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Abstract 

A new five parameter Fréchet model for Extreme Values was proposed and studied. Various mathematical 

properties including moments, quantiles, and moment generating function were derived. Incomplete 

moments and probability weighted moments were also obtained. The maximum likelihood method was 

used to estimate the model parameters. The flexibility of the derived model was accessed using two real 

data set applications. 
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1. Introduction 

The extreme value theory is a very important theory in statistics it was devoted to 

stochastically series of independent and identical distributed variables. In other words, 

one can say it was devoted to the study of the behavior of extreme values, even though 

these values have a very low chance to appear, they can turn out to have a very high 

impact to the observed system. Finance and insurance are the best fields of research to 

observe the importance of extreme events. The extreme value theory can be considered as 

a developing area of research. It has been started in the last century as an equivalent 

theory to the central limit theory, which is dedicated to studying the asymptotic 

distribution of the average of a sequence. The central limit theorem states that the sum 

and the mean of an arbitrary finite distribution are normally distributed under the 

condition that the sample size is sufficiently large. However, in some practical studies, 

we are looking for the limiting distribution of maximum or minimum values rather than 

the average of the data. Assume that 1 2, , , nX X X
 
is a sequence of iid random variables 

distributed with cumulative distribution function (cdf) denote F(x). One of the most 

interesting statistics in research is the sample maximum. 

𝑀𝑛 = max{𝑋1, 𝑋2, … , 𝑋𝑛}.                                                                                       (1) 
 

This theory studied the behavior of (1) as the sample size n increases to infinity. 

𝑝𝑟{𝑀𝑛 ≤ 𝑥} = 𝑝𝑟{𝑀1 ≤ 𝑥} 𝑝𝑟{𝑀2 ≤ 𝑥}… . 𝑝𝑟{𝑀𝑛 ≤ 𝑥} = 𝐹(𝑥)𝑛. 
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Suppose there are sequences of constants {𝑎𝑛 > 0} and {𝑏𝑛} such that 

𝑝𝑟 {
(𝑀𝑛 − 𝑏𝑛)

𝑎𝑛
≤ 𝑥} → 𝐺(𝑥)      𝑎𝑠 𝑛 → ∞.                                                        (2) 

 

Then if G(x) is a non-degenerate distribution function then it will belong to one of the 

three following fundamental types of classic extreme value family 

1. Type-I (Gumbel distribution). 

2. Type-II (Fréchet distribution). 

3. Type-III (Weibull distribution). 

 

The extreme value theory focuses on the behavior of block maxima or minima. The 

extreme value theory was introduced first by Fréchet (1927) and Fisher and Tippett 

(1928) then followed by Von Mises (1936) and completed by Gnedenko (1943), Von 

Mises (1964), Kotz and Johnson (1992), among others. The Fréchet (`Fr' for short) 

distribution is one of the important distributions in extreme value theory, and it has 

applications ranging from accelerated life testing through to earthquakes, floods, horse 

racing, rainfall, queues in supermarkets, wind speeds and sea waves. For more details 

about the Fr distribution and its applications, see Kotz and Nadarajah (2000). Moreover, 

applications of this distribution in various fields are given in Harlow (2002). Recently, 

some extensions of the Fréchet distribution are considered. The exponentiated Fréchet by 

Nadarajah and Kotz (2003), beta Fréchet by Nadarajah and Gupta (2004), Nadarajah and 

Kotz (2008) and Zaharim et al. (2009), beta Fréchet by Barreto-Souza et al. (2011) and 

Mubarak (2013), transmuted Fréchet by Mahmoud and Mandouh (2013), Marshall-Olkin 

Fréchet by Krishna et.al. (2013), gamma extended Fréchet by da Silva et al. (2013), 

transmuted exponentiated Fréchet by Elbatal et al. (2014), transmuted Marshall-Olkin 

Fréchet by Afify et al. (2015), transmuted exponentiated generalized Fréchet by Yousof 

et al. (2015), beta exponential Fréchet by Mead et al. (2016), Kumaraswamy Marshall-

Olkin Frѐchet by Afify et al. (2016b), Weibull Fréchet by Afify et al. (2016b), 

Kumaraswamy transmuted Marshall-Olkin Fréchet by Yousof et al. (2016) and beta 

transmuted Fréchet by Afify et al. (2016c). The probability density function (pdf) and cdf 

of the Fréchet (Fr) distribution are given by (for X>0) 

𝑔(𝑥;  𝛾, 𝛽) = 𝛽𝛾𝛽𝑥−(𝛽+1) exp [− (
𝛾

𝑥
)
𝛽

] ,                                                                                                        (3) 

and 

𝐺(𝑥;  𝛾, 𝛽) = exp [− (
𝛾

𝑥
)
𝛽

] ,                                                                                                                               (4) 

respectively, where 0   is a scale parameter and 0   is a shape parameter, the pdf of 

the WFr distribution is given (for x>0) by 

𝑔(𝑥) = 𝑎𝑏𝛽𝛾𝛽𝑥−(𝛽+1) exp [−𝑏 (
𝛾

𝑥
)
𝛽

] (1 − exp [− (
𝛾

𝑥
)
𝛽

])

−(𝑏+1)

exp [−𝑎 (exp (
𝛾

𝑥
)
𝛽

− 1)

−𝑏

],    (5) 

where γ and a are scale parameters, b, and β are the shape parameters representing 

various shapes of WFr distribution. Its cdf under the condition of non-negativity of the 

parameters can be expressed as 

𝐺𝑊𝐹(𝑥; 𝑎, 𝑏 𝛾, 𝛽) = 1 − exp [−𝑎 (exp (
𝛾

𝑥
)
𝛽

− 1)
−𝑏

].    (6)
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In this article, we introduce an extension of Fr model using the WFr model and the 

transmuted-G (TG) family of distributions proposed by Shaw and Buckley (2007).  

2. The TWFr Distribution 

The cdf of the transmuted Weibull Fréchet (TWFr) distribution can be expressed as 

𝐹(𝑥) =

(

 
 
1 − exp

{
 
 

 
 

−𝑎 [
exp [−(

𝛾

𝑥
)
𝛽
]

1 − exp [− (
𝛾

𝑥
)
𝛽
]

]

𝑏

}
 
 

 
 

)

 
 

[
 
 
 
 

1 + 𝜆 exp

{
 
 

 
 

−𝑎 [
exp [− (

𝛾

𝑥
)
𝛽
]

1 − exp [−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}
 
 

 
 

]
 
 
 
 

,                                     (7) 

and 1   is additional shape parameter and a is scale parameter. Henceforward, we will 

consider a=1 except the application part, the corresponding pdf of (7) 

𝑓(𝑥) = 𝑏𝛽𝛾𝛽𝑥−(𝛽+1)

exp [−𝑏 (
𝛾

𝑥
)
𝛽

] {1 − 𝜆 + 2𝜆 exp {− [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}}

{1 − exp [− (
𝛾

𝑥
)
𝛽

]}
𝑏+1

exp {− [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}

, 𝑥 > 0,                          (8) 

the reliability function for the TWFr distribution can be expressed as 

𝑅(𝑥) = 1 − (1 − exp {−𝑎 [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}) [1 + 𝜆 exp {−𝑎 [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}],   (9) 

the hazard rate function for the TWFr distribution can be expressed as 

𝜏(𝑥) =

𝑏𝛽𝛾𝛽𝑥−(𝛽+1)

exp[−(
𝛾

𝑥
)
𝛽
]

{
 
 

 
 

1−𝜆+2𝜆 exp

{
 
 

 
 

−[
exp[−(

𝛾
𝑥)
𝛽
]

1−exp[−(
𝛾
𝑥)
𝛽
]

]

𝑏

}
 
 

 
 

}
 
 

 
 

{1−exp[−(
𝛾

𝑥
)
𝛽
]}

𝑏+1

exp

{
 
 

 
 

−[
exp[−(

𝛾
𝑥)
𝛽
]

1−exp[−(
𝛾
𝑥)
𝛽
]

]

𝑏

}
 
 

 
 

1 − (1 − exp {− [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}) [1 + 𝜆 exp {− [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}]

, 𝑥 > 0.                       (10) 

and cumulative hazard rate function 

𝐻(𝑥) = −ln{1 − (1 − exp{−𝑎 [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

})[1 + 𝜆 exp {−𝑎 [
exp[−(

𝛾

𝑥
)
𝛽
]

1−exp[−(
𝛾

𝑥
)
𝛽
]

]

𝑏

}]},           (11) 

 

Below is a simple motivation for the development of TWFr distribution. Suppose "𝑇1 and 

𝑇2" be two independent random variables from cdf in (7). Define  

𝑋 = {
𝑇1:2       with probability  

1

2
(1 + 𝜆);

𝑇2:2       with probability  
1

2
(1 − 𝜆);

 

Where 𝑇1:2 = min{𝑇1, 𝑇2} and 𝑇2:2 = max{𝑇1, 𝑇2}, then the cdf of X is given by (7). 

 

Figure 1 and 2 give some plots of p.d.f. and h.r.f. of TWFr distribution for some 

parameter values. 
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Figure 1:   Plots of the TWFr pdf for some parameter values 

 

 
Figure 2:   Plots of the TWFr pdf for some parameter values 

3. Mixture Representation 

The TWFr density function given in Eq. (8) can be expressed as   

𝐹(𝑥;  𝜆, 𝑏, 𝛾, 𝛽) = 1 + (𝜆 − 1) exp

{
 

 

−[
exp [− (

𝛾

𝑥
)
𝛽

]

1 − exp [− (
𝛾

𝑥
)
𝛽

]

]

𝑏

}
 

 

− 𝜆 exp

{
 

 

−2 [
exp [− (

𝛾

𝑥
)
𝛽

]

1 − exp [− (
𝛾

𝑥
)
𝛽

]

]

𝑏

}
 

 

,    (12) 

and after some algebra, we have 

𝐹(𝑥) = 1 + ∑ 𝑣𝑖,𝑗

∞

𝑖,𝑗=0

𝐻𝑏𝑖+𝑗(𝑥)                                                                                                  (13) 
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where 𝐻𝑏𝑖+𝑗(𝑥) is the Fr cdf with scale parameter 𝛾[𝑏𝑖 + 𝑗]1 𝛽⁄  and shape parameter β. 

𝑣𝑖,𝑗 =
(−1)𝑖+𝑗

𝑖!
(
−𝛼𝑖
𝑗
) (𝜆 − 1 − 𝜆 2𝑖), 

the corresponding TWFr density function is obtained by differentiating (15) 

𝑓(𝑥) = ∑ 𝑣𝑖,𝑗

∞

𝑖,𝑗=0

𝑏𝑏𝑖+𝑗(𝑥),                                                                                                   (14) 

where ℎ𝑏𝑖+𝑗(𝑥) is the Fr cdf with scale parameter 𝛾[𝑏𝑖 + 𝑗]1 𝛽⁄  and shape parameter β. 

 

Let 𝑐 = inf {𝑥| {exp [− (
𝛾

𝑥
)
𝛽

]} > 0} . Then the asymptotics of cdf, pdf and hrf as 𝑥 → 𝑐 

are given by 

𝐹(𝑥)~(1 + 𝜆) exp [−(
𝛾

𝑥
)
𝛽

]          as        𝑥 → 𝑐, 

𝑓(𝑥)~𝑏(1 + 𝜆)𝛽𝛾𝛽𝑥−(𝛽+1) exp [− (
𝛾

𝑥
)
𝛽

]          as        𝑥 → 𝑐, 

and 

ℎ(𝑥)~𝑏(1 + 𝜆)𝛽𝛾𝛽𝑥−(𝛽+1) exp [−(
𝛾

𝑥
)
𝛽

]          as        𝑥 → 𝑐. 

 

The asymptotic of cdf, pdf and hrf when 𝑥 → ∞ are given by 

1 − 𝐹(𝑥)~exp(− {1 − exp [− (
𝛾

𝑥
)
𝛽

] }
−𝑏

)         as        𝑥 → ∞, 

𝑓(𝑥)~
𝑏𝛽𝛾𝛽𝑥−(𝛽+1) exp [− (

𝛾

𝑥
)
𝛽

]

{1 − exp [−(
𝛾

𝑥
)
𝛽

] }
𝑏+1 exp(− {1 − exp [−(

𝛾

𝑥
)
𝛽

] }

−𝑏

)          as        𝑥 → ∞, 

and 

ℎ(𝑥)~𝑏𝛽𝛾𝛽𝑥−(𝛽+1) exp [− (
𝛾

𝑥
)
𝛽

] {1 − exp [−(
𝛾

𝑥
)
𝛽

] }

−𝑏−1

         as        𝑥 → ∞. 

4. Mathematical properties 

4.1 Probability weighted moments 

The PWMs are expectations of certain functions of a random variable and they can be 

defined for any random variable whose ordinary moments exist. The PWMs method can 

generally be used for estimating parameters of a distribution whose inverse form cannot 

be expressed explicitly. The (𝑠, 𝑟)𝑡ℎ PWMs of X following the TWFr model, say 𝜌𝑠,𝑟  is 

formally defined by 

𝜌𝑠,𝑟 = 𝐸{𝑋𝑠𝐹(𝑋)𝑟} = ∫ 𝑥𝑠𝐹(𝑥)𝑟𝑓(𝑥)𝑑𝑥.
∞

−∞

 

 

Using equations (pdf) and (cdf), we can write 

𝑓(𝑥)𝐹(𝑥)𝑟 = ∑ 𝑝𝑖,𝑗
∞
𝑖,𝑗=0 ℎ𝑏(𝑖+1)+𝑗(𝑥), 
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where ℎ𝑏(𝑖+1)+𝑗(𝑥) is the Fr density with scale parameter 𝛾[𝑏(𝑖 + 1) + 𝑗]1 𝛽⁄  and shape 

parameter β. and  

𝑝𝑖,𝑗 = ∑
(−1)𝑘+ℎ+𝑖+𝑗(ℎ + 1)𝑖 [(1 + 𝜆) (

𝑟 + 𝑘
ℎ

) − 2𝜆 (
𝑟 + 𝑘 + 1

ℎ
)]

𝑖! 𝑏−1𝜆−𝑘(1 + 𝜆)𝑘−𝑟[𝑏(𝑖 + 1) + 𝑗]

∞

𝑘,ℎ=0

(
𝑟
𝑘
) (
−[𝑏(𝑖 + 1) + 1]

𝑗
). 

 

Then, the (𝑠, 𝑟)𝑡ℎ PWMs of X can be expressed as 

𝜌𝑠,𝑟 = ∑
𝑝𝑖,𝑗

𝛾−𝑟

∞

𝑖,𝑗=0

[𝑏(𝑖 + 1) + 𝑗]
𝑟

𝛽 Г (1 −
𝑟

𝛽
). 

4.2 Moments, incomplete moments and generating function 

The rth ordinary moment of X is given by 𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥.

∞

−∞
 Then we obtain 

𝜇𝑟
′ = ∑

𝑣𝑖,𝑗

𝛾−𝑟

∞

𝑖,𝑗=0

[𝑎𝑖 + 𝑗]
𝑟

𝛽 Г (1 −
𝑟

𝛽
).                                                                                   (15) 

 

Setting 𝑟 = 1, we have the mean of X. The last integration can be computed numerically 

for most parent distributions. The skewness and kurtosis measures can be calculated from 

the ordinary moments using well-known relationships. Then nth central moments of X, 

say 𝑀𝑛, follows as 𝑀𝑛 = 𝐸(𝑋 − 𝜇)𝑛 = ∑ (−1)ℎ (
𝑛
ℎ
) (𝜇1

′ )𝑛𝜇𝑛−ℎ
′𝑛

ℎ=0 . The cumulants (𝑘𝑛) 

of X follow recursively from 𝑘𝑛 = 𝜇𝑛
′ − ∑ (−1)ℎ (

𝑛 − 1
𝑟 − 1

) 𝑘𝑟𝜇𝑛−ℎ
′ ,𝑛−1

𝑟=0  where 𝑘1 =

𝜇1
′ , 𝑘2 = 𝜇2

′ − 𝜇1
′ 2, 𝑘3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 𝜇1
′ 3, etc. The skewness and kurtosis measures 

also can be calculated from the ordinary moments using well-known relationships. The 

main applications of the first incomplete moments refer to the mean deviations and 

Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 

demography, insurance and medicine. The rth incomplete moment, say 𝜑𝑟(𝑡), of X can 

be expressed from (10) as 

𝜑𝑟(𝑡) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
𝑡

−∞

= ∑
𝑣𝑖,𝑗

𝛾−𝑟

∞

𝑖,𝑗=0

[𝑎𝑖 + 𝑗]
𝑟

𝛽 Г (1 −
𝑟

𝛽
, [𝑎𝑖 + 𝑗]− (

𝛾

𝑡
)
𝛽

).            (16) 

 

The mean deviations about the mean [𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |)] and about the median [𝛿2 =

𝐸(|𝑋 −𝑀|)] of X are given by 𝛿1 = 2𝜇1
′𝐹(𝜇1

′ ) − 2𝜑1(𝜇1
′ ) and 𝛿2 = 𝜇1

′ −
2𝜑1(𝑀),respectively, where 𝜇1

′ = 𝐸(𝑋), 𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝑄(0.5) is the median, 

𝐹(𝜇1
′ ) is easily calculated from (5) and 𝜑1(𝑡) is the first incomplete moment given by 

(12) with r=1. Here, we provide two formulae for the moment generating function (mgf) 

𝑀𝑥(𝑡) = 𝐸(𝑒
𝑡𝑋) of X. Clearly, the first one can be derived from equation (9), for 𝑟 < 𝑏, 

as  

𝑀𝑥(𝑡) = ∑ 𝛶𝑘
∞
𝑘=0 𝑀[(𝛼+𝑘)𝜃](𝑡) = ∑ 𝛶𝑘

∞
𝑘=0 ∑

𝑡𝑟

𝑟!
∞
𝑟=0 𝜇𝑟

′ = ∑
𝛶𝑘 𝑡

𝑟

𝑎−𝑟𝑟!
∞
𝑘,𝑟=0 [(𝛼 + 𝑘)𝜃]

𝑟

𝑏 Г (1 −
𝑟

𝛽
). 
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A second formula for 𝑀𝑥(𝑡). Setting 𝑦 = 𝑥−1 in (3), we can write this mgf 𝑀(𝑡; 𝑎, 𝑏) =

𝑏𝑎𝑏 ∫ exp (
𝑡

𝑦
)

∞

0
𝑦(𝑏−1) exp{−(𝑎𝑦)𝑏}. By expanding the first exponential and calculating 

the integral, we have  

𝑀(𝑡;  𝛾, 𝛽) = 𝑏𝛾𝑏∫ ∑
𝑡𝑚

𝑚!

∞

𝑚=0

∞

0

exp (
𝑡

𝑦
) 𝑦𝛽−𝑚−1 exp{−(𝛾𝑦)𝛽} = ∑

𝛾𝑚 𝑡𝑚

𝑚!

∞

𝑚=0

 Г (
𝛽 − 𝑟

𝛽
), 

where the gamma function is well-defined for any non-integer b. Consider the Wright 

generalized hypergeometric function defined by 

𝑝𝛹𝑞 [
(𝛼1, 𝐴1),… , (𝛼1, 𝐴𝑝)

(𝛽1, 𝐵1), … , (𝛽1, 𝐵𝑝)
; 𝑥] = ∑

∏ Г(𝛼𝑗 + 𝐴𝑗𝑛)
𝑝
𝑗=1

∏ Г(𝛽𝑗 + 𝐵𝑗𝑛)
𝑞
𝑗=1

∞

𝑛=0

𝑥𝑛

𝑛!
 

 

Then, we can write 𝑀(𝑡;  𝛾, 𝛽) as 

𝑀(𝑡;  𝛾, 𝛽) = 1𝛹0 [
(1 − 𝛽−1)

−
; 𝛾𝑡] .                                                                                 (17) 

 

Combining expressions (17) and the above equation, we obtain the mgf of X, say 𝑀(𝑡), 
as  

𝑀(𝑡;  𝛾, 𝛽) = ∑ 𝑣𝑖,𝑗

∞

𝑖,𝑗=0

1𝛹0 [
((1 − 𝛽−1)

−
; 𝛾[𝑏𝑖 + 𝑗]

1

𝛽𝑡]. 

4.3 Order statistics 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be random sample from the TWFr model of distributions and let 

𝑋1:𝑛, 𝑋2:𝑛, … , 𝑋𝑛:𝑛be the corresponding order statistics. The pdf of ith order statistics, say 

𝑋𝑖:𝑛, can be written as  

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖,𝑛−𝑖+1)
∑ (−1)𝑗 (

𝑛 − 𝑖
𝑗
)𝑛−𝑖

𝑗=0 𝐹𝑗+𝑖−1(𝑥), 

where 𝐵(. , . ) is the beta function. Substituting (5) and (6) in equation (13) and using a 

power series expansion, we get 

𝑡𝑚,𝑤 = ∑
(−1)𝑘+ℎ+𝑚+𝑤 [(1 + 𝜆) (

𝑗 + 𝑖 + 𝑘 − 1
ℎ

) − 2𝜆 (
𝑗 + 𝑖 + 𝑘

ℎ
)]

𝑖! 𝑏−1 𝜆−𝑘(ℎ + 1)−𝑚(1 + 𝜆)𝑘−(𝑗+𝑖−1)[𝑏(𝑚 + 1) + 𝑤]

∞

𝑘,ℎ=0

(
𝑗 + 𝑖 − 1

𝑘
) (
−[𝑏(𝑚 + 1) + 1]

𝑤
). 

 

The pdf of 𝑋𝑖: 𝑛 can be expressed as 

𝑓𝑖:𝑛(𝑥) =∑
(−1)𝑗 (

𝑛 − 𝑖
𝑗
)

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝑛−𝑖

𝑗=0

∑𝑡𝑚,𝑤ℎ𝑏(𝑚+1)+𝑤

𝑛−𝑖

𝑗=0

(𝑥). 

 

Where ℎ𝑏(𝑚+1)+𝑤(𝑥) is the Fr density with scale parameter 𝛾[𝑏(𝑚 + 1) + 𝑤]
1

𝛽 and shape 

parameter β. Based on the last equation, we note that the properties of 𝑋𝑖: 𝑛 follow from 

those properties of 𝑌𝑘+1. For example, the moments of 𝑋𝑖: 𝑛 can be expressed as 

𝐸(𝑋𝑖:𝑛
𝑞 ) = ∑ ∑

(−1)𝑗 (
𝑛 − 𝑖
𝑗
) 𝑡𝑚,𝑤

𝐵(𝑖, 𝑛 − 𝑖 + 1)𝛾−𝑞

𝑛−𝑖

𝑗=0

∞

𝑚,𝑤=0

[𝑏(𝑚 + 1) + 𝑤]
𝑞

𝛽Г (1 −
𝑞

𝛽
).                      (18) 
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The L-moments are analogous to the ordinary moments but can be estimated by linear 

combinations of order statistics. They exist whenever the mean of the distribution exists, 

even though some higher moments may not exist, and are relatively robust to the effects 

of outliers. Based upon the moments in equation (18), we can derive explicit expressions 

for the L-moments of X as infinite weighted linear combinations of the means of suitable 

TWFr order statistics. They are linear functions of expected order statistics defined by 

𝜆𝑟 =
1

𝑟
∑(−1)𝑑
𝑟−1

𝑑=0

(
𝑟 − 1
𝑑

)𝐸(𝑋𝑟−𝑑:𝑟),     𝑟 ≥ 1.  

4.4 Moments of the residual and reversed residual life 

Let X be a random variable usually representing the life length for a certain unit at age t 

(where this unit can have multiple interpretations), then the random variable 𝑋𝑡 = 𝑋 −
𝑡|𝑋 > 𝑡 represents the remaining lifetime beyond that age. Moreover, the nth moment of 

the residual life, denoted by 

𝑚𝑛(𝑥) = 𝐸{(𝑋 − 𝑥)𝑛|𝑋 > 𝑥}, 𝑛 = 1, 2, … uniquely determines F(x), The nth moment of 

the residual life of X is given by 𝑀𝑛(𝑡) =
1

1−𝐹(𝑡)
∫ (𝑥 − 𝑡)𝑛𝑑𝐹(𝑥).
∞

𝑡
 Then, we ca write 

(for 𝑟 < 𝛽 ) 

𝑚𝑛(𝑡) =
1

1−𝐹(𝑡)
∑

(−1)𝑛−𝑟𝑡𝑛−𝑟𝑛!

𝑟!Г(𝑛−𝑟+1)
𝑛
𝑟=0 ∑

𝑣𝑖,𝑗

𝛾−𝑟
∞
𝑖,𝑗=0 (𝑏𝑖 + 𝑗)

𝑟

𝛽Г (1 −
𝑟

𝛽
, (𝑏𝑖 + 𝑗) (

𝛾

𝑡
)
𝛽

). 

 

The nth moment of the reversed residual life, say 𝑀𝑛(𝑡) = 𝐸{(𝑡 − 𝑋)
𝑛|𝑋 ≤ 𝑡} for 𝑡 > 0 

and 𝑛 = 1, 2, … uniquely determines F(x) (Navarro et al. 1998). We obtain 𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∫ (𝑡 − 𝑥)𝑛𝑑𝐹(𝑥).
𝑡

0
  Therefore, the nth moment of the reversed residual life of X given 

that 𝑟 < 𝛽 becomes 

𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∑

(−1)𝑗𝑛!

𝑟! (𝑛 − 𝑟)!

𝑛

𝑟=0

∑
𝑣𝑖,𝑗

𝛾−𝑟

∞

𝑖,𝑗=0

(𝑏𝑖 + 𝑗)
𝑟

𝛽Г(1 −
𝑟

𝛽
, (𝑏𝑖 + 𝑗) (

𝛾

𝑡
)
𝛽

).  

 

The mean inactivity time (MIT) or mean waiting time (MWT) also called the mean 

reversed residual life function is defined by 𝑀1(𝑡) = 𝐸{(𝑡 − 𝑋)|𝑋 ≤ 𝑡}, and it represents 

the waiting time elapsed since the failure of an item on condition that this failure had 

occurred in (0; x). The MRRL of X can be obtained by setting n = 1 in the above 

equation. 

4.5 Stress-strength model 

Stress-strength model is the most widely approach used for reliability estimation. This 

model is used in many applications in physics and engineering such as strength failure 

and system collapse. In stress-strength modeling, 𝑅 =  𝑃𝑟(𝑋2 < 𝑋1) is a measure of 

reliability of the system when it is subjected to random stress X2 and has strength X1. The 

system fails if and only if the applied stress is greater than its strength and the component 

will function satisfactorily whenever 𝑋1 > 𝑋2. R can be considered as a measure of 

system performance and naturally arise in electrical and electronic systems. Other 

interpretation can be that, the reliability of the system is the probability that the system is 

strong enough to overcome the stress imposed on it. Let X1 and X2 be two independent 
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random variables with 𝑇𝑊𝐹𝑟(𝜆1, 𝑏1, 𝛾, 𝛽) and 𝑇𝑊𝐹𝑟(𝜆2, 𝑏2, 𝛾, 𝛽) distributions. The 

reliability is defined by 𝑅 = ∫ 𝑓1(𝑥, 𝜆1, 𝑏1, 𝛾, 𝛽)𝐹2(𝑥, 𝜆2, 𝑏2, 𝛾, 𝛽)
∞

0
𝑑𝑥. Then, we can 

write  

𝑹 = ∑ 𝑎𝑖,𝑗

∞

𝑖,𝑗=0

∫ ℎ𝑏1𝑖+𝑗(𝑥)𝑑𝑥
∞

0
+ ∑ 𝑏𝑖,𝑗,𝑘,ℎ

∞

𝑖,𝑗,ℎ,𝑘=0

∫ ℎ𝑏1𝑖+𝑗+𝑏1ℎ+𝑘(𝑥)𝑑𝑥
∞

0
 

 

Where 

𝑎𝑖,𝑗 =
(−1)𝑖+𝑗

𝑖!
(
−𝑏1𝑖
𝑗
) (𝜆1 − 1 − 𝜆1 2

𝑖) 

 

And  

𝑏𝑖,𝑗,𝑘,ℎ =
(−1)𝑖+𝑗+ℎ+𝑘(𝜆1 − 1 − 𝜆1 2

𝑖) (
−𝑏1𝑖
𝑗
) (
−𝑏2𝑖
𝑘
)

𝑖! (𝑏1𝑖 + 𝑗)[𝑏1𝑖 + 𝑗 + 𝑏2ℎ + 𝑘](𝜆1 − 1 − 𝜆1 2
ℎ)−1

 

 

Thus, the reliability, R, can be expressed as 

𝑅 = ∑ 𝑎𝑖,𝑗

∞

𝑖,𝑗=0

+ ∑ 𝑏𝑖,𝑗,𝑘,ℎ

∞

𝑖,𝑗,ℎ,𝑘=0

. 

4.6 Quantile Function 

The quantile function (qf) of X, where 𝑋 − 𝑇𝑊𝐹𝑟(𝛾, 𝛽, 𝑎, 𝑏, 𝜆) is obtained by inverting 

𝑋𝑈 = 𝐹−1(𝑈) as 

𝑋𝑈 = 𝛾(− log [1 − log {1 −
(1 + 𝜆) − √(1 + 𝜆2) − 4𝜆𝑈

2𝜆
}

−
1

𝑏

])

−
1

𝛽

.                           

 

Simulating the TWFr random sample is straightforward. If U is a uniform variate on the 

unit interval (0, 1) then the random variable X follows Eq. (8). 

Particularly, the distribution median is 

𝑋0.5 = 𝛾 (− log [1 −
1

𝑎
log {1 −

(1+𝜆)−√(1+𝜆2)−4𝜆0.5

2𝜆
}
−
1

𝑏

])

−
1

𝛽

 , 

then 

𝑋0.5 = 𝛾(− log [1 −
1

𝑎
log {

(𝜆 − 1) + √(1 + 𝜆2)

2𝜆
}

−
1

𝑏

])

−
1

𝛽

.               

5. Maximum Likelihood Estimation 

The maximum likelihood estimators (MLEs) of the TWFr distribution are discussed in 

this section. Then, the log-likelihood function becomes, 
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𝐿 = n ln(𝑎𝑏𝛽𝛼𝛽) − (𝛽 + 1)∑ln(𝑥𝑖)

𝑛

𝑖=1

+∑ln

{
 

 

1 − 𝜆 + 2𝜆 exp

{
 

 

−[
exp [− (

𝛾

𝑥𝑖
)
𝛽

]

1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]

]

𝑏

}
 

 

}
 

 

𝑛

𝑖=1

− (𝑏 + 1)∑ln{1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]}

𝑛

𝑖=1

+∑ln

{
 

 

exp

{
 

 

−[
exp [− (

𝛾

𝑥𝑖
)
𝛽

]

1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]

]

𝑏

}
 

 

}
 

 

𝑛

𝑖=1

 

 

Differentiate log-likelihood function with respect to parameters. 

𝜕𝐿

𝜕𝑏
=
𝑛

𝑏
+ 𝛽 log 𝛾 −∑

2𝜆 exp{− [
exp[−(

𝛾

𝑥𝑖
)
𝛽

]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽

]

]

𝑏

}[
exp[−(

𝛾

𝑥𝑖
)
𝛽

]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽

]

]

𝑏

log 𝑏

{1 − 𝜆 + 2𝜆 exp{− [
exp[−(

𝛾

𝑥𝑖
)
𝛽

]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽

]

]

𝑏

}}

𝑛

𝑖=1

−∑log {1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]} +∑[
exp [−(

𝛾

𝑥𝑖
)
𝛽
]

1 − exp [−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏

log 𝑏

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝛽
=
𝑛

𝛽
+ 𝑏 log 𝛾 −∑log 𝑥𝑖

𝑛

𝑖=1

−∑(
𝛾

𝑥𝑖
)
𝛽

log 𝛽

𝑛

𝑖=1

+∑

2𝑏𝜆 exp {− [
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏

} [
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏−1

exp [− (
𝛾

𝑥𝑖
)
𝛽

] (
𝛾

𝑥𝑖
)
𝛽

log 𝛽

{1 − 𝜆 + 2𝜆 exp {− [
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏

}} [1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]]
2

𝑛

𝑖=1

−∑
(𝑏 + 1) exp [− (

𝛾

𝑥𝑖
)
𝛽

] (
𝛾

𝑥𝑖
)
𝛽

log 𝛽

{1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]}

𝑛

𝑖=1

− 𝑏∑
exp [− (

𝛾

𝑥𝑖
)
𝛽

] (
𝛾

𝑥𝑖
)
𝛽

log𝛽

[1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]]
2

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝛾
=
𝑛𝑏𝛽

𝛾
− 𝛽∑(

𝛾

𝑥𝑖
)
𝛽−1 1

𝑥𝑖

𝑛

𝑖=1

+∑

2𝑏𝜆 exp {−[
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏

} [
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏−1

𝛽 exp[−(
𝛾

𝑥𝑖
)
𝛽
](
𝛾

𝑥𝑖
)
𝛽−1

1

𝑥𝑖
 

[1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]]

2

{1 − 𝜆 + 2𝜆 exp {− [
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏

}}

𝑛

𝑖=1

− (𝑏 + 1)∑
𝛽 exp [− (

𝛾

𝑥𝑖
)
𝛽

] (
𝛾

𝑥𝑖
)
𝛽−1 1

𝑥𝑖

{1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]}

𝑛

𝑖=1

+ 𝑏∑[
exp [− (

𝛾

𝑥𝑖
)
𝛽

]

1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]

]

𝑏−1

𝛽 exp [− (
𝛾

𝑥𝑖
)
𝛽

] (
𝛾

𝑥𝑖
)
𝛽−1 1

𝑥𝑖
 

[1 − exp [− (
𝛾

𝑥𝑖
)
𝛽

]]
2

𝑛

𝑖=1
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𝜕𝐿

𝜕𝜆
=∑

2exp {− [
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏

} − 1

{1 − 𝜆 + 2𝜆 exp {− [
exp[−(

𝛾

𝑥𝑖
)
𝛽
]

1−exp[−(
𝛾

𝑥𝑖
)
𝛽
]

]

𝑏

}}

𝑛

𝑖=1

 

6. Applications 

In this section, we provide two real dataset applications to illustrate the importance of the 

TWFr distribution. The MLEs of the parameters for these models are calculated and four 

goodness-of-fit statistics are used to compare the new family with its sub-models. The 

first data set represents the carbon fibers of 66 observations. The data are: 0.39, 0.85, 

1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.8, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 

2.41, 2.43, 2.48, 2.5, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 

2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 

3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.6, 3.65, 3.68, 3.7, 3.75, 4.2, 4.38, 4.42, 4.7, 4.9.  

 

The second data set consists of 63 observations of the strengths of 1.5 cm glass fibers, 

originally obtained by workers at the UK National Physical Laboratory. The data are: 

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 

1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 

1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 

1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89. These 

data have also been analyzed by Smith and Naylor (1987). 

 

The MLEs are computed using Mathematica. The goodness of fit measures, including the 

Akaike information criterion (AIC), Bayesian information criterion (BIC), Anderson-

Darling (A∗), Cramér–von Mises (W∗) statistics are computed to compare the fitted 

models. Generally the small values of these measures indicate the better the fit to the 

data. These goodness of fit measures are also computed using Mathematica. We compare 

the proposed model TWFr, with Kumaraswamy Fréchet (KFr) (Mead, 2014), beta 

Fréchet (BFr) (Nadarajah & Gupta, 2004), transmuted Fréchet (Mahmoud & Mandouh, 

2013), Weibull Fréchet (WFr) (Afify et al. 2016).  Their density functions (for x>0) are 

given by: 

WFr: 𝑓(𝑥;  𝛼, 𝛽, 𝑎, 𝑏) = 𝑎𝑏𝛽𝛼𝛽𝑥−(𝛽+1)𝑒
[−𝑏(

𝛼

𝑥
)
𝛽
]
{1 − 𝑒

[−(
𝛼

𝑥
)
𝛽
]
}

−(𝑏+1)

exp(−𝑎 [𝑒
[−(

𝛼

𝑥
)
𝛽
]
− 1]

−𝑏

) ; 

KFr: 𝑓(𝑥;  𝛼, 𝛽, 𝑎, 𝑏) = 𝑎𝑏𝛽𝛼𝛽𝑥−(𝛽+1)𝑒
[−𝑎(

𝛼

𝑥
)
𝛽
]
{1 − 𝑒

[−𝑎(
𝛼

𝑥
)
𝛽
]
}

𝑏−1

; 

BFr: 𝑓(𝑥;  𝛼, 𝛽, 𝑎, 𝑏) =
𝛽𝛼𝛽

𝐵(𝑎, 𝑏)
𝑥−(𝛽+1)𝑒

[−𝑎(
𝛼

𝑥
)
𝛽
]
{1 − 𝑒

[−𝑎(
𝛼

𝑥
)
𝛽
]
}

𝑏−1

; 

TFr: 𝑓(𝑥;  𝛼, 𝛽, 𝑏) = 𝛽𝛼𝛽𝑥−(𝛽+1)𝑒
[−(

𝛼

𝑥
)
𝛽
]
{1 + 𝑏 − 2𝑏𝑒

[−(
𝛼

𝑥
)
𝛽
]
} ; 

Table 1 and 2 list the ML estimates and model selection statistics of fitted models for the 

data sets. 
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Table-1:   MLEs and goodness of fit measures for data set 1 

Parameters Probability Distributions  

  KFr BFr TFr WFr TWFr 

α 9.4E+09 522.623 3.53178 0.04630291 1.5069E-05 

β 0.12847 0.45492 1.23875 0.674984 0.160797 

λ - - - - -0.646467 

a 1.57844 0.52752 - 1.8525E-06 3.0372E-14 

b 2.3E+11 14732.9 2.45 4.72167 16.6086 

Log( likelihood) -86.6727 -87.6214 -90.7381396 -86.2841 -85.35918 

A∗ 0.57577 0.78347 10.0076 0.623812 0.422544 

W∗ 0.1028 0.14884 2.54272 0.118206 0.0704867 

AIC 181.543 183.243 187.476 180.68 180.284 

BIC 190.104 192.1 194.045 189.327 191.132 

Table-2:   MLEs and goodness of fit measures for data set 2 

Parameters 

  

Probability distributions  

KFr BFr EFr TFr WFr TWFr 

α 2.605E-07 185850000 8.44175 1.0937 0.3865 0.000112174 

β 0.481855 0.164219 0.954717 3.22166 0.2436 0.034959799 

λ - - - -0.77447 - -0.502657301 

a 20998 1.93339 132.827 - 1.4762 130.0266213 

b 73124.2 2976000000   - 16.8561 105.0252683 

Log( likelihood) -17.6651 -18.6831 -21.999 -43.1516 -15.5005 -14.3672112 

A∗ 1.81873 2.17081 2.79072 6.0437 1.34103 1.05787 

W∗ 0.313038 0.403759 0.510634 1.10797 0.232647 0.17196 

AIC 43.3301 45.3661 49.9972 92.3031 39.0011 38.7344 

BIC 51.9027 53.9386 56.4266 98.7325 47.536 49.4501 
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   (a)      (b) 

Fig. 1: Plots of the estimated (a) pdfs and (b) cdf for the TWFr and their sub-models for 

first dataset-1. 

 

 

 

   (a)      (b) 

Fig. 2: Plots of the estimated (a) pdfs and (b) cdf for the TWFr and their sub-models for 

first dataset-2. 

Conclusion 

There has been a growing interest among statisticians and applied researchers in 

developing flexible lifetime models for the betterment of modeling survival data. In this 

paper, we introduce a new four-parameter extreme value model called the Transmuted 

Weibull Fréchet (TWFr) distribution, which extends the Fréchet (Fr) distribution. An 

obvious reason for generalizing Fr distribution is the fact that the generalization provides 
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more flexibility to analyze real life data. We study some of its statistical and 

mathematical properties. The TWFr density function can be expressed as a linear mixture 

of Fr densities. We derive explicit expressions for the ordinary and incomplete moments 

mean deviations, generating function, moments of the residual and reversed residual life. 

We also obtain the density function of the order statistics and their moments. We estimate 

the model parameters by maximum likelihood method. The new distribution applied to 

two real data sets provide better fits than some other related non-nested models. We hope 

that the proposed model will attract wider applications in areas such as engineering, 

survival and lifetime data, meteorology, hydrology, economics (income inequality) and 

others. 
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