the distributions widely used in cancer research is the Weibull distribution (see 

Martinez et al. (2013)). However, only monotonically increasing and decreasing hazard 

functions can be generated from the classic two-parameter Weibull distribution. 

Mudholkar et al. (1996) and Mudholkar and Srivastava (1993) introduced the generalized 

Weibull model which includes an additional form parameter. Probability density, 

survival, and hazard functions of this distribution have a closed form and it is flexible so 

it can produce different forms of hazards such as bathtub and unimodel hazards.  

 

When the failure pattern is analyzed considering a special cause, the researchers may care 

the assessment of covariate effects on failure probability of a special cause. Gray (1988) 

introduced a non-parametric inference for analyzing the competing risks data also (see 

Prentice et al. (1978)). Fine and Gray used the Cox proportional hazard model for 

competing risks data and presented inferences for evaluating the treatment influence and 

other covariates (see Kleinbaum and Klein (1996)). Also many other studies used the 

Fine and Gray model to evaluate the influence of covariates on the survival time (see 

Baghestani et al. (2014) and Lau et al. (2009)). 

 

Wahed et al. (2009) used the generalized Weibull model introduced by Mudholkar et al. 

for competing risks data of breast cancer, but their model just included the main 

parameters but not the covariates . Alwase et al.(2009) and Sarhan et al.(2013) used 

generalized Weibull model in order to analyze a set of real data but their analyses were 

based on main parameters of generalized Weibull model and they did not enter the 

covariates into the model.  however, as we observed in the literature, the generalized 

weibull distribution has not been considered for modeling the competing risks data in 

presence of covariates.  

 

The aim of this paper is to study a competing risks data in presence of covariates using 

generalized weibull distribution. The paper is organized as follows: in section 2 we will 

explain the formulation of the likelihood functions in presence of covariates based on the 

generalized weibull distribution. Then in section 3, based on a simulation study, we will 

assess the accuracy of estimates acquired from generalized Weibull model. In section 4 

we use a competing risk real data set (medical data set) with covariates to test the 

generalized Weibull distribution against the Weibull distribution for fitting the data in 

this practical situation. Section 5 presents discussion and conclusions. 

2. Model Formulation 

Generalized Weibull distribution including third parameter γ, in addition to two 

parameters of (𝛼, β), possesses enough flexibility and can cover different forms of hazard 

function. This is an important characteristic of generalized weibull distribution that 
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differs from the two-parameter Weibull distribution. Assumed that the random variable T 

has the generalized Weibull distribution, then the probability density function of this 

random variable with three parameters (α,β,γ) is as follows: 

f(t) = 𝛼𝛽𝛾𝑡𝛽−1𝑒−𝛼 𝑡𝛽
(1 − 𝑒−𝛼𝑡𝛽

)𝛾−1    𝛼 > 0 , 𝛽 > 0 , 𝛾 > 0 , 𝑡 > 0    (1) 

 

Here, 𝛽 and 𝛾 are the shape parameters, while 𝛼 is the scale parameter of generalized 

weibull distribution (GWD). 

 

Weibull distribution can be considered as a special case of this distribution, because when 

γ=1, this distribution is changed to be Weibull distribution with two parameters (𝛼, β). 

Also generalized exponential distribution is a special case of this distribution when β=1.  

 

In analyzing the competing risks data for each person there exists one type of failure 

(type of event:) in addition to failure time(survival time). The failure time (T) is assumed 

to be a continuous and positive random variable, while the failure cause (k) takes values 

in the finite set (k ≥2) j=1,…,k. Also we assume that there is just one failure time and just 

one cause of failure, and competing risks are independent. Here the survival time for each 

person is defined as follows (see Gray (1988) and Beyersmann et al.(2011)): 

𝑇𝑖 = 𝑚𝑖𝑛 (𝑇1𝑖, 𝑇2𝑖 , … , 𝑇𝑘𝑖)              i=1,2,…,n     (2) 

 

We assume that survival time of each competing risks has generalized Weibull 

distribution. The probability density function for each of the competing risks (the cause 

of failure of  j) is defined as follows: 

𝑓𝑗(𝑡) = 𝛼𝑗𝛽𝑗𝛾𝑗 𝑡𝛽𝑗−1𝑒−𝛼𝑗𝑡
𝛽𝑗

(1 − 𝑒−𝛼𝑗𝑡
𝛽𝑗

)𝛾𝑗−1     (3) 

 

The hazard function is 

ℎ𝑗(𝑡) =  
𝛼𝑗𝛽𝑗𝛾𝑗𝑡

𝛽𝑗−1
𝑒

−𝛼𝑗𝑡
𝛽𝑗

(1−𝑒
−𝛼𝑗𝑡

𝛽𝑗
)

𝛾𝑗−1

1−(1−𝑒
−𝛼𝑗𝑡

𝛽𝑗
)

𝛾𝑗  

      (4) 

and the survival function is  

𝑆𝑗(𝑡) = 1 − (1 − 𝑒−𝛼𝑗𝑡
𝛽𝑗

)
𝛾𝑗

        (5) 

 

Which in the above equations 𝛼𝑗 > 0 , 𝛽𝑗 > 0 , 𝛾𝑗 > 0 , 𝑡𝑗 ≥ 0 and j=1,2,…,k(k≥2). 

 

In order to assess the covariate effects on the survival time, we define the scale parameter 

𝛼j in the form of a linear combination of covariate as follows: 

 𝛼𝑗 = exp(𝜔0𝑗 + 𝜔1𝑗𝑥1𝑗 + 𝜔2𝑗𝑥2𝑗 + ⋯ + 𝜔𝑙𝑗𝑥𝑙𝑗)       𝑗 = 1,2, … , 𝑘   (6) 

 
Thus the parameters vector is ∅ = (∅1, ∅2, . . , ∅𝑘)𝑇, ∅𝑗(𝜔0𝑗 , 𝜔1𝑗 , … , 𝜔𝑙𝑗 , 𝛽𝑗 , 𝛾𝑗) which  is 

the vector of generalized Weibull distribution parameters for j cause of failure. 

 

Preserving the totality of the subject matter, we can estimate the regression coefficients 

for the two causes of failure (j=1, 2) using likelihood function as follows, see Jeong and 

Fine (2006): 
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L(∅|𝑡) = ∏ {𝑆2(𝑡𝑖  , ∅2)𝑓1(𝑡𝑖, ∅1)}𝛿𝑖1{𝑆1(𝑡𝑖 , ∅1)𝑓2(𝑡𝑖 , ∅2)}𝛿𝑖2𝑛
𝑖=1  

      × {𝑆1(𝑡𝑖, ∅1)𝑆2(𝑡𝑖 , ∅2)}1−𝛿𝑖1−𝛿𝑖2 =     (7) 

{𝑓1(𝑡𝑖 , ∅1)}𝛿𝑖1{𝑓2(𝑡𝑖 , ∅2)}𝛿𝑖2{𝑆1(𝑡𝑖 , ∅1)}1−𝛿𝑖1{𝑆2(𝑡𝑖, ∅2)}1−𝛿𝑖2    
 

Where ∅1 = (𝛼1, 𝛽1, 𝛾1) and ∅2 = (𝛼2, 𝛽2, 𝛾2), and the vector of (𝛿𝑖1, 𝛿𝑖2)  

considers the values (0,1), (1,0), and (0,0) for the observations of the cause of first 

failure, the cause of second failure and the observation which does not experience no 

event and are censored respectively. 

 

When the survival time of each cause follows the generalized Weibull distribution, the 

likelihood function is defined as follows: 

L(∅|𝑡)=  ∏ {[1 − (1 − 𝑒−𝛼2𝑡𝑖
𝛽2 )

𝛾2

] [𝛼1𝛽1𝛾1𝑡𝑖
𝛽1−1𝑒−𝛼1𝑡𝑖

𝛽1 (1 − 𝑒−𝛼1𝑡𝑖
𝛽1 )𝛾1−1]}

𝛿𝑖1

×𝑛
𝑖=1  

{[1 − (1 − 𝑒−𝛼1𝑡𝑖
𝛽1 )

𝛾1

] [𝛼2𝛽2𝛾2𝑡𝑖
𝛽2−1𝑒−𝛼2𝑡𝑖

𝛽2 (1 − 𝑒−𝛼2𝑡𝑖
𝛽2 )𝛾2−1]}

𝛿𝑖2

× 

{[1 − (1 − 𝑒−𝛼2𝑡𝑖
𝛽2 )

𝛾2

] [1 − (1 − 𝑒−𝛼1𝑡𝑖
𝛽1 )

𝛾1

]}
1−𝛿𝑖1−𝛿𝑖2

    (8) 

 
In the equation above 𝛼1 and 𝛼2 will be defined as the linear combination of independent 

variables. 

𝛼1 = 𝑒𝑥𝑝(𝜔01 + 𝜔11𝑥11 + ⋯ + 𝜔𝑙1𝑥𝑙1) , 𝛼2 = 𝑒𝑥𝑝(𝜔02 + 𝜔12𝑥12 + ⋯ + 𝜔𝑙2𝑥𝑙2) 

 

Therefore, the log-likelihood function can be derived as in the following form: 

l(∅|𝑡)= 

2 ∑ 𝛿𝑖1ln [1 − (1 − 𝑒−𝛼2𝑡𝑖
𝛽2 )

𝛾2

] 
𝑛

𝑖=1

+ 2 ∑ 𝛿𝑖1ln [𝛼1𝛽1𝛾1𝑡𝑖
𝛽1−1𝑒−𝛼1𝑡𝑖

𝛽1 (1 − 𝑒−𝛼1𝑡𝑖
𝛽1)𝛾1−1]

𝑛

𝑖=1
 

 

+ 2 ∑ 𝛿𝑖2ln [1 − (1 − 𝑒−𝛼1𝑡𝑖
𝛽1 )

𝛾1

] 
𝑛

𝑖=1
   

+ 2 ∑ 𝛿𝑖2ln [𝛼2𝛽2𝛾2𝑡𝑖
𝛽2−1𝑒−𝛼2𝑡𝑖

𝛽2 (1 − 𝑒−𝛼2𝑡𝑖
𝛽2 )𝛾2−1]

𝑛

𝑖=1
 

 

+ 2 ∑ (1 − 𝛿𝑖1 − 𝛿𝑖2)ln [1 − (1 − 𝑒−𝛼2𝑡𝑖
𝛽2 )

𝛾2

]   
𝑛

𝑖=1
 

+2 ∑ (1 − 𝛿𝑖1 − 𝛿𝑖2)ln [1 − (1 − 𝑒−𝛼1𝑡𝑖
𝛽1)

𝛾1

]𝑛
𝑖=1    (9) 

 

Then in order to acquire the parameters estimates, the first derivation has been calculated 

from the first likelihood function toward each of the parameters. As there are no closed 

form solutions for these equations, the numerical method technique such as Newton-

Raphson method, is used for computing the MLE of the parameters. 
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Also the variance of each of the parameters estimated is equal to the inverse of the 

observed Fisher information matrix, that is, the inverse of the matrix of second 

derivatives of the log-likelihood function locally at 𝛽�̂�,𝛾𝑗
̂ and 𝜔𝐿�̂� . 

      
𝜕𝑙

𝜕𝛽𝑗
= 0   ,

𝜕𝑙

𝜕𝛾𝑗
= 0  ,    

𝜕𝑙

𝜕𝜔𝐿𝑗
= 0           𝑗 = 1,2    𝑎𝑛𝑑  𝐿 = 0,1, … , 𝑙                     (10) 

3. A Simulation Study 

A simulation study was done in order to assess the accuracy of the  estimated parameters  

from generalized Weibull model and to compare their performance with the Weibull 

model under different sample sizes. The simulation program has been written in the 

software R.  For the amount of different samples ( n=200, n=500 , n=1000 and n=2000) 

in 500 repetition ,first it is the time to each of the two competing events ( j =1 and j =2) 

was assumed to depend on one covariate X and to define the scale parameter 𝛼j in the 

form of a linear combination of this covariate. 

 

 thus an covariate X from the normal distribution with the mean 0.6 and the standard 

deviation 0.1 was produced and then 𝛼1 = exp(𝜃0 + 𝜃1𝑋) and 𝛼2 = exp(𝜃2 + 𝜃3𝑋) 

were calculated in which 𝜃0 = 0, 𝜃1 = 1.2, 𝜃2 = 0.1, and 𝜃3 = 0.5. Also the values of 

𝛾2 و 𝛾1, 𝛽2 , 𝛽1were considered as 1. So we have here two scenarios. 

 

 Scenario 1 is dedicated to the generalized Weibull model (𝜃0 = 0, 𝜃1 = 1.2, 𝜃2 = 0.1, 

𝜃3 = 0.5,   𝛾1 = 0.8, 𝛾2=1.2, 𝛽2 = 1, 𝛽1 = 1 ) and scenario 2 is dedicated to the Weibull 

model(𝜃0 = 0, 𝜃1 = 1.2, 𝜃2 = 0.1, 𝜃3 = 0.5,   𝛾1 = 1, 𝛾2=1, 𝛽2 = 1, 𝛽1 = 1 ). 

 

Then we employed these steps for simulation as the following:  

1- Simulation of survival time T using the cumulative hazards for both causes of 

failure. 

  𝐻1(𝑡) + 𝐻2(𝑡) = 𝑢         (11) 

where u is a random variable that has a exponential distribution with parameter 

1[u~ Exp(1)] .Then the root of the following equation which is the same survival 

time (t) can be calculated and it was obtained with the “uniroot” R function.  

 𝜑 = − log [1 − (1 − 𝑒−𝛼1𝑡𝛽1)
𝛾1

] −  log [1 − (1 − 𝑒−𝛼2𝑡𝛽2)
𝛾2

] − 𝑢 =0  (12) 

2- For the time value which is simulated in step1, we can determine the functions 

ℎ1(𝑡), ℎ2(𝑡) as functions of  time which are dependent on covariate (X). 

3- Then, we refer to the article by Beyersmann et al. (2009) on Simulating 

competing risks data in survival analysis, and for the simulation survival time T, 

we perform a binomial experiment with the probability   
ℎ1(𝑡)

ℎ1(𝑡)+ℎ2(𝑡)
 for cause of 

failure 1(event type 1), in this way if the produced random number equals 1, the 

first cause (j=1), otherwise the second cause of failure (j=2) will be determined. 

4- For the production of times of censor, if the survival time is greater than 2, the 

acquired time is considered as censoring times. 
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Thus, we can fit the two models of generalized Weibull and Weibull on the simulated 

data. The maximum likelihood estimates of the parameter vectors were calculated by 

“optim” R function and by applying the Newton–Raphson algorithm. The simulation 

results for scenarios 1 and scenarios 2 are shown in table1 and table2 , respectively. The 

average estimates, MSE (mean of square error) and (SD) standard deviation acquired 

from the simulation of generalized Weibull model are shown in tables 1 and 2. 

 

 Tables1 shows, for all parameters (𝜃0 ,𝜃1 ,𝛾1 ,𝛽1 ,𝜃2 ,𝜃3 ,𝛾2 ,𝛽2) as it can be seen the SD 

and MSE of the estimates have been decreased when the sample size increases. Also the 

average estimates is very close to the true values which show the generalized Weibull 

model as a good one in estimating the parameters. In table 1, the mean of the estimates 

for parameter of the form 𝛾1, 𝛾2in generalized Weibull competing risks model gets close 

to the true values (𝛾1 = 0.8, 𝛾2=1.2 ) by increasing sample size and they have a very 

small difference. 

 

The results of the second simulation are summarized in Table 2. The average estimates, 

the SD and the MSE of the parameters estimates were obtained with the Weibull model 

for the simulated data. As it be seen, MSE of the estimates is decreased when the sample 

size increases except in the case where 𝛽1 and 𝛽2. 

4. A Real Data Set Example 

In this section the generalized Weibull model has been applied on a real data set and also 

it has been compared with Weibull model. colorectal cancer patients that have been 

registered that have registered in the cancer registry center of Research institute of 

Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, 

Tehran, Iran from 2004 to 2013 were used in this study and their survival situation was 

identified.  

 

For colorectal cancer data, the first cause of failure (death due to colorectal cancer, j=1) 
considered as the main event in survival model, and the second cause(death due to other 

events, j=2) considered as the competing risks. Also the patients who were alive till the 

end of the study had been considered as the right censoring.  We assessed the effects of 

sex(x1), age at diagnosis(x2), family history (x3), and BMI (x4) on the survival time have 

been studied. We use the generalized Weibull distribution against the Weibull 

distribution for fitting the data in the Presence of these covariates. 

 

For the two models j=1,2 and 𝛼𝑗 = 𝑒𝑥𝑝(𝜔0𝑗 + 𝜔1𝑗𝑥1𝑗 + 𝜔2𝑗𝑥2𝑗 + 𝜔3𝑗𝑥3𝑗 + 𝜔4𝑗𝑥4𝑗). 

Thus the vectors for parameters include ∅1=(𝜔01, 𝜔11, 𝜔21, 𝜔31, 𝜔41, 𝛽1, 𝛾1) for the first 

cause of failure (death due to the colorectal failure) and 

∅2=(𝜔02, 𝜔12, 𝜔22, 𝜔32 , 𝜔42 , 𝛽2, 𝛾2) for the second cause of failure (death due to other 

events). The Fisher information matrix will be a matrix of 14×14. In Table 3 we present 

for both models, the maximum likelihood estimates for 𝜔𝐿�̂�,𝛽j and 𝛾j, j = 1, 2 and 

L=0,…,4. 

 

The estimate of parameters was done through the maximum likelihood approach using 

the software R; and as there are no closed form solutions for the equations, the numerical 
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Newton-Raphson approach was applied. In this study, in order to compare (Akaike, 

1983) generalized Weibull competing risks model and Weibull model the Akaike 

Information Criterion (AIC) has been used. 

 

From 388 patients, it was observed censored time for 271 patients (69.8%), death due to 

colorectal cancer for 104 patients (26.8%), and death due to other events (j=2) for 13 

patients (3.4%). The maximum likelihood estimate and standard deviation of each 

parameters of the model are presented in table 3. According to the results of table 3 in 

generalized Weibull competing risks model, all the variables exist in the model have an 

impact on colorectal cancer mortality. While in the Weibull competing risks, just the 

effect of sex was statistically significant for mortality of colorectal cancer. 

 

According to the results of table 3 the AIC of generalized Weibull is lesser than the 

Weibull model and thus the generalized Weibull model is more suitable for this data set. 

Moreover, based on the likelihood ratio test statistics (LR), the efficiency of competing 

risk generalized Weibull model for the real data set of colorectal cancer was evaluated. 

Following this, the null hypothesis and the alternative hypothesis are defined as follows: 

𝐻0:  𝛾1 = 1, 𝛾2 = 1 ,  Competing risks with Weibull distributions (W) 

𝐻1:  𝛾1 ≠ 1, 𝛾2 ≠ 1 ,  Competing risks with generalized Weibull distributions(GW)  

 

Under the null hypothesis, The value 𝑋𝐿 = 2𝐿𝐺𝑊 − 2𝐿𝑊 = 26.08  has a chi-square 

distribution with two degrees of freedom and the p-value is less than 0.001. Here, 𝐿𝑊, 

and 𝐿𝐺𝑊 are the log-likelihood functions under 𝐻0, and 𝐻1, respectively. Hence, based 

on the values of 𝑋𝐿 , and p-value, the generalized weibull distribution fits better than the 

weibull distribution for these data. 

5. Discussion and Conclusion 

In this paper, we extend Sarhan and Wahed approach that is the parametric approach to the 

analysis of competing risks data based on generalized Weibull model. A set of real data 

and simulation study were used for illustrative purposes. 

 

Our simulation study showed that the estimate of generalized Weibull model parameters 

are very close to real values and MSE and SD of model parameter drop as the sample size 

has been increased. The analysis of real data of colorectal cancer showed that based on 

the AIC s, generalized Weibull distribution is more suitable than Weibull distribution for 

this set of data and the (se) of estimated data of generalized Weibull model is lesser than 

the Weibull model. 

 

Yet, many studies have been accomplished in the field of parametric competing risks, see 

Kundu and Basu (2000), Park (2005), Shayan et al.(2011), Iskandar (2016), Moamer et 

al. (2017 ). Fine and Jeong (2007) evaluated the covariate effects in competing risks data 

based on Gompertz. Mazucheli et al. (2011) based on Lindley competing risks model, 

and evaluated the covariate effects on survival time. Other studies that analyzed the 

competing risks using generalized Weibull, included just the main parameters without the 

presence of independent variables. As evaluating the influence of covariates on survival 
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time is one of the purposes of competing risks analysis, thus in this study we tried to 

evaluate the covariate effects on the survival time in generalized Weibull model, we 

defined the scale parameter in the form of a linear combination of covariate. Also and we 

estimated the parameters of each failure using the maximum likelihood approach. 

 

Although Bayesian estimation has been used widely in survival analysis, but this 

approach so far has been limited to single risk models. Therefore for further research, in 

order to estimate the unknown parameters of generalized Weibull model data in the 

presence of competing risks, the Bayesian approach can be applied instead the maximum 

likelihood approach. Typically for parametric survival models, the scale parameter is 

reparameterized in terms of covariates (predictor variables), we suggest the parameters γ 

and β will be defined based on a linear combination of covariates instead 𝛼 parameter 

scale. 
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Table1:   Mean, average mean square error (MSE) and standard deviation (SD) 

for  𝜽𝟎=0, 𝜽𝟏 = 𝟏. 𝟐, 𝜸𝟏 = 𝟎. 𝟖, 𝜷𝟏 = 𝟏, 𝜽𝟐 = 𝟎. 𝟏, 𝜽𝟑 = 𝟎. 𝟓, 𝜸𝟐 = 𝟏. 𝟐 

and 𝜷𝟐 = 1  in  generalized Weibull competing risks model 

 Sample Size 

Parameter 

𝜽𝟎 𝜽𝟏 𝜸𝟏 𝜷𝟏 𝜽𝟐 𝜽𝟑 𝜸𝟐 𝜷𝟐 

Mean 

200 0.272 0.912 1.273 0.938 -0.663 1.436 1.511 1.641 

500 0.091 1.053 0.977 0.994 0.193 0.368 1.573 1.047 

1000 0.071 1.072 0.911 1.007 0.202 0.395 1.508 1.132 

2000 0.068 1.064 0.873 1.023 0.166 0.478 1.454 0.934 

SD 

200 0.615 0.931 1.012 0.274 2.732 3.816 1.106 1.561 

500 0.445 0.63 0.374 0.195 0.568 0.752 0.997 0.383 

1000 0.314 0.449 0.222 0.144 0.38 0.494 0.639 0.435 

2000 0.202 0.323 0.147 0.103 0.255 0.342 0.342 0.133 

MSE 

200 0.453 0.950 1.244 0.078 8.050 15.440 1.321 2.849 

500 0.199 0.418 0.161 0.048 0.323 0.576 1.124 0.147 

1000 0.099 0.212 0.06 0.021 0.155 0.254 0.49 0.201 

2000 0.042 0.115 0.022 0.011 0.065 0.117 0.171 0.018 
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Table2:   Mean, average mean square error (MSE) and standard deviation (SD) 

for  𝜽𝟎=0 , 𝜽𝟏 = 𝟏. 𝟐, 𝜸𝟏 = 𝟏, 𝜷𝟏 = 𝟏, 𝜽𝟐 = 𝟎. 𝟏, 𝜽𝟑 = 𝟎. 𝟓, 𝜸𝟐 = 𝟏 and 

𝜷𝟐 = 1  in  Weibull competing risks model 

 Sample Size 

Parameter 

𝜽𝟎 𝜽𝟏 𝜸𝟏 𝜷𝟏 𝜽𝟐 𝜽𝟑 𝜸𝟐 𝜷𝟐 

Mean 

200 -0.742 2.422 0.968 1.548 0.157 0.459 1.431 0.951 

500 -0.02 1.184 1.002 1.074 0.006 0.579 1.096 1.086 

1000 -0.041 1.21 0.966 1.058 -0.004 0.596 1.011 1.075 

2000 -0.102 1.27 0.889 1.09 0.016 0.566 0.962 1.049 

SD 

200 1.653 2.640 0.505 1.428 0.903 1.396 0.813 0.376 

500 0.449 0.623 0.932 0.24 0.636 0.878 0.6 0.432 

1000 0.381 0.535 0.287 0.166 0.449 0.625 0.401 0.293 

2000 0.236 0.344 0.15 0.105 0.28 0.387 0.212 0.145 

MSE 

200 3.284 8.476 0.256 2.340 0.818 1.951 0.848 0.144 

500 0.202 0.389 0.153 0.063 0.413 0.778 0.37 0.194 

1000 0.147 0.286 0.084 0.031 0.212 0.535 0.161 1.091 

2000 0.066 0.023 0.035 0.821 0.086 0.154 0.047 0.212 
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Table 3: Parameter estimation (standard error) for Generalized Weibull and 

Weibull competing risks model 

AIC(-2 × log-like) 
Competing risk 

MLE(se.) 

Colorectal cancer 

MLE(se.) 
Parameter Model 

1410.23(1396.23) 

0.771(0.054)* 1.031(0.014)* 𝜔0 
G

en
er

a
li

ze
d

 W
ei

b
u

ll
 0.005(0.0009)* 0.0015(0.0002)* 𝜔1 

-0.031(0.002)* 0.003(0.0005)*- 𝜔2 

0.037(0.031) 0.771(0.008)∗ 𝜔3 

0.240(0.072)* -0.008(0.02)* 𝜔4 

0.275(0.033)∗ 0.175(0.008)∗ 𝛽 

23.172(3.113)* 31.180(1.610)* 𝛾 

1434.32(1422.32) 

-3.640(0.277)* -1.775(0.052)* 𝜔0 

W
ei

b
u

ll
 

0.0316(0.004)* 0.008(0.0009)* 𝜔1 

-0.117(0.012)* -0.0001(0.002) 𝜔2 

0.0526(0.164) 0.048(0.030) 𝜔3 

1.259(0.353)* -0.056(0.078) 𝜔4 

1.310(0.129)* 0.671(0.027)* 𝛽 

 ∗ significance level: 5% 

 


